Answer:
Explanation:
The conditions before Storm 1 were likely more conducive to rainfall due to higher temperatures and higher levels of atmospheric moisture. Warmer temperatures allow the air to hold more moisture, which can lead to an increase in rainfall. Additionally, higher levels of atmospheric moisture increase the chances of rainfall, as the droplets of water vapor in the air are able to coalesce and form larger drops. These larger drops are more likely to reach the ground as rain.
20 g of zinc was heated from 45°C to 65°C. How much energy was used to heat Zn? (Specific heat capacity of Zn 0. 440 J/g °C)
The amount of energy used to heat 20 g of zinc from 45°C to 65°C is 176 J.
The amount of energy used to heat a substance is determined by its specific heat capacity, mass, and the change in temperature. In this case, we are given the mass of zinc (20 g), the specific heat capacity of zinc (0.440 J/g °C), and the change in temperature (20°C).
To calculate the amount of energy used to heat the zinc, we can use the formula:
Energy = mass x specific heat capacity x change in temperature
Plugging in the given values, we get:
Energy = 20 g x 0.440 J/g °C x 20°C = 176 J
This calculation is useful in understanding the amount of energy required to change the temperature of a substance and can be applied to other materials with known specific heat capacities.
Learn more about energy here:
https://brainly.com/question/1932868
#SPJ4
when asked to find the pH after __ mols of titrant are added, how do we solve for pH?
When asked to find the pH after initial mols of titrant are added, how do we solve for pH.
First genuinely discover the moles of extra H₃O⁺. The extra may be calculated via way of means of subtracting preliminary moles of analyte B from moles of acidic titrant added, assuming a one-to-one stoichiometric ratio. Once the range of moles of extra H₃O⁺ is determined, [H₃O⁺] may be calculated. In water, a proton is transferred from one water molecule to any other to supply a hydronium ion (H₃O⁺) and a hydroxide ion (OH⁻). The pH of the solution can be calculated as follows-
pH = -log (H₃O⁺)
To learn more about hydronium ion check the link below-
brainly.com/question/27586088
#SPJ4
Consider the following chemical equilibrium: N2 (g)+3 H2(g) ⇌ 2NH g) K from K for this reaction at an absolute temperature T. You can assume T is comfortably above Now write an equation below that shows how to calculate room temperature.
To calculate the equilibrium constant (K) for the given reaction at room temperature (typically taken as 25°C or 298K), we can use the following equation: K(room temp) = K(T) * exp(-ΔH°/RT)
K(T) is the equilibrium constant at temperature T
ΔH° is the standard enthalpy change for the reaction
R is the gas constant (8.314 J/K*mol)
T is the absolute temperature in Kelvin (298K for room temperature).
The exponential term in the equation takes into account the temperature dependence of the equilibrium constant. If ΔH° is positive, the equilibrium constant will decrease with increasing temperature, while if ΔH° is negative, the equilibrium constant will increase with increasing temperature.
Note that the values of ΔH° and K(T) for the given reaction would need to be provided in order to calculate K(room temp) using this equation.
learn more about enthalpy here:
https://brainly.com/question/16720480
#SPJ11
use lewis structures to show the electron transfer that enables these ionic compounds to form: (a) k2s (b) ca3n2
(a) K₂S: Each potassium atom donates one electron to sulfur, forming K⁺ and S₂⁻ ions, which then attract each other to form K₂S via electrostatic forces.
(b) Ca₃N₂: Each calcium atom donates two electrons to one nitrogen atom, forming Ca²⁺ and N³⁻ ions. Three nitrogen atoms then bond with two calcium ions each to form Ca³N².
(a) The Lewis structure of K₂S can be shown as follows:
K K
\ /
S²⁻
K K
| |
S₂- + 2 K+ → K₂S
The sulfur atom gains two electrons from two potassium atoms to form S²⁻on while each potassium atom loses one electron to form K⁺ ion. The two K+ ions combine with the S²⁻ ion to form K₂S.
(b) [tex]Ca_3N_2[/tex]:
The Lewis structure for [tex]Ca_3N_2[/tex] can be written as:
:N≡C:
/ \
Ca Ca
| |
Ca Ca
The electron transfer occurs as follows:
3 Ca + N₂ → Ca₃N₂
Each nitrogen atom shares its three valence electrons with three calcium atoms. Each calcium atom gives two electrons to the nitrogen atom to form the Ca₃N2 ionic compound.
To learn about Lewis's structure:
https://brainly.com/question/31509183
#SPJ4
if the reaction quotient, qc, is is determined to be 5.0 x 10-16 and [ag ] is 1 m, what is [cu2 ]? use scientific notation here
According to the question the concentration of Cu²⁺ is 5.0 x 10-16 M.
What is concentration?Concentration is the ability to focus on a specific task or thought without being easily distracted by other things. It involves paying close attention to details, thinking deeply about the task at hand, and blocking out any extraneous noise or interruptions. Concentration requires practice and requires developing techniques to help maintain focus, such as setting a timer to work on a task, breaking a task into smaller parts, and avoiding multitasking. Concentration is an important skill that can help improve problem-solving skills, productivity, creativity, and mental well-being.
The reaction quotient, qc, is determined using the concentrations of the reactants and products at equilibrium. To calculate the concentration of copper (Cu2+), we need to use the equilibrium expression.
The reaction is:
Ag⁺ + Cu²⁺ → Ag⁺ + Cu²⁺
The equilibrium expression is:
Kc = [Ag⁺][Cu²⁺] / [Ag⁺]²
Rearranging the equation to solve for [Cu²⁺], we get:
[Cu²⁺] = (Kc * [Ag⁺]²) / [Ag⁺]
Plugging in the values, we get:
[Cu²⁺] = (5.0 x 10-16 * (1 M)²) / 1 M
Therefore, the concentration of Cu²⁺ is 5.0 x 10-16 M.
To learn more about concentration
https://brainly.com/question/28564792
#SPJ4
Of the species, _____ is not an electrolyte
A. KBr
B. LiOH
C. RbNO3
D. He
E. HCl
D. He is not an electrolyte.
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dissolving, the substance separates into cations and anions, which disperse uniformly throughout the solvent. Solid-state electrolytes also exist. In medicine and sometimes in chemistry, the term electrolyte refers to the substance that is dissolved. Electrically, such a solution is neutral. If an electric potential is applied to such a solution, the cations of the solution are drawn to the electrode that has an abundance of electrons, while the anions are drawn to the electrode that has a deficit of electrons. The movement of anions and cations in opposite directions within the solution amounts to a current. Some gases, such as hydrogen chloride (HCl), under conditions of high temperature or low pressure can also function as electrolytes.[clarification needed] Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) or synthetic polymers (e.g., polystyrene sulfonate), termed "polyelectrolytes", which contain charged functional groups. A substance that dissociates into ions in solution or in the melt acquires the capacity to conduct electricity. Sodium, potassium, chloride, calcium, magnesium, and phosphate in a liquid phase are examples of electrolytes.
To know more about electrolyte please visit
https://brainly.com/question/31839783
#SPJ11
when aqueous 2 m hcl is added to an organic phase inside a separatory funnel, a new layer forms at the bottom of the funnel as the organic phase rises to the top. which of the following can be concluded based on this observation?
It can be concluded that the hydrochloric acid and the organic phase are immiscible, meaning they do not mix and form a homogeneous solution.
What is homogeneous ?Homogeneous is a term used to describe when all components of a mixture are the same or similar in composition, properties, or characteristics. It is the opposite of heterogeneous, which describes when components of a mixture are different from one another. Homogeneous mixtures are uniform throughout and have a consistent composition, while heterogeneous mixtures are not uniform and have varying compositions. Examples of homogeneous mixtures include air, salt water, and sugar water.
To learn more about homogeneous
https://brainly.com/question/16938448
#SPJ4
A 100. 0 ml sample of 0. 180 m hclo4 is titrated with 0. 270 m lioh. Determine the ph of the solution after the addition of 75. 0 ml of lioh.
The pH of the solution after the addition of 75.0 mL of LiOH is 1.92.
What is LiOH ?LiOH is the chemical formula for lithium hydroxide, a white solid inorganic compound. It is a strong base and is often used in a variety of industrial and scientific applications. LiOH is typically produced by reacting lithium carbonate with calcium hydroxide, and is used in a variety of products, including batteries, fertilizers, air purification systems, and even in the manufacture of glass and ceramics.
The pH of the solution after the addition of 75.0 mL of LiOH can be calculated by using the following equation: pH = -log[H+] = -log[H3O+] .The H3O+ concentration can be calculated using the following equation: H3O+ = (C1*V1)/(C2*V2) .Therefore, the H3O+ concentration can be calculated as follows:H3O+ = (0.180 M * 100 mL)/(0.270 M * 75.0 mL) = 0.120 M .The pH of the solution after the addition of 75.0 mL of LiOH is then calculated as follows:pH = -log[H3O+] = -log(0.120) = 1.92
To learn more about LiOH
https://brainly.com/question/30372358
#SPJ4
The pH of the solution after the addition of 75.0 mL of LiOH is 13.064.
This is a neutralization reaction between a strong acid and a strong base (LiOH). The balanced chemical equation for the reaction is:
[tex]HClO_4 + LiOH \rightarrow LiClO_4 + H_2O[/tex]
Before any LiOH is added, we have 0.180 M [tex]HClO_4[/tex] in 100.0 mL, which gives us 0.0180 moles of [tex]HClO_4[/tex] in the solution. The LiOH added reacts with the [tex]HClO_4[/tex] in a 1:1 mole ratio, so 0.0180 moles of LiOH are needed to completely neutralize the acid. This amount of LiOH corresponds to:
0.0180 moles LiOH × (1 L / 0.270 moles) = 0.0667 L LiOH
So, adding 75.0 mL of 0.270 M LiOH solution will provide:
0.0750 L LiOH × 0.270 moles / L = 0.0203 moles LiOH
Since this is less than the amount needed to neutralize the acid, we know that not all of the [tex]HClO_4[/tex] will react, and we need to calculate the amount of excess [tex]HClO_4[/tex] left in the solution.
The initial moles of [tex]HClO_4[/tex] are:
0.0180 moles [tex]HClO_4[/tex]
After the addition of 0.0203 moles of LiOH, the remaining moles of [tex]HClO_4[/tex] are:
0.0180 moles [tex]HClO_4[/tex] - 0.0203 moles LiOH = -0.0023 moles [tex]HClO_4[/tex]
Note that the negative value indicates that all the [tex]HClO_4[/tex] has been neutralized, and there is an excess of LiOH. Therefore, the solution is a basic solution, and we can calculate the concentration of OH- ions present in the solution using the moles of excess LiOH:
0.0203 moles LiOH × (1 L / 0.175 L) = 0.116 M LiOH
Since LiOH is a strong base, it dissociates completely in water, so the concentration of OH- ions in the solution is also 0.116 M. Therefore, the pOH of the solution is:
pOH = -log[OH-] = -log(0.116) = 0.936
Finally, we can calculate the pH of the solution:
pH + pOH = 14.00
pH = 14.00 - pOH = 14.00 - 0.936 = 13.064
To learn more about neutralization reaction
https://brainly.com/question/20038776
#SPJ4
How many bonding electrons are in the lewis structure of n2?.
The Lewis structure of N2 shows a triple bond between the two nitrogen atoms. A triple bond consists of one sigma bond and two pi bonds. Each bond is formed by the sharing of two electrons. Therefore, in the Lewis structure of N2, there are a total of 6 bonding electrons.
To determine the number of bonding electrons in the Lewis structure of N2, follow these steps:
1. Identify the elements in the molecule: N2 consists of two nitrogen atoms (N).
2. Calculate the total number of valence electrons: Nitrogen has 5 valence electrons, and since there are two nitrogen atoms, the total valence electrons are 5 x 2 = 10.
3. Create the Lewis structure: Place the two nitrogen atoms next to each other and distribute the valence electrons as bonding and non-bonding pairs. To form a stable molecule, each nitrogen atom needs to have a complete octet (8 electrons).
The Lewis structure of N2 is:
N ≡ N
In this structure, there is a triple bond between the two nitrogen atoms, which means there are 3 bonding pairs of electrons. Since each bonding pair consists of 2 electrons, the total number of bonding electrons in the Lewis structure of N2 is 3 x 2 = 6.
Your answer: There are 6 bonding electrons in the Lewis structure of N2.
To know more about lewis structure visit:
https://brainly.com/question/30259926
#SPJ11
Read the following claim.
Sixty-six million years ago an asteroid impact on Earth caused cataclysmic changes.
What evidence from the article supports this claim? Explain why the evidence supports the claim.
"Scientists study Earth's darkest day at the 'Crater of Doom' "
The evidence from the article that supports the claim is the fact that the article is about scientists studying the "Crater of Doom," which is the Chicxulub crater in Mexico.
What is the evidence?This crater is thought to have been formed by an asteroid impact that occurred 66 million years ago, and it is connected to the extinction of the dinosaurs and many other species. In order to understand more about how the impact has impacted Earth's climate and ecosystems, the article outlines how researchers are analyzing the impact crater.
This evidence implies that there is consensus among scientists regarding the connection between the Chicxulub impact and the extinction event, and ongoing study is being done to understand the size and breadth of the impact, which supports the notion that an asteroid impact resulted in catastrophic changes to the Earth.
Learn more about the evidence:https://brainly.com/question/14240621
#SPJ1
Using standard heats of formation, calculate the standard enthalpy change for the following reaction. S(s,rhombic) + 2CO(g) —SO2(g) + 2C(s,graphite)
The standard enthalpy change is -75.8 kJ/mol.
S(s,rhombic) + 2CO (g) ===>>SO₂(g) + 2 C (s,graphite)
The standard enthalpy change (ΔH°) for the reaction using the formula:
ΔH° = ΣnΔHf°(products) - ΣmΔHf°(reactants)
where,
n and m are the stoichiometric coefficients of the products and reactants, respectively.
The standard heats of formation (ΔHf°) values for all the reactants and products involved in the reaction. The values are given in kJ/mol:
ΔHf°[S(s,rhombic)] = 0 kJ/mol
ΔHf°[CO(g)] = -110.5 kJ/mol
ΔHf°[SO₂(g)] = -296.8 kJ/mol
ΔHf°[C(s,graphite)] = 0 kJ/mol
Substituting the values we get:
ΔH° = [ΔHf°(SO₂) + 2ΔHf°(C)] - [ΔHf°(S) + 2ΔHf°(CO)]
ΔH° = [(-296.8 kJ/mol) + 2(0 kJ/mol)] - [(0 kJ/mol) + 2(-110.5 kJ/mol)]
ΔH° = -75.8 kJ/mol
To learn more about Enthalpy:
https://brainly.com/question/29853100
#SPJ4
What is the maximum number of electrons in the 4d subshell?.
The maximum number of electrons in the 4d subshell is 10.
The 4d subshell can hold a maximum of 10 electrons. This is because each orbital within the subshell can hold a maximum of 2 electrons, and there are a total of 5 orbitals in the 4d subshell.
The maximum number of electrons in the 4d subshell is 10.
Identify the subshell: In this case, it's the 4d subshell.
Determine the angular momentum quantum number (l): For a "d" subshell, l = 2.
Calculate the maximum number of electrons: Use the formula 2(2l + 1) to find the maximum number of electrons for a given subshell.
Applying the formula for the 4d subshell:
Maximum electrons = 2(2 × 2 + 1) = 2(5) = 10
So, the maximum number of electrons in the 4d subshell is 10.
Learn more about 4d subshell
brainly.com/question/9309492
#SPJ11
you wish to make a 0.197 m nitric acid solution from a stock solution of 6.00 m nitric acid. how much concentrated acid must you add to obtain a total volume of 75.0 ml of the dilute solution?
To make a 0.197 m nitric acid solution from a stock solution of 6.00 m nitric acid, you need to dilute the stock solution with water. The amount of concentrated acid needed can be calculated using the formula: C1V1 = C2V2
where C1 is the initial concentration of the stock solution, V1 is the volume of the stock solution needed, C2 is the final concentration of the dilute solution, and V2 is the total volume of the dilute solution.
In this case, we can plug in the values we have:
C1 = 6.00 m
C2 = 0.197 m
V2 = 75.0 ml
Solving for V1, we get:
V1 = (C2V2) / C1
V1 = (0.197 m * 75.0 ml) / 6.00 m
V1 = 2.47 ml
Therefore, you need to add 2.47 ml of concentrated nitric acid to 72.53 ml of water to obtain a total volume of 75.0 ml of the dilute solution.
To make a 0.197 M nitric acid solution with a total volume of 75.0 mL from a 6.00 M stock solution, you can use the dilution equation:
M1V1 = M2V2
Where M1 is the initial molarity (6.00 M), V1 is the volume of concentrated acid needed, M2 is the final molarity (0.197 M), and V2 is the final volume (75.0 mL). To find the volume of concentrated acid needed (V1), rearrange the equation:
V1 = (M2V2) / M1
To know more about stock solution visit:
https://brainly.com/question/25256765
#SPJ11
if temperature and pressure are held constant, the volume and number of moles of a gas are group of answer choices independent of each other directly proportional inversely proportional equal not enough information given
If temperature and pressure are held constant, the volume and number of moles of a gas are directly proportional.
This relationship is described by Avogadro's Law, which states that the volume of a gas is directly proportional to the number of moles when temperature and pressure are constant.
Mathematically, it is represented as V = k*n, where V is the volume, n is the number of moles, and k is a constant.
Summary: When temperature and pressure are constant, the volume and number of moles of a gas are directly proportional according to Avogadro's Law.
Learn more about temperature click here:
https://brainly.com/question/24746268
#SPJ11
which of the following molecules will have a tetrahedral electron-domain geometry? group of answer choices
a. ccl2br2 b. xef4 c. ph3 d. cbr4
XeF₄ molecules will have a tetrahedral electron-domain geometry.
What is molecules?Molecules are the smallest particles of any substance that can still be identified as that particular substance. They are made up of two or more atoms that are chemically bonded together. All matter is made up of molecules, including gases, liquids and solids. Some molecules, such as water, are made up of only two atoms while others, such as proteins, are made up of hundreds of atoms. The properties of a molecule are determined by its structure, composition, and arrangement of its atoms. Molecules are constantly in motion and interact with each other, forming new molecules and breaking down existing ones. Many everyday substances are actually composed of molecules, such as sugar, salt, and carbon dioxide.
To learn more about molecules
brainly.com/question/26556885
#SPJ4
What will the concentration of pcl5 be when equilibrium is reestablished after addition of 1. 31 g cl2?.
At equilibrium, the concentration of PCl5 is:
[tex][PCl_5] = (0.006298 - 0.0328) / 2.50 = 0.00165 M[/tex]
First, we need to convert mass of [tex]PCl_5[/tex] added to moles.
[tex]moles of PCl_5 = 1.31 g / 208.24 g/mol = 0.006298 mol[/tex]
Next, we need to use the ideal gas law to calculate initial pressure of [tex]PCl_5[/tex] in the container.
Assuming that the container is at a temperature of 25°C, we have:
[tex]PV = nRT[/tex]
Solving for P, we get:
[tex]P = nRT/V \\ = (0.006298 mol)(0.08206 L.atm/(mol.K))(298.15 K)/(2.50 L) = 0.0750\ atm[/tex]
Let x be the change in the number of moles of [tex]PCl_5[/tex] when the reaction reaches equilibrium.
[tex][PCl_5] = (0.006298 - x) / 2.50 \\ \\[/tex]
[tex][PCl_3] = x / 2.50[/tex]
[tex][Cl_2] = x / 2.50[/tex]
The equilibrium constant expression for the reaction is:
[tex]Kc = [PCl_3][Cl_2]/[PCl_5] = (x/2.50)^2 / [(0.006298 - x)/2.50][/tex]
Substituting the values :
[tex]0.019 = (x/2.50)^2 / [(0.006298 - x)/2.50] \\0.019(0.006298 - x) = (x/2.50)^2 \\0.00011962 - 0.019x = x^{2/6.25} \\x^2 + 0.11875x - 0.00074763 = 0[/tex]
Solving this quadratic equation, we get:
x = 0.0328 mol
[tex][PCl_5] = (0.006298 - 0.0328) / 2.50 = 0.00165 M[/tex]
Concentration of [tex]PCl_5[/tex] when equilibrium is reestablished after adding 1.31 g of [tex]PCl_5[/tex] to a 2.50 L container at a temperature of 25°C and allowing the reaction to reach equilibrium is 0.00165 M.
To know more about equilibrium, here
brainly.com/question/30807709
#SPJ1
--The complete Question is, What is the concentration of PCl5 when equilibrium is reestablished after adding 1.31 g of PCl5 to a 2.50 L container at a temperature of 25°C and allowing the reaction to reach equilibrium? The balanced chemical equation for the reaction is:
PCl5 (g) ⇌ PCl3 (g) + Cl2 (g)
The equilibrium constant (Kc) for this reaction at 25°C is 0.019. --
Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.5 x 10^-4
0.342
0.0450
1.12 × 10-4
5.53
4.25
The percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid is 0.342
The equation for the ionization of nitrous acid is
[tex]HNO_2 ⇌ H^{ + } + NO2-[/tex]
The acid dissociation constant expression for this reaction is
[tex]K_a = [H+][NO_{2-}]/[HNO_2][/tex]
We are given the initial concentration of nitrous acid, [tex][HNO_2] = 0.249 M[/tex] and the acid dissociation constant,
[tex]K_a = 4.5 × 10^{-4}[/tex]
We can assume that x is the concentration of H+ and [tex]NO_2^-[/tex] ions that are formed when nitrous acid dissociates.
Therefore, the equilibrium concentrations of [tex]H^+, NO_2^- \: and \: HNO_2 [/tex]will be
[tex][H^+] = x \: M \\ [NO_2^-] = x \: M \\ [HNO_2] = (0.249 - x) \: M[/tex]
Substituting these concentrations into the expression for the acid dissociation constant gives [tex]4.5 × 10^{-4} = (x)(x)/(0.249 - x)[/tex]
Solving for x, we get:
x = 0.0159 M
The percent ionization of nitrous acid can be calculated as follows:
% ionization = (moles of H+ formed / initial moles of [tex]HNO_2[/tex]) × 100
The initial moles of [tex]HNO_2[/tex] are moles of [tex]HNO_2[/tex] = (0.249 M) × (1 L/1000 mL) × (1000 mL/1 L) = 0.249 moles
The moles of [tex]H^+[/tex] formed are equal to x because [tex]HNO_2[/tex] dissociates into [tex]H^+[/tex] and [tex]NO_2^{ - } [/tex] in a 1:1 ratio:
moles of H+ formed = x = 0.0159 moles
Therefore, the percent ionization of nitrous acid is % ionization = (0.0159 moles / 0.249 moles) × 100 = 6.39%
Rounding to two significant figures, the answer is 6.4%.
Therefore, the correct option is 0.342.
Learn more about ionization here,
https://brainly.com/question/20658080
#SPJ4
Consider the reaction between reactants S and O2: 2S(s)+3O2(g)→2SO3(g)
If a reaction vessel initially contains 5 molS and 9 molO2, how many moles of S will be in the reaction vessel once the reactants have reacted as much as possible? (Assume 100% actual yield.)
According to the stoichiometry of the reaction, for every 2 moles of S reacted, 3 moles of O2 are consumed. Thus, the limiting reactant will be S, and it will be completely consumed.
The balanced equation shows that 2 moles of S reacts with 3 moles of O2 to produce 2 moles of SO3. Thus, for every 2 moles of S that react, 2 moles of SO3 are produced.
Since there are 5 moles of S initially, it will react with 7.5 moles of O2 (since the ratio is 2:3 for S to O2), producing 5 moles of SO3.
Therefore, after the reaction, all of the S will be consumed, and there will be 0 moles of S left in the reaction vessel.
To know more about mole concept, click here:-
https://brainly.com/question/31123980
#SPJ11
A 100.0 mL sample of 0.18 M HClO 4 is titrated with 0.27 M LiOH. Determine the pH of the solution after the addition of 66.67 mL of LiOH (this is the equivalence point).
0.97
2.76
11.24
7.00
13.03
The pH of the solution at the equivalence point will be 7.00. A titration involves gradually adding a solution of a known concentration to a solution of the unknown concentration until the reaction between the two is complete.
What is Titration?
Titration is a technique used in analytical chemistry to determine the concentration of a substance in a solution by reacting it with a solution of known concentration.
In this titration, the strong acid HClO4 is reacting with the strong base LiOH. At the equivalence point, the number of moles of LiOH added will be equal to the number of moles of HClO4 present in the initial solution.
The balanced equation for the reaction between HClO4 and LiOH is:
HClO4 + LiOH → LiClO4 + H2O
Initially, we have 0.018 moles of HClO4 in 100.0 mL of solution:
moles of HClO4 = concentration × volume
moles of HClO4 = 0.18 mol/L × 0.100 L
moles of HClO4 = 0.018 mol
At the equivalence point, we will have added 0.27 mol/L × 0.06667 L = 0.018 moles of LiOH. These will react completely with the HClO4 to form LiClO4 and water.
The resulting solution will contain only the salt LiClO4, which is a neutral compound. Therefore, the pH of the solution at the equivalence point will be 7.00.
Learn more about Titration from the given link
https://brainly.com/question/186765
#SPJ4
Determine the final temperature of a gold nugget (mass = 376 g) that starts at 398 K and loses 4.85 kJ of heat to a snowbank when it is lost. The specific heat capacity of gold is 0.128 J g-1 °C-1.
Final temperature of the gold nugget is approximately 388.71 K after losing 4.85 kJ of heat to a snowbank, given its mass of 376 g and specific heat capacity of [tex]0.128 J g^{-1} °C^{-1}[/tex].
What is the final temperature of a gold nugget after losing 4.85 kJ of heat to a snowbank?
We can use the equation:
q = mcΔT
where q is the heat lost, m is the mass of the gold nugget, c is the specific heat capacity of gold, and ΔT is the change in temperature.
First, we need to convert the heat lost from kJ to J:
[tex]4.85 kJ = 4.85 \times 10^3 J[/tex]
Now we can rearrange the equation to solve for the final temperature:
ΔT = q / (mc)
[tex]\Delta T = \frac{4.85 \times 10^3 J}{376 g \times 0.128 J g^{-1} °C^{-1}}[/tex]
ΔT ≈ 9.29 °C (rounded to two decimal places)
To find the final temperature, we just need to subtract ΔT from the initial temperature:
Final Temperature = 398 K - 9.29 °C
Final Temperature ≈ 388.71 K
Therefore, the final temperature of the gold nugget is approximately 388.71 K.
To learn more about specific heat capacity, visit: https://brainly.com/question/27862577
#SPJ4
____ is probably closest in chemical composition to the upper mantle.
D. Peridotite is probably closest in chemical composition to the upper mantle.
Peridotite, a coarse-grained, darkish-coloured, heavy, intrusive igneous rock that carries as a minimum 10 percentage olivine, different iron- and magnesia-wealthy minerals (normally pyroxenes), and now no longer greater than 10 percentage feldspar. Uses - as a supply of precious ores and minerals, inclusive of chromite, platinum, nickel and valuable garnet; diamonds are acquired from mica-wealthy peridotite (kimberlite) in South Africa. Peridotite is the overall call for the ultrabasic or ultramafic intrusive rocks, darkish inexperienced to black in color, dense and coarse-grained texture, frequently as layered igneous complex.
To learn more about minerals check the link below-
https://brainly.com/question/15844293
#SPJ4
Complete question-
_____________ is probably closest in chemical composition to the upper mantle.
A. Granite
B. Shale
C. Andesite
D. Peridotite
what is the strongest type of intermolecular force to be overcome when ethanol is converted from a liquid to a gas
The strongest type of intermolecular force to be overcome when ethanol is converted from a liquid to a gas is hydrogen bonding.
Ethanol molecules contain a hydroxyl (-OH) group, which allows them to form hydrogen bonds with each other.
These hydrogen bonds are stronger than the other intermolecular forces present, such as dipole-dipole interactions and London dispersion forces.
To convert ethanol from a liquid to a gas, energy must be supplied to break these hydrogen bonds between the ethanol molecules.
As a result, ethanol has a relatively high boiling point compared to other molecules of similar size and shape that do not form hydrogen bonds.
To know more about hydrogen bonding, refer here:
https://brainly.com/question/30885458#
#SPJ11
What is the molar solubility of AgCl in 0.30 M NH 3? K sp for AgCl is 1.8 x 10^-10 and K f for Ag(NH 3) 2 + is 1.7 x 10^7
1.3 × 10-5 M
1.6 × 10-2 M
5.5 × 10-2 M
1.7 × 10-2 M
The molar solubility of AgCl in 0.30 M [tex]NH_3[/tex] is 1.7 × [tex]10^{-2}[/tex] M. Molar solubility depends on several factors such as the nature of the solute and solvent, temperature, and pressure.
What is Molar Solubility?
Molar solubility is the maximum amount of solute that can dissolve in a solvent to form a saturated solution at a given temperature and pressure, expressed in moles per liter (mol/L) or molarity (M). It is a measure of the solubility of a substance in a particular solvent.
NH3 is a weak base, we can assume that its concentration remains essentially constant after adding AgCl to the solution. Thus, we can substitute [Ag+] ≈ [Ag([tex]NH_3[/tex])2+] in the expression for Ksp, and simplify:
[tex]K_{sp} ≈ (K_f × [Ag^+] / [NH_3]_2) × ([Ag^+] ^+ x)[/tex]
[tex]K_{sp} = 1.8 × 10^{-10}[/tex]
Kf = 1.7 × 107
[[tex]NH_3[/tex]] = 0.30 M
To calculate [Ag+], we use the expression for [Ag([tex]NH_3[/tex])2+] and assume that the initial concentration of Ag+ equals the molar solubility of AgCl in pure water, which is given by the square root of Ksp for AgCl:
[tex][Ag^+] = (K_{sp})1/2 = 1.34 × 10^{-5}M[/tex]
Substituting the values for [Ag+] and Ksp in the expression for x, we obtain:
x = (-1.34 ×[tex]10^{-5}[/tex] + √((1.34 × 10-5)2 + 4 × 1.8 × 10-10 / (1.7 × 107))) / 2
x = 1.7 × [tex]10^{-2}[/tex] M
Learn more about Molar Solubility, visit;
https://brainly.com/question/28202068
#SPJ4
22.38 consider the structure of lysergic acid diethylamide (lsd), a potent hallucinogen containing three nitrogen atoms. one of these three nitrogen atoms is significantly more basic than the other two. identify the most basic nitrogen atom in lsd and explain your choice.
In the structure of LSD, the most basic nitrogen atom is the one that is part of the aromatic ring system. This nitrogen atom is called the indole nitrogen and is significantly more basic than the other two nitrogen atoms in LSD.
What is Atom?
An atom is the smallest unit of matter that retains the properties of an element. It is composed of a nucleus, which contains positively charged protons and uncharged neutrons, and negatively charged electrons that orbit the nucleus. The number of protons in the nucleus of an atom determines its atomic number and the element to which it belongs.
The indole nitrogen in LSD is more basic because it is part of an aromatic ring system, which provides additional stability to the lone pair of electrons on the nitrogen atom. The lone pair of electrons on the indole nitrogen is delocalized within the ring system through resonance, which makes it less available for protonation and therefore less acidic. This results in a higher basicity of the nitrogen atom, which means it is more likely to accept a proton and form a positive ion.
Learn more about Atom, visit;
https://brainly.com/question/26952570
#SPJ4
The basis of the vsepr model of molecular bonding is:.
The basis of the VSEPR model of molecular bonding is the minimization of repulsion between electron pairs surrounding an atom in a molecule.
VSEPR stands for Valence Shell Electron Pair Repulsion. The VSEPR model is a theory used to predict the geometrical shapes of molecules based on the repulsion between their electron pairs. According to the model, electron pairs in the valence shell of an atom tend to stay as far apart as possible to minimize the repulsion between them. This results in a particular molecular geometry that depends on the number of bonding and non-bonding electron pairs around the central atom.
Step-by-step:
1. Determine the central atom in the molecule.
2. Count the total number of electron pairs (both bonding and non-bonding) surrounding the central atom.
3. Arrange these electron pairs in a way that they are as far apart from each other as possible, to minimize repulsion.
4. The arrangement of electron pairs determines the molecular geometry.
In summary, the VSEPR model of molecular bonding is based on minimizing the repulsion between electron pairs surrounding an atom in a molecule, which helps in predicting the geometrical shapes of molecules.
To know more about Valence Shell Electron Pair Repulsion. visit:
brainly.com/question/31129877
#SPJ11
A beaker is filled with 225.0 mL of a sodium hydroxide solution with an unknown concentration. A 0.0100 M solution of HCl is used in the titration. The equivalence point is reached when 16.4 mL of HCl have been added. What is the initial concentration of NaOH in the beaker?
The initial concentration of NaOH in the beaker is approximately 0.0007289 M.
- Volume of NaOH solution: 225.0 mL
- Concentration of HCl: 0.0100 M
- Volume of HCl needed to reach equivalence point: 16.4 mL
Step 1: Convert the volumes from mL to L.
- 225.0 mL NaOH = 0.225 L NaOH
- 16.4 mL HCl = 0.0164 L HCl
Step 2: Calculate the moles of HCl using its concentration and volume.
Moles of HCl = Concentration × Volume
Moles of HCl = 0.0100 M × 0.0164 L = 0.000164 mol
Step 3: At the equivalence point, the moles of HCl and NaOH are equal.
Moles of NaOH = Moles of HCl = 0.000164 mol
Step 4: Calculate the initial concentration of NaOH using its moles and volume.
Concentration of NaOH = Moles of NaOH / Volume of NaOH
Concentration of NaOH = 0.000164 mol / 0.225 L = 0.0007289 M
So, the initial concentration of NaOH in the beaker is approximately 0.0007289 M.
To learn more about titration https://brainly.com/question/186765
#SPJ11
Which of the following elements have 1 unpaired electron and consequently are paramagnetic? select one or more: a. na b. mg c. al d. si e. p f. s g. cl h. ar
The elements that have 1 unpaired electron and are paramagnetic are: p and s. The answer is options e and f.
Paramagnetism is a property of some elements or compounds where they are weakly attracted to an external magnetic field due to the presence of unpaired electrons. In order for an element to be paramagnetic, it must have at least one unpaired electron in its outermost electron shell.
Out of the given elements, phosphorus (P) and sulfur (S) both have 1 unpaired electron in their outermost shell, making them paramagnetic.
The other elements (Na, Mg, Al, Si, Cl, and Ar) all have filled outermost electron shells, meaning they do not have any unpaired electrons and are not paramagnetic.
The electronic configurations of P and S are as follows:
P: 1s²2s²2p⁶3s²3p³ (1 unpaired electron in the 3p orbital)
S: 1s²2s²2p⁶3s²3p⁴ (1 unpaired electron in the 3p orbital)
To know more about unpaired electron, refer here:
https://brainly.com/question/29853110#
#SPJ11
What occurs when the sequence of amino acids are linked by hydrogen bonds.
*Why can't HCl hydrogen bond?
HCl cannot make hydrogen bond which is not polarized.
Why does Hydrogen bond happen?
Hydrogen bonding happens when a hydrogen atom bonded to a highly electronegative atom (For example oxygen, nitrogen, or fluorine) is attracted to another highly electronegative atom in a nearby molecule. The attraction is just because of partial negative charge on the electronegative atom that is caused by its higher electron density.
For the case of HCl (hydrogen chloride),
the hydrogen atom is covalently bonded to chlorine that is moderately electronegative but not highly electronegative like oxygen or nitrogen.
So, the H-Cl bond is not polarized enough to create a significant partial positive charge on the hydrogen atom which is required for hydrogen bonding. Therefore, HCl cannot hydrogen bond.
Learn more about Hydrogen bond here,https://brainly.com/question/1420470
#SPJ4
Determine the molar solubility of PbSO 4 in pure water. K sp (PbSO 4) = 1.82 × 10 -8.
9.1 × 10-9 M
4.48 × 10-4 M
1.35 × 10-4 M
3.31 × 10-16 M
1.82 × 10-8 M
Required molar solubility of [tex]PbSO_4[/tex] in pure water is [tex]1.35 * 10^{-4}[/tex] M.
What is molar solubility?The amount of moles of a solute that may dissolve in one litre of solvent before the solution becomes saturated is known as its molar solubility. Moles per litre (M or mol/L) is the unit of measurement.
The solubility product constant expression for lead(II) sulfate is [tex]Ksp = [Pb ^{2+}][SO_4^{2-}][/tex]
Let's assume that x is the molar solubility of [tex]PbSO_4[/tex] in pure water, then we can write the equilibrium concentrations of [tex]Pb^{2+} \: and \: SO_4^{2-}[/tex]
as follows:
[tex][Pb_2^+] = x \\ [SO_4^{2-}] = x[/tex]
Substituting these concentrations into the Ksp expression gives:
Ksp = x² * x = x³
Now we can solve for x:
[tex]x^3 = Ksp = 1.82 × 10^{ -8} \\ x = (1.82 × 10^{ -8})^{(1/3)} \\ x = 1.35 × 10^{-4} M[/tex]
Therefore, the molar solubility of [tex]PbSO_4[/tex] in pure water is [tex]1.35 × 10^{-4} M[/tex]
The answer is option (C)
Learn more about molar solubility here,
https://brainly.com/question/28202068
#SPJ4