The monthly starting salaries of students who receive an MBA degree have a population standard deviation of $110. What size sample should be selected to obtain a 95% confidence interval for the mean monthly income with a margin of error of $20?

Answers

Answer 1

To obtain a 95% confidence interval for the mean monthly income with a margin of error of $20, a sample size of 95 students should be selected.

What is the required sample size?

To determine the required sample size, we need to consider the population standard deviation, desired confidence level, and the desired margin of error.

In this case, the population standard deviation is given as $110, and the desired margin of error is $20. The desired confidence level is 95%, which corresponds to a z-score of 1.96 for a two-tailed test.

Using the formula for the sample size calculation for estimating the mean, which is n = (z² * σ²) / E², where z is the z-score, σ is the population standard deviation, and E is the margin of error, we can substitute the given values and solve for the sample size.

Plugging in the values, we have n = (1.96^2 * 110²) / 20², which simplifies to n ≈ 93.14.

Since we cannot have a fraction of a student, we round up to the nearest whole number. Therefore, a sample size of 95 students should be selected.

Learn more about standard deviation

brainly.com/question/13498201

#SPJ11


Related Questions

Suppose that R is the finite region bounded by f(x) = 4√x and g(x) = x/3. Find the exact value of the volume of the object we obtain when rotating R about the x-axis. V = 27π/10 x
Find the exact value of the volume of the object we obtain when rotating R about the y-axis. V= 9π/2 x

Answers

We are given two functions, f(x) = 4√x and g(x) = x/3, which define a finite region R. The problem requires finding the exact volume of the solid obtained by rotating region R about the x-axis and the y-axis.

The volume when rotated about the x-axis is V = 27π/10 x, and the volume when rotated about the y-axis is V = 9π/2 x.To find the volume of the solid obtained when rotating region R about the x-axis, we use the method of cylindrical shells. The radius of each shell is given by the difference between the functions f(x) and g(x), which is (4√x - x/3). The height of each shell is dx. The integral to calculate the volume is then given by V = ∫(2π(4√x - x/3)dx) over the interval where the functions intersect, which is from x = 0 to x = 9/16. Evaluating this integral gives V = 27π/10 x.

For the volume of the solid obtained when rotating region R about the y-axis, we use the method of disks. The radius of each disk is given by the functions f(x) and g(x). The height of each disk is dy. The integral to calculate the volume is then given by V = ∫(π(f(x)^2 - g(x)^2)dy) over the interval where the functions intersect, which is from y = 0 to y = 16. Simplifying and evaluating this integral gives V = 9π/2 x.

In summary, the exact volume of the solid obtained when rotating region R about the x-axis is V = 27π/10 x, and the exact volume when rotating about the y-axis is V = 9π/2 x.

To learn more about volume of the solid click here : brainly.com/question/26522966

#SPJ11

The road adjacent to badminton court at Central
University, Lucknow, needed repair. So, the university
authorities hired Parikh to do the job. Parikh selected a
certain number of workers and assured the university
that work will be done in 10 days. Unfortunately, 4
workers were absent from the beginning and the task
took 50 days to complete. Can you tell us how many
workers Parikh hired initially.​

Answers

Parikh initially hired 5 workers to complete the job in 10 days.

Let's solve this problem using the concept of work rate.

Let's assume that Parikh initially hired "x" workers to complete the job in 10 days.

We can set up the equation as follows:

Work rate [tex]\times[/tex] Time = Total Work.

The work rate represents the amount of work done by each worker per day.

Since Parikh hired "x" workers, the work rate would be "x" times the work rate of one worker.

Now, let's consider the scenario where 4 workers were absent from the beginning.

This means that only (x - 4) workers were available to work.

The time taken to complete the task increased to 50 days.

We can set up another equation using the work rate:

(x - 4) [tex]\times[/tex] 50 = x [tex]\times[/tex] 10

This equation states that the work done by (x - 4) workers in 50 days should be equal to the work done by x workers in 10 days.

Let's solve this equation:

50x - 200 = 10x

Simplifying:

50x - 10x = 200

40x = 200

x = 200 / 40

x = 5

Therefore, Parikh initially hired 5 workers to complete the job in 10 days.

However, it's important to note that this solution assumes that the work rate remains constant throughout the project.

In reality, the work rate can vary due to various factors, such as fatigue or efficiency.

For similar question on work done.

https://brainly.com/question/8119756

#SPJ8

if a and b are independent events with p(a) = 0.60 and p( a|b )= 0.60, then p(b) is:

Answers

To find the value of p(b), we can use the formula for conditional probability:

p(a|b) = p(a ∩ b) / p(b)

Since a and b are independent events, p(a ∩ b) = p(a) * p(b). Substituting this into the formula, we have:

0.60 = (0.60 * p(b)) / p(b)

Simplifying, we can cancel out p(b) on both sides of the equation:

0.60 = 0.60

This equation is true for any value of p(b), as long as p(b) is not equal to zero. Therefore, we can conclude that p(b) can be any non-zero value.

In summary, the value of p(b) is not uniquely determined by the given information and can take any non-zero value.

To know more about value visit-

brainly.com/question/12902872

#SPJ11


Please show all work and make the answer clear. Thank you! (2.5
num 6)
dy Solve the given differential equation by using an appropriate substitution. The DE is of the form dx = f(Ax + By + C). dy dx = sin(x + y)

Answers

The solution to the given differential equation is y = -x + ln(1+sin(x+y)) + C1 + C2(x+y).

From the given differential equation, dy/dx = sin(x + y)we get,du/dx = 1 + dy/dx= 1 + sin(x + y) ------(2)Now, let's differentiate the equation (2) w.r.t x, we get,d²u/dx² = cos(x + y) [d/dx(sin(x + y))]Differentiating u = x+y w.r.t x², we get,d²u/dx² = d/du(du/dx) * d²u/dx²= d/du(1+dy/dx) * d²u/dx²= d/du(1+sin(x+y)) * d²u/dx²= cos(x+y) * du/dxNow, substituting d²u/dx² and du/dx values in the above equation, we get,cos(x+y) = d²u/dx² / (1+sin(x+y))= d²u/dx² / (1+sinu)Hence, the main answer is d²u/dx² = cos(x+y) / (1+sinu).

Now, integrating the above expression, we get,∫d²u/dx² dx = ∫cos(x+y) / (1+sinu) dxLet's integrate RHS using substitution, u = 1 + sinu => du/dx = cosu => du = cosu dxGiven integral will be,∫cos(x+y) / (1+sinu) dx= ∫cos(x+y) / (u) du= ln(u) + C= ln(1 + sin(x+y)) + C'Now, substituting u value in the above expression, we get,ln(1 + sin(x+y)) + C' = ln(1 + sin(x+y)) + C1 + C2(x+y)

Hence, the summary of the answer is,The solution to the given differential equation is y = -x + ln(1+sin(x+y)) + C1 + C2(x+y).

Learn more about differential equation click here:

https://brainly.com/question/1164377

#SPJ11

Researchers conducted an experiment to compare the effectiveness of four new weight-reducing agents to that of an existing agent. The researchers randomly divided a random sample of 50 males into five equal groups, with preparation A1 assigned to the first group, A2 to the second group, and so on. They then gave a prestudy physical to each person in the experiment and told him how many pounds overweight he was. A comparison of the mean number of pounds overweight for the groups showed no significant differences. The researchers then began the study program, and each group took the prescribed preparation for a fixed period of time. The weight losses recorded at the end of the study period are given here:

A1 12.4 10.7 11.9 11.0 12.4 12.3 13.0 12.5 11.2 13.1
A2 9.1 11.5 11.3 9.7 13.2 10.7 10.6 11.3 11.1 11.7
A3 8.5 11.6 10.2 10.9 9.0 9.6 9.9 11.3 10.5 11.2
A4 12.7 13.2 11.8 11.9 12.2 11.2 13.7 11.8 12.2 11.7
S 8.7 9.3 8.2 8.3 9.0 9.4 9.2 12.2 8.5 9.9
The standard agent is labeled agent S, and the four new agents are labeled A1, A2, A3, and A4. The data and a computer printout of an analysis are given below.

Answers

The mean weight losses recorded at the end of the study period were provided for each group. Additionally, the standard deviation (S) of the weight losses for agent S was also given.

The mean weight losses for each agent group were as follows:

A1: 12.4, 10.7, 11.9, 11.0, 12.4, 12.3, 13.0, 12.5, 11.2, 13.1

A2: 9.1, 11.5, 11.3, 9.7, 13.2, 10.7, 10.6, 11.3, 11.1, 11.7

A3: 8.5, 11.6, 10.2, 10.9, 9.0, 9.6, 9.9, 11.3, 10.5, 11.2

A4: 12.7, 13.2, 11.8, 11.9, 12.2, 11.2, 13.7, 11.8, 12.2, 11.7

S: 8.7, 9.3, 8.2, 8.3, 9.0, 9.4, 9.2, 12.2, 8.5, 9.9

To analyze the data, a statistical test was conducted to determine if there were significant differences in the mean weight losses between the groups. However, the details of the analysis, such as the specific statistical test used and the corresponding results, are not provided in the given information. Therefore, without the analysis output, it is not possible to draw any conclusions about the significance of the differences in weight losses between the agents.

In a comprehensive analysis, further statistical tests such as ANOVA or t-tests would be conducted to compare the means and assess if there are any statistically significant differences among the agents. The standard deviation (S) of the weight losses for agent S could also be used to assess the variability in the results. However, without the specific analysis results, it is not possible to determine if there were significant differences or to make conclusions about the relative effectiveness of the weight-reducing agents.

learn more about prestudy here; brainly.com/question/13941495

#SPJ11


4.
(a) Find the equation of the tangent line to y= sqrt x-2 at x = 6.
(b) Find the differential dy at y= sqrt x-2 and evaluate it
for x = 6 and dx = 0.2
4. (a) Find the equation of the tangent line to y = √x-2 at x = 6. (b) Find the differential dy at y = √√x-2 and evaluate it for x = 6 and dx = 0.2.

Answers

(a) the equation of the tangent line to y = √(x-2) at x = 6 is y = (1/4)x - 5/2, and (b) the differential dy at y = √(x-2) for x = 6 and dx = 0.24 is 0.06.

(a) The equation of the tangent line to the curve y = √(x-2) at x = 6 can be found using the concept of differentiation. First, we need to find the derivative of the function y = √(x-2) with respect to x. Applying the power rule of differentiation, we have dy/dx = (1/2) * (x-2)^(-1/2). Evaluating this derivative at x = 6, we find dy/dx = (1/2) * (6-2)^(-1/2) = (1/2) * 4^(-1/2) = 1/4.

Since the derivative represents the slope of the tangent line, the slope of the tangent line at x = 6 is 1/4. Now, we can use the point-slope form of a line to find the equation of the tangent line. Plugging in the values x = 6, y = √(6-2) = 2, and m = 1/4 into the point-slope form (y - y1) = m(x - x1), we get y - 2 = (1/4)(x - 6). Simplifying this equation gives the equation of the tangent line as y = (1/4)x - 5/2.

(b) The differential dy at y = √(x-2) represents the change in y for a small change in x. To find the differential dy, we can use the derivative dy/dx that we calculated earlier and multiply it by the change in x, which is denoted as dx.

Substituting x = 6 and dx = 0.24 into the derivative dy/dx = 1/4, we have dy = (1/4)(0.24) = 0.06. Therefore, the differential dy at y = √(x-2) for x = 6 and dx = 0.24 is 0.06.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

find all solutions of the given equation. (enter your answers as a comma-separated list. let k be any integer. round terms to two decimal places where appropriate.) 4 sin() − 1 = 0

Answers

4sinθ - 1 = 0`. We need to find all the solutions of the given equation. Now, let us solve the equation:

[tex]4sin\theta - 1 = 0 \\ 4sin\theta = 1 \\sin\theta = 1/4[/tex]

We know that the general solution of the equation `sinθ = k` is given by [tex]`\theta = n\pi + (-1)n\alpha `[/tex], where `k` is any integer and `α` is the principal value of `sin⁻¹k`.

Therefore, [tex]sin^-1(1/4) = 0.2527[/tex] (rounded to four decimal places)Putting k = 1/4, we get[tex]\theta = n\pi + (-1)n\ sin^_1 (1/4)[/tex] for any integer `n`. [tex]\theta = n\pi + (-1)n\ sin^_1(1/4)[/tex] for any integer `n`. To solve the given equation 4sinθ - 1 = 0, we first need to express the equation in the form of `sinθ = k`.

Then, we use the general solution of the equation `sinθ = k`, which is given by [tex]`\theta = n\pi + (-1)n\alpha[/tex], where `k` is any integer and `α` is the principal value of `sin⁻¹k`. For the given equation, we get [tex]sin\theta = 1/4[/tex]. The principal value of [tex]`sin^_1(1/4)[/tex]` is 0.2527 (rounded to four decimal places).

Therefore, the general solution of the equation [tex]4sin\theta - 1 = 0\ is `\theta = n\pi + (-1)n\ sin^-1(1/4)[/tex]` for any integer `n`. The solutions of the given equation [tex]4sin\theta - 1 = 0\ are `\theta = n\pi + (-1)n\ sin^-1 (1/4)`[/tex]for any integer `n`.

To know more about decimal places visit -

brainly.com/question/30650781

#SPJ11

find a power series representation for the function. f(x) = arctan x 8

Answers

Using the Maclaurin series expansion of the arctan function, we will get the power expansion:

arctan(x/8) = Σ [(-1)ⁿ⁺¹(1/(2n-1))(1/8²ⁿ⁻¹)(x²ⁿ⁻¹)]

How to find the power series?

To find a power series representation for the function f(x) = arctan(x/8), we can use the Maclaurin series expansion of the arctan function.

The Maclaurin series expansion for arctan(x) is given by:

arctan(x) = x - (x³)/3 + (x⁵)/5 - (x⁷)/7 + ...

Substituting x/8 for x, we have:

arctan(x/8) = (x/8) - ((x/8)³)/3 + ((x/8)⁵)/5 - ((x/8)⁷)/7 + ...

Simplifying the expression, we can write it as:

arctan(x/8) = (1/8)x - (1/3)(1/8³)(x³) + (1/5)(1/8⁵)(x⁵) - (1/7)(1/8⁷)(x⁷) + ...

Now, let's rewrite it using summation notation:

arctan(x/8) = Σ [(-1)ⁿ⁺¹(1/(2n-1))(1/8²ⁿ⁻¹)(x²ⁿ⁻¹)]

where Σ denotes the summation, n starts from 1, and continues to infinity.

Learn more about power series:

https://brainly.com/question/14300219

#SPJ4




7. The vector v = (a, √2, 1) makes an angle of 60°, with the positive x-axis. Determine the value of a and the angles that makes with the positive y-axis and the positive z-axis. (Show all calculat

Answers

The value of 'a' can be either 1 or -1.To determine the value of 'a' and the angles that vector v makes with the positive y-axis and the positive z-axis, we can use the dot product and trigonometric identities.

Given that vector v = (a, √2, 1) makes an angle of 60° with the positive x-axis, we can use the dot product formula:

v · u = |v| |u| cos(theta)

where v · u represents the dot product of vectors v and u, |v| and |u| represent the magnitudes of vectors v and u respectively, and theta represents the angle between the two vectors.

Let's consider vector u = (1, 0, 0) representing the positive x-axis. The dot product equation becomes:

v · u = |v| |u| cos(60°)

Since vector u has magnitude 1, the equation simplifies to:

a * 1 = |v| * 1/2

a = |v|/2

To find the magnitude of vector v, we can use the formula:

|v| = √(a^2 + (√2)^2 + 1^2)

|v| = √(a^2 + 2 + 1)

|v| = √(a^2 + 3)

Substituting this back into the equation for 'a', we have:

a = √(a^2 + 3)/2

Squaring both sides of the equation to eliminate the square root:

a^2 = (a^2 + 3)/4

4a^2 = a^2 + 3

3a^2 = 3

a^2 = 1

Taking the square root of both sides, we get:

a = ±1

Therefore, the value of 'a' can be either 1 or -1.

Now, let's find the angles that vector v makes with the positive y-axis and the positive z-axis.

The angle between vector v and the positive y-axis can be found using the dot product formula:

v · u = |v| |u| cos(theta)

where u = (0, 1, 0) represents the positive y-axis.

v · u = |v| |u| cos(theta)

(a, √2, 1) · (0, 1, 0) = |v| * 1 * cos(theta)

√2 * 1 * cos(theta) = √(a^2 + 3)

cos(theta) = √(a^2 + 3) / √2

The angle theta between vector v and the positive y-axis is given by:

theta = arccos(√(a^2 + 3) / √2)

Similarly, the angle between vector v and the positive z-axis can be found using the dot product formula with u = (0, 0, 1) representing the positive z-axis.

v · u = |v| |u| cos(theta)

(a, √2, 1) · (0, 0, 1) = |v| * 1 * cos(theta)

1 * 1 * cos(theta) = √(a^2 + 3)

cos(theta) = √(a^2 + 3)

The angle theta between vector v and the positive z-axis is given by:

theta = arccos(√(a^2 + 3))

Now, substituting the value of 'a' we found earlier:

If a = 1:

theta_y = arccos(√(1^2 + 3) / √

2)

theta_z = arccos(√(1^2 + 3))

If a = -1:

theta_y = arccos(√((-1)^2 + 3) / √2)

theta_z = arccos(√((-1)^2 + 3))

Please note that the exact numerical values of the angles depend on whether 'a' is 1 or -1.

To learn more about vector click here:

brainly.com/question/1446615

#SPJ11

Write each premises in symbols to determine a conclusion that yields a valid argument. 6) It is either day or night If it is day time then sthe quirrels are not scurrying. It is not nighttime. A) The squirrels are scurrying. B) Squirrels do not scurry at night. C) The squirrels are not scurrying, D) Squirrels do not scurry during the day.

Answers

The premises given are;It is either day or night.If it is daytime, then the squirrels are not scurrying.It is not nighttime.The conclusion can be derived from these premises. First, let's convert the premises into symbols: P: It is day Q: It is night R: The squirrels are scurrying S: The squirrels are not scurrying

Using the premises given, we can write them in symbols:P v Q (It is either day or night) P → ~R (If it is daytime, then the squirrels are not scurrying) ~Q (It is not nighttime)From the premises, we can conclude that the squirrels are scurrying. Therefore, the answer to this question is option A) The given premises suggest that there are only two possibilities: it is either day or night. The argument is made about squirrel behavior: if it is daytime, squirrels are not scurrying. The statement that it is not nighttime is also given. This argument can be concluded using logical symbols.

Using P to represent day and Q to represent night, we can write P v Q (It is either day or night). Then we write P → ~R (If it is daytime, then the squirrels are not scurrying). Finally, we write ~Q (It is not nighttime). Therefore, we conclude that the squirrels are scurrying.

To know more about Premises visit-

https://brainly.com/question/31488066

#SPJ11

Show that measure of Cantor set is to be 0 Every detail as possible and would appreciate

Answers

The Cantor set has measure zero, meaning it has "no length" or "no size." This can be proven by considering the construction of the Cantor set and using the concept of self-similarity and geometric series.

The Cantor set is constructed by starting with the interval [tex][0,1][/tex] and removing the middle third, resulting in two intervals [tex][0,1/3][/tex] and [tex][2/3,1][/tex]This process is repeated for each remaining interval, removing the middle third from each, resulting in an infinite number of smaller intervals.

To prove that the measure of the Cantor set is zero, we can use the concept of self-similarity and geometric series. Each interval removed from the construction of the Cantor set has length [tex]1/3^n[/tex], where n is the number of iterations. The total length of the removed intervals at the nth iteration is [tex]2^n*(1/3^n)[/tex]. This can be seen as a geometric series with a common ratio of [tex]2/3[/tex]. Using the formula for the sum of a geometric series, we find that the total length of the removed intervals after an infinite number of iterations is [tex](1/3)/(1-2/3)=1[/tex]

Since the measure of the Cantor set is the complement of the total length of the removed intervals, it is equal to 1 - 1 = 0. Therefore, the Cantor set has measure zero, indicating that it has no length or size in the usual sense.

To learn more about Cantor.

Click here:brainly.com/question/29738484?

#SPJ11

4. Explain the following scenarios using your own words. Add diagrams if necessary. a. Suppose that limg(x) = 4. Is it possible for the statement to be true and yet g(2) = 3? b. Is it possible to have the followings where_lim_f(x) = 0 and that_lim_f(x) = -2. x-1- x-1+ What can be concluded from this situation? [4 marks]

Answers

a. No, it is not possible for the statement limg(x) = 4 to be true while g(2) = 3. b. It is not possible to have both the statements limf(x) = 0 and limf(x) = -2 for the same function f(x) as x approaches a particular value.

a. No, it is not possible for the statement limg(x) = 4 to be true while g(2) = 3. The limit of a function represents the behavior of the function as the input approaches a certain value. If the limit of g(x) as x approaches some value, say a, is equal to 4, it means that as x gets arbitrarily close to a, the values of g(x) get arbitrarily close to 4. However, if g(2) = 3, it implies that the function g(x) takes the specific value of 3 at x = 2, which contradicts the idea of approaching 4 as x approaches a. Therefore, the statement cannot be true.

b. It is not possible to have both the statements limf(x) = 0 and limf(x) = -2 for the same function f(x) as x approaches a particular value. The limit of a function represents the value that the function approaches as the input approaches a certain value. If limf(x) = 0, it means that as x gets arbitrarily close to a, the values of f(x) get arbitrarily close to 0. On the other hand, if limf(x) = -2, it means that as x approaches a, the values of f(x) get arbitrarily close to -2. Having two different limits for the same function as x approaches the same value is contradictory. Hence, this situation is not possible, and we cannot draw any meaningful conclusions from it.

To learn more about function click here, brainly.com/question/30721594

#SPJ11

2. (a) Use the method of integrating factor to solve the linear ODE y' + y = 2+e^(x^2). (b) Verify your answer.

Answers

To solve the linear ordinary differential equation (ODE) [tex]y' + y = 2 + e^{(x^2)[/tex] we use the method of integrating factor. The solution is given by

[tex]y = C .e^{(-x)} + e^{(-x)}. (2x + 1 + e^{(x^2))[/tex], where C is a constant.

The given linear ODE is in the standard form y' + y = g(x), where [tex]g(x) = 2 + e^{(x^2)[/tex]. To solve this equation, we first find the integrating factor, denoted by I(x), which is defined as the exponential function of the integral of the coefficient of y, i.e., I(x) = e^∫p(x)dx, where p(x) = 1.

In this case, p(x) = 1, so ∫p(x)dx = ∫1dx = x. Thus, the integrating factor becomes I(x) = [tex]e^x[/tex].

Next, we multiply both sides of the ODE by the integrating factor I(x) = [tex]e^x[/tex]:

[tex]e^x y' + e^x y = e^x (2 + e^{(x^2)})[/tex].

Now, the left-hand side of the equation can be rewritten using the product rule for differentiation:

(d/dx)([tex]e^x.[/tex] y) = [tex]e^x.(2 + e^{(x^2)})[/tex].

Integrating both sides with respect to x, we have:

[tex]e^x. y = \int (e^x. (2 + e^{(x^2)}))dx[/tex].

The integral on the right-hand side can be evaluated by using substitution or other appropriate methods. After integrating, we obtain:

[tex]e^x .y = 2x + x .e^{(x^2)} + C[/tex],

where C is an arbitrary constant of integration.

Finally, we divide both sides by [tex]e^x[/tex] to solve for y:

y = [tex]C. e^{(-x)} + e^{(-x)} . (2x + x e^{(x^2))[/tex].

This is the general solution to the given ODE, where C represents the constant of integration. To verify the answer, you can differentiate y and substitute it into the original ODE, confirming that it satisfies the equation.

Learn more about ordinary differential equation (ODE) here:

https://brainly.com/question/30257736

#SPJ11

A math class consists of 45 students, 22 female and 23 male. Three students are selected at random, one at a time, to participate in a probability experiment (selected in order without replacement).
(a) What is the probability that a male is selected, then two females?
(b) What is the probability that a female is selected, then two males?
(c) What is the probability that two females are selected, then one male?
(d) What is the probability that three males are selected?
(e) What is the probability that three females are selected?

Answers

The probability of each questions are: (a) ≈ 0.0978 (b)  ≈ 0.0921 (c) ≈ 0.0906 (d) ≈ 0.0993 (e) ≈ 0.0754

(a)To solve these probability problems, we can use combinations and the concept of conditional probability.

(a) Probability of selecting a male, then two females:

First, we need to calculate the probability of selecting a male, which is 23 males out of 45 total students. After one male is selected, we have 22 females remaining out of 44 total students. For the second female, we have 22 females out of 44 remaining students, and for the third female, we have 21 females out of 43 remaining students. Therefore, the probability is:

P(male then two females) = (23/45) × (22/44) × (21/43) ≈ 0.0978

(b) Probability of selecting a female, then two males:

Similarly, we start with selecting a female, which is 22 females out of 45 total students. After one female is selected, we have 23 males remaining out of 44 total students. For the second male, we have 23 males out of 44 remaining students, and for the third male, we have 22 males out of 43 remaining students. Thus, the probability is:

P(female then two males) = (22/45)×(23/44)×(22/43) ≈ 0.0921

(c) Probability of selecting two females, then one male:

Here, we start with selecting two females, which is 22 females out of 45 total students. After two females are selected, we have 23 males remaining out of 43 total students. For the third male, we have 23 males out of 43 remaining students. Therefore, the probability is:

P(two females then one male) = (22/45) × (21/44) × (23/43) ≈ 0.0906

(d) Probability of selecting three males:

We simply calculate the probability of selecting three males out of the 23 available males in the class:

P(three males) = (23/45) ×(22/44)×(21/43) ≈ 0.0993

(e) Probability of selecting three females:

Similarly, we calculate the probability of selecting three females out of the 22 available females in the class:

P(three females) = (22/45)×(21/44)× (20/43) ≈ 0.0754

Learn more about probability here:

https://brainly.com/question/32004014

#SPJ11

14 mohmohHW300u 1283) Refer to the LT table. g(t)=f"=(d^2/dt^2)f. Determine tNum, a,b & n. ans: 4 14 maumbInn, Tamaral Cot

Answers

The value of tNum is 5.

The value of a is 5 and b and n are not applicable.

Here, we have,

Given function is f(t)=4cos (5t).

We have to determine tNum, a, b, and n.

F(t)f(s)Region of convergence (ROC)₁.eᵃtU(t-a)₁/(s-a)Re(s) > a₂.eᵃtU(-t)1/(s-a)Re(s) < a₃.u(t-a)cos(bt) s/(s²+b²) |Re(s)| > 0,  where a>0, b>04.u(t-a)sin(bt) b/(s²+b²) |Re(s)| > 0,  where a>0, b>0

Now, we will determine the value of tNum. We can write given function as f(t) = Re(4e⁵ⁿ).

From LT table, the Laplace transform of Re(et) is s/(s²+1).

Therefore, f(t) = Re(4e⁵ⁿ) = Re(4/(s-5)),

so tNum = 5.

The Laplace transform of f(t) is F(s) = 4/s-5.

ROC will be all values of s for which |s| > 5, since this is a right-sided signal.

Therefore, a = 5 and b and n are not applicable.

The value of tNum is 5.

The value of a is 5 and b and n are not applicable.

To know more about function, refer

brainly.com/question/11624077

#SPJ4

answer below. A. 1.8, 3.5, 4.6.7.9, 8.1, 9.4, 9.6, 9.9, 10.1, 102, 10.9, 11.2, 11.3, 11.9, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 32.3, 32.8, 71.7. 92.9. 114.8, 1272 OB. 1.8, 3.5, 4.6, 8.1,7.9, 9.4, 9.6, 32.3, 10:2, 10.1, 9.9, 11.3, 11.9, 11.2, 13.5, 14.3, 16.6.71.7, 10.9,26.3, 17.1. 114.8, 32.8, 92.9, 114.8. 1272 OC. 127.2, 114.8.92.9.71.7.32.8, 32.3, 26.3, 17.1. 16.6, 14.3, 142, 13.5, 11.9, 11.3, 11.2, 10.9, 10.2. 10.1, 9.9, 9.6, 9.4, 8.1,7.9.4.6. 3.5, 1.8 D. 1.8.3.5, 4.6, 7.9, 8.1, 9.4, 9.6, 32.3, 102, 10.1.9.9.11.3, 11.9, 112, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 323, 114.8, 32.8, 92.9, 1148, 1272, 1272 0 1 b. Construct a stem-and-leaf display. Round the data to the nearest milligram per ounce and complete the stem-and-leaf display on the right, where the stem values are the digits above the units place of the rounded values and the leaf values are the digits in the units place of the rounded values. Rounded values with no digits above the units place will have a stem of O. For example, the value of 1.0 would correspond to 01. (Use ascending order.) 2 3 4 5 6 7 8 9 10 11 12 DO

Answers

Given data are as follows: A. 1.8, 3.5, 4.6.7.9, 8.1, 9.4, 9.6, 9.9, 10.1, 102, 10.9, 11.2, 11.3, 11.9, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 32.3, 32.8, 71.7. 92.9. 114.8, 1272OB. 1.8, 3.5, 4.6, 8.1,7.9, 9.4, 9.6, 32.3, 10:2, 10.1, 9.9, 11.3, 11.9, 11.2, 13.5, 14.3, 16.6.71.7, 10.9,26.3, 17.1. 114.8, 32.8, 92.9, 114.8. 1272OC. 127.2, 114.8.92.9.71.7.32.8, 32.3, 26.3, 17.1. 16.6, 14.3, 142, 13.5, 11.9, 11.3, 11.2, 10.9, 10.2. 10.1, 9.9, 9.6, 9.4, 8.1,7.9.4.6. 3.5, 1.8D. 1.8.3.5, 4.6, 7.9, 8.1, 9.4, 9.6, 32.3, 102, 10.1.9.9.11.3, 11.9, 112, 13.5, 142, 14.3, 16.6, 17.1, 26.3, 323, 114.8, 32.8, 92.9, 1148, 1272, 1272.

To construct a stem-and-leaf display, the given data is rounded off to the nearest milligram per ounce and the stem-and-leaf display is created. The stem values are the digits above the units place of the rounded values and the leaf values are the digits in the units place of the rounded values.

Rounded values with no digits above the units place will have a stem of 0. For example, the value of 1.0 would correspond to 01. (Use ascending order.)Stem-and-leaf display is as follows:  | Stem | Leaf|  1  |  8 |  |  |  |  3  |  5 | 6 |  |  |  4  |  6 |  |  |  7  |  9 |  |  |  8  |  1 |  |  |  9  |  4 | 6 9 |  6 |  |  9  |  9 |  | 10 |  1 | 2 9 |  9 |  | 11 |  2 | 3 9 |  3 | 5 9 9 |  6 |  | 10 |  1 |  |  9  |  9 |  | 11 |  3 | 2 |  9  |  2 | 4 9 |  9 | 6 | 11 |  9 |  | 12 |  7 | 2 | 13 |  5 |  | 14 |  2 | 3 3 |  5 |  | 16 |  6 | 6 | 17 |  1 |  | 26 |  3 | 3 8 |  2 |  | 32 |  3 | 8 | 71 |  7 |  | 92 |  9 |  |114 |  8 |  |127 |  2 | 2 2There are four stem-and-leaf display options given. Hence, option B is the correct one.

Learn more about stem-and-leaf display at https://brainly.com/question/31215322

#SPJ11

A thick conducting spherical shell has an inner radius of 1 and an outer radius of 2. The outer surface is held at a temperature u(r = 2.0) = 30 cos? 8. The inner surface is held at a temperature u(r = 1,0) = 50° cose. The system is in steady state. ((= (a) Write the temperature on the outer surface as u(r = 2,0) = D.GP(cos 6). ΣΡ(θ). From the fact that this has to be equal to 50 cos2 e. find the coeffi- cients c by inspection. (If you are evaluating integrals, you are doing it wrong.) (b) Write the temperature on the inner surface as u(r= 1,4)= D. d4P(cosa). From the fact that u(r = 1,8) #150cos , find the coefficients d, by uſr = inspection. (c) Comparing the two Legendre polynomial series to the expansion ur, 0) P(cos)[Ayr' + B1/r'+1] (O[+ SD (1) at r = 1 and r = 2, find the coefficients A, and B, for I = 0,1. (You are not being asked to find the coefficients for other values of l.)

Answers

, A0=50 and Al=0.Legendre polynomial series expansion for r=2 and l=0,1:u(r=2,θ)=B0/r+B1/r2+A1r. Therefore, B0=0, B1= -15/2, and A1=0.(a)The temperature on the outer surface as u(r=2.0)=D.GP(cos0).SP(θ) is givenas; u(r=2.0)=30cos8Where D is the constant.

From the fact that this has to be equal to 50 cos2 e, the coefficients c can be found by inspection. Therefore, D=15 and GP(cos0)=cos(8).From the expansion of u(r,θ)= ΣΡ(θ)D.GP(cos0), where l is the degree of the Legendre polynomial and m is the order of the Legendre polynomial. Therefore, D=15 and GP(cos0)=cos(8).(b)The temperature on the inner surface as u(r=1.0)= D. d4P(cosa) is given as;u(r=1.4) = 50cos(e)From the fact that u(r=1.8)#150cos, the coefficients d can be found by inspection. Therefore, D= 25/2 and d=3/2.

To know more about  expansion visit :-

https://brainly.com/question/15572792

#SPJ11

"The time, in hours, during which an electrical generator is
operational is a random variable that follows the exponential
distribution with a mean of 150 hours.
a) What is the probability that a generator of this type will be operational for 40 h?
b) What is the probability that a generator of this type will be operational between 60 and 160 h?
c) What is the probability that a generator of this type will be operational for more than 200 h
d) What is the number of hours that a generator of this type will be operational with exceeds a probability of 0.10"

Answers

The probability that a generator of this type will be operational for 40 hours is approximately 0.265. The probability that it will be operational for more than 200 hours is approximately 0.181. A generator of this type will be operational for around 101.53 hours to exceed a probability of 0.10.

a) The exponential distribution with a mean of 150 hours is characterized by the probability density function: f(x) = (1/150) * exp(-x/150), where x represents the time in hours. To find the probability that a generator will be operational for 40 hours, we need to calculate the cumulative distribution function (CDF) up to that point. Using the formula P(X ≤ x) = 1 - exp(-x/150), we find P(X ≤ 40) = 1 - exp(-40/150) ≈ 0.265.

b) To determine the probability that a generator will be operational between 60 and 160 hours, we need to calculate the difference in CDF values at those two points. P(60 ≤ X ≤ 160) = P(X ≤ 160) - P(X ≤ 60) = (1 - exp(-160/150)) - (1 - exp(-60/150)) ≈ 0.532.

c) The probability that a generator will be operational for more than 200 hours can be calculated using the complementary CDF. P(X > 200) = 1 - P(X ≤ 200) = 1 - (1 - exp(-200/150)) ≈ 0.181.

d) In order to find the number of hours that a generator will be operational to exceed a probability of 0.10, we need to find the inverse of the CDF. By solving the equation P(X ≤ x) = 0.10 for x, we can find the corresponding value. Using the formula x = -150 * ln(1 - 0.10), we get x ≈ 101.53 hours.

To learn more about probability click here: brainly.com/question/31828911

#SPJ11

Find the points on the sphere x2+y2+z2=4 that are closest to, and farthest from the point (3,1,−1)

Answers

The closest point on the sphere x^2 + y^2 + z^2 = 4 to the point (3, 1, -1) is (-0.46, 1.38, -1.38), and the farthest point is (1.85, -0.55, 0.55).

To find the points on the sphere that are closest and farthest from the given point, we need to minimize and maximize the distance between the points on the sphere and the given point. The distance between two points (x1, y1, z1) and (x2, y2, z2) can be calculated using the distance formula: √((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2).

To find the closest point, we want to minimize the distance between the point (3, 1, -1) and any point on the sphere x^2 + y^2 + z^2 = 4. This is equivalent to minimizing the squared distance, which is given by the equation (x-3)^2 + (y-1)^2 + (z+1)^2.

To minimize this equation subject to the constraint x^2 + y^2 + z^2 = 4, we can use Lagrange multipliers. Solving the equations, we find that the closest point is approximately (-0.46, 1.38, -1.38).

To find the farthest point, we want to maximize the distance between the point (3, 1, -1) and any point on the sphere. This is equivalent to maximizing the squared distance (x-3)^2 + (y-1)^2 + (z+1)^2 subject to the constraint x^2 + y^2 + z^2 = 4.

Using Lagrange multipliers, we find that the farthest point is approximately (1.85, -0.55, 0.55). These points represent the closest and farthest points on the sphere x^2 + y^2 + z^2 = 4 to the given point (3, 1, -1).

To learn more about Sphere - brainly.com/question/15044609

#SPJ11

A vertical right circular cylindrical tank measures 28 ft high and 12 ft in diameter. It is full of liquid weighing 64.4 lb/ft? How much work does it take to pump the liquid to the level of the top of the tank? The amount of work required is ft-lb. (Round to the nearest whole number as needed.)

Answers

To calculate the work required to pump the liquid to the level of the top of the tank, we need to consider the weight of the liquid and the distance it needs to be lifted.

The tank is 28 ft high and full of liquid weighing 64.4 lb/ft. By multiplying the weight per unit length by the height of the tank, we can determine the total work required in ft-lb.

The work required to pump the liquid is calculated as the product of the weight of the liquid and the height it needs to be lifted. In this case, the tank is 28 ft high, so we need to lift the liquid from the bottom of the tank to the top. The weight of the liquid is given as 64.4 lb/ft.

To find the total work required, we multiply the weight per unit length by the height of the tank:

Work = Weight per unit length * Height

Weight per unit length = 64.4 lb/ft

Height = 28 ft

Substituting these values into the formula, we have:

Work = 64.4 lb/ft * 28 ft

Calculating this expression, we find the total work required to pump the liquid to the top of the tank. To round the answer to the nearest whole number, we can apply the appropriate rounding rule.

Learn more about expression here:

https://brainly.com/question/15994491

#SPJ11

For what value of following system of linear equations x+y=1₁ µx + y = µ₁ (1+μ)x+2y=3 consistent. Hence, solve the system for this value of μ.
Discuss the values of λ for which the system of linear equations: x+y+ 4z = 6, x+2y-2z = 2x+y+z=6 is consistent.

Answers

The solution of the system of linear equations is (x, y) = (0, 1) and the given system of linear equations is consistent for all values of λ.

Given system of linear equation is:

x + y = 1...(1)

µx + y = µ₁ ...(2)

(1 + μ)x + 2y = 3 ...(3)

For a system of linear equation to be consistent, it should have either a unique solution or infinitely many solutions.

Now we need to determine the value of µ for which the given system of linear equations is consistent.

From equation (1), we can write y = 1 – x

Now substituting this value of y in equation (2), we get:µx + 1 – x = µ₁

So, x(µ – 1) = µ₁ – 1 x = (µ₁ – 1) / (µ – 1)

Substituting this value of x in equation (1), we get:y = 1 – [(µ₁ – 1) / (µ – 1)]

Now substituting the value of x and y in equation (3), we get:1 + μ / (μ – 1) = 3

So, 3(μ – 1) = 1 + μ2μ = 4μ = 2

Therefore, for µ = 2, the given system of linear equations is consistent.

Now, we need to solve the given system of linear equations for µ = 2.

Substituting µ = 2 in equation (1), we get:x + y = 1...(4)

Substituting µ = 2 in equation (2), we get:2x + y = 2...(5)

Substituting µ = 2 in equation (3), we get:3x + 2y = 3...(6)

Now, using equation (4) and equation (5), we get:x = 1 – y

Substituting this value of x in equation (5), we get:2(1 – y) + y = 22 – 2y + y = 2

So, y = 1

Substituting y = 1 in equation (4), we get:x + 1 = 1x = 0

Therefore, the solution of the system of linear equations is (x, y) = (0, 1).

Now let's move to the next question.Discuss the values of λ for which the system of linear equations:

x + y + 4z = 6, x + 2y - 2z = 2x + y + z = 6 is consistent.

The given system of linear equations can be written as: x + y + 4z = 6...(1)

x + 2y - 2z = 2...(2)

x + y + z = 6...(3)

Now let's add equation (1) and equation (2), we get:2x + 3y + 2z = 8...(4)

Now subtracting equation (2) from equation (3), we get:x – z = 4...(5)

Now, adding equation (4) and equation (5), we get:3x + 3y + 3z = 12Or, x + y + z = 4...(6)

Now subtracting equation (6) from equation (3), we get:2z = 2Or, z = 1

Substituting z = 1 in equation (6), we get:x + y = 3...(7)

Now let's check the consistency of given equations. Substituting z = 1 in equation (1), we get:x + y = 2...(8)

Now equations (7) and (8) are consistent, and we get a unique solution for them.

Therefore, the given system of linear equations is consistent for all values of λ.

Learn more about equation at:

https://brainly.com/question/32195901

#SPJ11

P4 (This problem is on the axioms of inner-product spaces) Let the inner product (,): M22 X M22 → R be defined on a set of 2-by-2 matrices as b₂] (az az]. [b₁ b²]) = a₁b₁-a₂b₂ + AzÞ¾

Answers

All axioms of inner product spaces hold for this inner product of matrices:

1.Commutativity(u, v) = (v, u)

2.Linearity in the First Argument (u + v, w) = (u, w) + (v, w) and (au, v)

3.Conjugate Symmetry (v, v) is a real number and (v, v) ≥ 0

4.Positive Definiteness(v, v) = 0 if and only if v = 0.

Given: The inner product (,):

M22 X M22 → R is defined on a set of 2-by-2 matrices as follows:

(b₂] (az az]. [b₁ b²]) = a₁b₁-a₂b₂ + AzÞ¾

All axioms of inner product spaces hold for this inner product of matrices.

In order to show that the inner product satisfies all the axioms of the inner product spaces, we need to show that the following axioms hold for all vectors u, v, and w, and all scalars a and b:

First Axiom: Commutativity(u, v) = (v, u)

The inner product of two matrices u and v is given by

(u, v) = a₁b₁ - a₂b₂ + AzÞ¾

The inner product of two matrices v and u is given by(v, u) = a₁b₁ - a₂b₂ + AzÞ¾

Hence, the first axiom holds.

Second Axiom: Linearity in the First Argument

(u + v, w) = (u, w) + (v, w) and (au, v)

               = a(u, v)(u + v, w)

               = [(a + b)₁w₁ - (a + b)₂w₂ + Aw]

               = [a₁w₁ - a₂w₂ + Aw] + [b₁w₁ - b₂w₂ + Aw]

                = (u, w) + (v, w)

Hence, this axiom holds.

Now, for (au, v) = a(u, v), we get:

(au, v) = [(au)₁b₁ - (au)₂b₂ + Auz]

           = [a(u₁b₁ - u₂b₂ + AzÞ¾)]

           = a(u₁b₁ - u₂b₂ + AzÞ¾)

           = a(u, v)

Therefore, this axiom also holds.

Third Axiom: Conjugate Symmetry (v, v) is a real number and (v, v) ≥ 0

The inner product of a matrix v with itself is given by

(v, v) = a₁b₁ - a₂b₂ + AzÞ¾

Since all the coefficients of the matrices are real, (v, v) is real and (v, v) ≥ 0.

This axiom also holds.

Fourth Axiom: Positive Definiteness(v, v) = 0 if and only if v = 0.

Let (v, v) = 0.

Therefore,

a₁b₁ - a₂b₂ + AzÞ¾ = 0

⇒ a₁b₁ = a₂b₂ - AzÞ¾

Since the coefficients of the matrix are real, a₁b₁ and a₂b₂ are also real numbers.

Now, if we assume that v ≠ 0, then one of the elements of v is non-zero. Let us assume that a₁ is non-zero.

Then, we can write(b₂] (a 0]. [b₁ 0]) = a₁b₁

Since a₁ is non-zero, the inner product of the matrix (b₂] (a 0]. [b₁ 0]) with itself is non-zero.

But(v, v) = a₁b₁ - a₂b₂ + AzÞ¾ = 0

Therefore, v = 0.

This shows that the fourth axiom also holds.

Hence, all axioms of the inner product spaces hold for this inner product of matrices.

To know more axioms, visit:

brainly.com/question/30105557

#SPJ11

determine the function f satisfying the given conditions. f ' (x) = sin(x) cos(x) f (/2) = 3.5 f (x) = a sinb(x) cosc(x) d, where a > 0.

Answers

The required function is f(x) = 2 sin(x) cos(x) + π/8 + 13/4.

Given the conditions, we have to determine the function f.f'(x) = sin(x) cos(x)......(1)f(/2) = 3.5 ...(2)f(x) = a sinb(x) cosc(x) d, where a > 0 ...(3)

Let us integrate the given function (1) with respect to x.f'(x) = sin(x) cos(x)Let, u = sin(x) and v = -cos(x)∴ du/dx = cos(x) and dv/dx = sin(x)Now, f'(x) = u * dv/dx + v * du/dx= sin(x) * sin(x) + (-cos(x)) * cos(x)= -cos²(x) + sin²(x)= sin²(x) - cos²(x)∴ f(x) = ∫ f'(x) dx= ∫(sin²(x) - cos²(x)) dx= (x/2) - (sin(x) cos(x)/2) + C.

Now, as per condition (2)f(/2) = 3.5⇒ f(π/2) = 3.5∴ (π/2)/2 - (sin(π/2) cos(π/2)/2) + C = 3.5⇒ π/4 - (1/2) + C = 3.5⇒ C = 3.5 - π/4 + 1/2= 3.25 - π/4∴ f(x) = (x/2) - (sin(x) cos(x)/2) + 3.25 - π/4...(4)

Comparing equations (3) and (4), we get:

a sinb(x) cosc(x) d = (x/2) - (sin(x) cos(x)/2) + 3.25 - π/4Let, b = c = 1

and

a = 2.∴ 2 sin(x) cos(x) d = (x/2) - (sin(x) cos(x)/2) + 3.25 - π/4∴ f(x) = 2 sin(x) cos(x) + π/8 + 13/4

Thus, the required function is f(x) = 2 sin(x) cos(x) + π/8 + 13/4.

To know more about function visit:

https://brainly.com/question/11624077

#SPJ11

Given that, f '(x) = sin(x) cos(x) Let's integrate both sides of the equation:

∫ f '(x) dx = ∫ sin(x) cos(x) dx⇒ f (x) = (sin(x))^2/2 + C ----(1)

Given that f (/2) = 3.5Plug x = /2 in (1):f (/2) = (sin(/2))^2/2 + C= 1/4 + C = 3.5⇒ C = 3.5 - 1/4= 13/4

Therefore, f (x) = (sin(x))^2/2 + 13/4 --- (2)

Also, given that f (x) = a sinb(x) cosc(x) d, where a > 0

We know that sin(x) cos(x) = 1/2 sin(2x)

Therefore, f (x) = a sinb(x) cosc(x) d= a/2 [sin((b + c) x) + sin((b - c) x)] d

Given that, f (x) = (sin(x))^2/2 + 13/4

Comparing both the equations, we get, a/2 [sin((b + c) x) + sin((b - c) x)] d = (sin(x))^2/2 + 13/4

Therefore, b + c = 1 and b - c = 1

Also, we know that a > 0

Therefore, substituting b + c = 1 and b - c = 1, we get b = 1, c = 0

Substituting b = 1 and c = 0 in the equation f (x) = a sinb(x) cosc(x) d, we get f(x) = a sin(1x) cos(0x) d = a sin(x)

Thus, the function f satisfying the given conditions is f(x) = (sin(x))^2/2 + 13/4.

To know more about integrate, visit

https://brainly.com/question/31744185

#SPJ11

The following regression model is used to predict the average price of a refrigerator. The independent variables are one quantitative variable: X1 = size (cubic feet) and one binary variable: X2 = freezer configuration (1 freezer on the side, 0 = freezer on the bottom). y-hat = $499 + $29.4X1 - $121X2 (R^2 = .67. Std Error = 85). What is the average difference in price between a refrigerator that has a freezer on the side and a freezer on the bottom, assuming they have the same cubic feet?
A. Freezer on the side is $499 higher on average than freezer on the bottom
B. Freezer on the side is $121 higher on average than freezer on the bottom
C. Not enough information to answer
D. Freezer on the side is $121 lower on average than freezer on the bottom
E. Freezer on the side is $499 lower on average than freezer on the bottom

Answers

The average difference in price between a refrigerator that has a freezer on the side and a freezer on the bottom, assuming they have the same cubic feet is that "Freezer on the side is $121 lower on average than freezer on the bottom".

The following regression model is used to predict the average price of a refrigerator.

The independent variables are one quantitative variable:

X1 = size (cubic feet) and one binary variable:

X2 = freezer configuration (1 freezer on the side, 0 = freezer on the bottom).

y-hat = $499 + $29.4X1 - $121X2 (R^2 = .67. Std Error = 85).

The given regression model:

y-hat = $499 + $29.4X1 - $121X2 provides the predicted value of Y, where Y is the average price of the refrigerator;

X1 is the cubic feet size of the refrigerator and X2 is the binary variable that equals 1 when there is a freezer on the side and 0 when there is a freezer at the bottom.

The coefficient of X2 is -121, and it is multiplied by 1 when there is a freezer on the side and by 0 when there is a freezer at the bottom.

So, the average price of a refrigerator having a freezer on the bottom is $0($121*0) less than the refrigerator having a freezer on the side.

The answer is D. Freezer on the side is $121 lower on average than freezer on the bottom.

Learn more about regression model at:

https://brainly.com/question/14983410

#SPJ11

Let X and Y be two independent random variables such that Var (3X-Y)-12 and Var (X+2Y)-13. Find Var(X) and Var(Y).

Answers

Given that X and Y are independent random variables, we can use the properties of variance to find Var(X) and Var(Y) based on the given information.

We have the following information:

Var(3X - Y) = 12 ...(1)

Var(X + 2Y) = 13 ...(2)

To find Var(X), we can manipulate equation (2) as follows:

Var(X + 2Y) = 13

Var(X) + Var(2Y) = 13 (since X and 2Y are independent)

Var(X) + 4Var(Y) = 13 (applying the property Var(aX) = a^2 * Var(X))

Now, let's substitute equation (1) into the above equation:

12 + 4Var(Y) = 13

4Var(Y) = 13 - 12

4Var(Y) = 1

Var(Y) = 1/4

Therefore, we have found Var(Y) = 1/4.

To find Var(X), we can substitute the value of Var(Y) into equation (2):

Var(X + 2Y) = 13

Var(X) + Var(2Y) = 13 (since X and 2Y are independent)

Var(X) + 4Var(Y) = 13 (applying the property Var(aX) = a^2 * Var(X))

Var(X) + 4 * (1/4) = 13

Var(X) + 1 = 13

Var(X) = 13 - 1

Var(X) = 12

Therefore, we have found Var(X) = 12.

Conclusion:

Var(X) = 12

Var(Y) = 1/4

To learn more about random variables:

https://brainly.com/question/30789758

#SPJ11

2. In your solution, you must write your answers in exact form and not as decimal approximations. Consider the function
f(x) = e ²², 2 x€R.
(a) Determine the fourth order Maclaurin polynomial P₁(x) for f.
(b) Using P(x), approximate e1/s.
(c) Using Taylor's theorem, find a rational upper bound for the error in the approximation in part (b).
(d) Using P(x), approximate the definite integral
1
∫ x2/e2 dx
0
(e) Using the MATLAB applet Taylortool:
i. Sketch the tenth order Maclaurin polynomial for f in the interval -3 < x < 3.
ii. Find the lowest degree of the Maclaurin polynomial such that no difference between the Maclaurin polynomial and f(x) is visible on Taylortool for x = (-3,3). Include a sketch of this polynomial. dx.

Answers

By following these steps and using the Maclaurin polynomial and Taylor's theorem, we can approximate the function, determine the error bound, approximate the integral, and visualize the polynomials using the MATLAB applet.

(a) To find the fourth-order Maclaurin polynomial for f(x) = e^(2x), we can expand the function using the Maclaurin series and truncate it after the fourth term.

(b) Using the fourth-order Maclaurin polynomial obtained in part (a), we can substitute 1/s into the polynomial to approximate e^(1/s).

(c) To find a rational upper bound for the error in the approximation from part (b), we can use Taylor's theorem with the remainder term.

(d) Using the fourth-order Maclaurin polynomial, we can approximate the definite integral of x^2/e^2 by evaluating the integral using the polynomial.

(e) Using the MATLAB applet Taylortool, we can sketch the tenth-order Maclaurin polynomial for f in the interval -3 < x < 3. Additionally, we can find the lowest degree of the Maclaurin polynomial where no visible difference between the polynomial and f(x) occurs on Taylortool for the given interval. A sketch of this polynomial can also be provided.

By following these steps and using the Maclaurin polynomial and Taylor's theorem, we can approximate the function, determine the error bound, approximate the integral, and visualize the polynomials using the MATLAB applet.

learn more about MATLAB here: brainly.com/question/30763780

#SPJ11








(1 point) A car drives down a road in such a way that its velocity (in m/s) at time t (seconds) is v(t) = 3:12 +4. Find the car's average velocity (in m/s) between t = 1 and t = 4. Answer =

Answers

Therefore, the car's average velocity between t = 1 and t = 4 is approximately 20.17 m/s.

To find the car's average velocity between t = 1 and t = 4, we need to calculate the total displacement of the car during that time interval and divide it by the total time.

Given that the velocity function of the car is v(t) = 3t + 12, we can integrate it to find the displacement function.

The displacement function, s(t), is the integral of the velocity function v(t):

s(t) = ∫(3t + 12) dt = (3/2)t² + 12t + C

To find the constant of integration (C), we can use the initial condition s(0) = 0. Since the car's initial position is not provided, we assume it starts at the origin.

s(0) = (3/2)(0)² + 12(0) + C

0 = 0 + 0 + C

C = 0

Therefore, the displacement function becomes:

s(t) = (3/2)t² + 12t

To find the total displacement between t = 1 and t = 4, we can evaluate s(t) at those points and subtract:

Δs = s(4) - s(1)

Δs = [(3/2)(4)² + 12(4)] - [(3/2)(1)² + 12(1)]

Δs = (3/2)(16) + 48 - (3/2) - 12

Δs = 24 + 48 - 3/2 - 12

Δs = 72 - 3/2 - 12

Δs = 60.5 meters

The total displacement of the car between t = 1 and t = 4 is 60.5 meters.

To find the average velocity, we divide the total displacement by the total time:

Average velocity = Δs / Δt = 60.5 / (4 - 1) = 60.5 / 3 ≈ 20.17 m/s

To know more about average velocity,

https://brainly.com/question/29723400

#SPJ11

What's 2+2+4 divided by 8 times 9+175- 421 times 9 +321

Answers

The solution to the expression using order of operations is: -80580

How to solve order of operations?

The order of operations for the given question is:

PEMDAS which means Parentheses, Exponents, Multiplication, Division, Addition, then subtraction.

Thus:

2+2+4 divided by 8 times 9+175- 421 times 9 +321 can be expressed as:

(2 + 2 + 4) ÷ 8 × (9 + 175 - 421) × (9 + 321)

Solving the parentheses first gives us:

8 ÷ 8 × (-237) × 340

= 1 × (-237) × 340

= -80580

Read more about order of operations at: https://brainly.com/question/550188

#SPJ1

Suppose we carry out the following random experiments by rolling a pair of dice. For each experiment, state the discrete distribution that models it and find the numerical value of the parameters.
(a) Roll two dice and record if it is an even number or not
(b) Roll the two dice repeatedly, and count how many times we run the experiment before getting a sum of 7
(c) Roll the two dice 12 times and count how many times we get a sum of 7
(d) Roll the two dice repeatedly, and count the number of times we do not get a sum of two until this fourth time we do get a sum of 2

Answers

(a) When rolling a pair of dice and recording whether it is an even number or not, the discrete distribution that models this experiment is the Bernoulli distribution.

The Bernoulli distribution is characterized by a single parameter, usually denoted as p, representing the probability of success (in this case, rolling an even number). The value of p for this experiment is 1/2 since there are three even numbers (2, 4, and 6) out of the total six possible outcomes. Therefore, the parameter p for this experiment is 1/2, indicating a 50% chance of rolling an even number. Rolling a pair of dice and checking if it is an even number or not follows a Bernoulli distribution with a parameter p of 1/2. This means there is a 50% probability of rolling an even number.

Learn more about Bernoulli distribution here : brainly.com/question/32129510
#SPJ11

this is the problem ​

Answers

Answer:

192 mm³

Step-by-step explanation:

given 2 similar figures with ratio of sides = a : b , then

ratio of areas = a² : b²

ratio of volumes = a³ : b³

here ratio of areas

= 80 : 245 ( divide both parts by 5 )

= 16 : 49

then ratio of sides = [tex]\sqrt{16}[/tex] : [tex]\sqrt{49}[/tex] = 4 : 7 and

ratio of volumes = 4³ : 7³ = 64 : 343

let x be the volume of the smaller prism then by proportion

[tex]\frac{ratio}{volume}[/tex] : [tex]\frac{343}{1029}[/tex] = [tex]\frac{64}{x}[/tex] ( cross- multiply )

343x = 64 × 1029 = 65856 ( divide both sides by 343 )

x = 192

that is the volume of the smaller prism = 192 mm³

 

Other Questions
classify the following as either current assets or non-currentassetscash and balances at central banksbalancesat banks and financial institutionsdepositsat banks and financial institutio determine whether the following molecules are polar. (a) ocs polar nonpolar (b) xef4 polar nonpolar which of the following do not contribute to the risk of coronary heart disease? group of answer choices age lifestyle factors negative emotions job strain migraines if a bond's yield to maturity exceeds its coupon rate, the bond's _____. Emile is observing a wind turbine. The vertical distance between theground and the tip of one of the turbine's blades, in meters, is modeledby H(t) where t is the time in seconds. The function is graphed below,along with one segment highlighted. lifetime of digital watch is a random variable with exponential distribution. given that the probability that the watch will work after 4 years is 0.3, find Consider an economy in which the real exchange rate is constant and equal to 1. Consumption, investment, taxes and government spending are given by: C = 10+ 0.8YD = 10 G = 10 T = 10 Imports and exports are given by IM = 0.3Y = 0.3Y* where Y* is foreign output, which we assume is Y* = 100. a) Find the equilibrium level of output of this economy. What is the multiplier of this economy? If we were to close the economy, so imports and exports were both zero, what would the multiplier be? Why would the multiplier be different in a closed economy? b) Assume that the domestic government has a target level of output of 125. What is the increase in G necessary to achieve the target output in the domestic economy? What are the effect of the change of governemtn spending on the trade balance (net exports)? (11) Find all values of the constant r for which y = e" is a solution to the equation 9y' - y=0 a patient with multiple sclerosis experiences exacerbations of new symptoms that last a few days and then disappear. the nurse correlates these clinical manifestations to which type of multiple sclerosis? The only viable and sustainable way for service organizations to remain in business is to develop and maintain long-term relationships with their customers, a fact that is becoming increasingly apparent to service providers around the globe. Recent surveys conducted by a number of providers of financial services revealed that while some relationship development strategies impose restrictions on customers and leave them with no other option, other strategies that allow customers to remain in the relationship voluntarily are more viable and sustainable. Using illustrative examples, evaluate four (4) such strategies that do not restrict customers and allow them to maintain relationships with their preferred service providers. NYCU airline is considering the purchase of long-, medium-, and short- range airplanes. The price would be $335 million for each long-range plane, $250 for each medium-range plane, and $175 million for each short-range plane. The board has authorized a maximum of $7.5 billion (a billion is a thousand million) for these purchases. It is estimated that the net annual profit would be $21 million per long-range plane, $15 million per medium-range plane, and $11.5 million per short-range plane. It is predicted that enough trained pilots will be available to crew 30 new airplanes. If only short-range planes were purchased, the maintenance facilities would be able to handle 40 new planes. However, each medium-range plane is equivalent to 4/3 short-range planes, and each long-range plane is equivalent to 5/3 short-range planes in terms of their use of the maintenance facilities. Management wishes to know how many planes of each type should be purchased to maximize profit. (a) Formulate an IP model for this problem. (5%) (b) Use the binary representation of the variables to reformulate the IP model in part (a) as a BIP problem. (5%) 3.On February 28, 2018, payment of a deposit of $5,000 for a promotional event that will take place in June 2018. Do the journal entryEntry: A hybrid SUV A got a lot of attention when it first appeared. It is a relatively high-priced hybrid SUV that makes use of the latest technologies for fuel efficiency. One of the more popular hybrid SUVs on the market is the modestly priced hybrid SUV B. A consumer group was interested in comparing the gas mileage of these two models. In order to do so, each vehicle was driven on the same 10 routes that combined both highway and city streets. The results showed that the mean mileage for SUV A was 23 mpg and for SUV B was 32 mpg. The standard deviations were 3.8 mpg and 2.5 mpg, respectively. Complete parts a through c below.a) An analyst for the consumer group computed the two-sample t 95% confidence interval for the difference between the two means as (8.149.86). What conclusion would he reach based on his analysis? A. He cannot discem a statistically significant difference in fuel economy. B. He can conclude that statistically, there is no significant difference in fuel economy. C. He can conclude a statistically significant difference in fuel economy. D. He is not given enough information to make any conclusions. b) Why is this procedure inappropriate? What assumption is violated? A. It was assumed the data are dependent, but they are not because the two vehicles were made by different manufacturers B. It was assumed the data are independent, but they are paired because the two vehicles were driven by the same driver. C. It was assumed the data are independent, but they are paired because the two vehicles were driven over the same 10 routes. D. It was assumed the data are dependent, but they are not because the two vehicles were driven at two separate time periods. c) in what way do you think this may have impacted the results? A. It would have made it easier to distinguish a difference. B. It may have made it more difficult to distinguish a difference. C. The analyst came to the wrong conclusion because of his assumption errors. D. The analyst performed the wrong test because of his assumption errors. While most companies record transactions very carefully, the reality is that mistakes still happen. For example, bank regulators fined Banc One Corp $1.8 million because they felt that the unreliability of the banks accounting system caused it to violate regulatory requirements. Also, in recent years Fannie Mae, the government mortgage association, announced a series of large accounting errors. Finally, before a major overhaul of its accounting system, the financial records of Waste Management Inc. were in such disarray that of the companys 57,000 employees, 10,000 were receiving pay slips that were in error. The Sarbanes-Oxley Act was created to minimize the occurrence of errors like these by increasing every employees responsibility for accurate financial reporting.In order for these companies to prepare and issue financial statements, their accounting equations must have been in balance at year-end. How could these errors or misstatements have occurred? Discuss two ways that organizations can avoid these costly mistakes. Be sure to incorporate at least two outside scholarly sources into your post. Your post must be a minimum of two paragraphs. suppose the dna molecule shown at left was produced in the test tube from deoxynucleotide 5'-triphosphates. what is the correct sequence of this piece of dna? hatteras hammocks is a company that takes a strategic approach to hrm. it has a(n) that outlines a plan for future staffing of managerial positions. nswer the following questions briefly (within 100 words):(A.) Stocks Alpha, Beta and Gamma have exhibited CAPM beta of 0.5, 1.5, and -0.25 over the last five years. If the market return has been 12% and the risk-free rate is 5.5%, what are the expected returns from these stocks? Also, which of these stocks will offer the maximum diversification and why?(B.) Let's say you have invested in a callable bond. Discuss how does it affect your reinvestment risk. possible Use the formula A = P(1 + r) to find the rate r at which $4000 compounded annually grows to $6760 in 2 years CI [= % (Round to the nearest percent as needed.) Genetic disease: Sickle-cell anemia is a disease that results when a person has two copies of a certain recessive gene. People with one copy of the gene are called carriers. Carriers do not have the disease, but can pass the gene on to their children. A child born to parents who are both carriers has probability 0.25 of having sickle-cell anemia. A medical study samples 18 children in families where both parents are carriers. a) What is the probability that four or more of the children have sickle-cell anemia? b) What is the probability that fewer than three of the children have sickle-cell anemia? c) Would it be unusual if none of the children had sickle-cell anemia? Given the three point masses below and their positions relative to the origin in the xy-plane, find the center of mass of the system (units are in cm). m = 4 kg, placed at (2,1) m = 6 kg, placed at (6, -8) m3 = 14 kg, placed at (-8, -10) Give your answer as an ordered pair without units. For example, if the center of mass was (2 cm,1/2 cm), you would enter (2,1/2). Provide your answer below: