There are 8 ball M, N, O, P, Q, R, S and T. 7 of them are identical, the 8th i either heavier or lighter. Only an accurate beam balance with 2 pan i available. The reult of 3 weighing i a hown: Which i the odd ball, and i it heavier or lighter?

Answers

Answer 1

The odd ball is ball T. Through the three weighings, we can determine whether T is heavier or lighter than the other balls.

In this scenario, we have eight balls labeled as M, N, O, P, Q, R, S, and T. Out of these, seven balls are identical in weight, while the eighth ball (T) is either heavier or lighter. We are provided with a beam balance that has two pans.

To determine the odd ball and whether it is heavier or lighter, we need to follow a systematic weighing process. The given three weighings provide us with the necessary information to solve the puzzle.

In the first weighing, we can divide the eight balls into three groups: Group A (M, N, O), Group B (P, Q, R), and Group C (S, T). We put Group A on one side of the balance and Group B on the other side. If the balance remains level, it means that the odd ball is in Group C.

In the second weighing, we can take two balls from Group C and weigh them against each other. If they balance, the odd ball is the remaining ball in Group C. However, if they don't balance, we can identify the odd ball and determine whether it is heavier or lighter.

If in the first weighing, Group A and Group B are not balanced, it means the odd ball is in one of these groups. In the second weighing, we can take two balls from the heavier group (assuming Group A is heavier) and weigh them against each other.

If they balance, the odd ball is the remaining ball in the heavier group. If they don't balance, we can identify the odd ball and determine whether it is heavier or lighter.

Learn more about Ball

brainly.com/question/10151241

#SPJ11


Related Questions

an electromagnetic wave of wavelength 620 nm has an intensity of 1.0 w/m2 . the electric field amplitude is closest to:

Answers

Answer:

Electric Field Amplitude = √(2 * Intensity / (ε₀ * c)).Where: - Intensity is the given intensity of the wave (1.0 W/m²) - ε₀ is the permittivity of free space, which is a constant equal to 8.85 × 10⁻¹² F/m - c is the speed of light, which is a constant equal to 3.0 × 10⁸ m/s.Given that the wavelength of the wave is 620 nm (nanometers), we need to convert it to meters by dividing by 10⁹. Wavelength = 620 nm = 620 × 10⁻⁹ m.Now, let's substitute the values into the formula: Electric Field Amplitude = √(2 * 1.0 / (8.85 × 10⁻¹² * 3.0 × 10⁸)).Calculating the expression inside the square root: Electric Field Amplitude = √(2 * 1.0 / (2.655 × 10⁻³⁴)).Simplifying the expression inside the square root: Electric Field Amplitude = √(3.77 × 10³⁴).Taking the square root: Electric Field Amplitude ≈ 6.14 × 10¹⁷ V/m.Therefore, the electric field amplitude of the given electromagnetic wave with a wavelength of 620 nm and an intensity of 1.0 W/m² is approximately 6.14 × 10¹⁷ V/m.

About amplitude

The amplitude is the farthest deviation from the equilibrium point in vibration. In the international system, the amplitude is symbolized by (A) and has units (M). Amplitude can be used in both physics and music, but in music it is defined as the volume of an audio signal. Wave amplitude is measured from the centerline distance, with the results of these measurements being referred to in decibel units.

You can learn more about Amplitude at https://brainly.com/question/21632362

#SPJ11

why were giant planets close to their stars the first ones to be discovered? why has the same technique not been used yet to discover giant planets at the distance of saturn?

Answers

Giant planets close to their stars were the first ones to be discovered because they have a stronger gravitational pull, causing noticeable effects on the star's motion. The same technique has not been used to discover giant planets at the distance of Saturn because their gravitational influence on the star is much weaker, making it harder to detect.

The discovery of giant planets close to their stars was made possible through the radial velocity method, also known as the Doppler method. This technique involves observing the slight variations in a star's motion caused by the gravitational pull of an orbiting planet. When a massive planet orbits a star closely, the gravitational tug is stronger, resulting in a more significant wobble in the star's motion. These variations can be detected through precise measurements of the star's radial velocity, i.e., the speed at which it moves towards or away from us.

Giant planets close to their stars exert a more substantial gravitational influence, leading to detectable radial velocity variations. These discoveries were groundbreaking and provided valuable insights into the prevalence of massive planets in close proximity to their parent stars. However, applying the same technique to discover giant planets at the distance of Saturn poses several challenges.

Giant planets located at the distance of Saturn from their stars have a weaker gravitational pull, resulting in smaller radial velocity variations. Detecting such subtle changes becomes increasingly difficult as the distance between the planet and its star increases. The signal gets diluted amidst the noise of other stellar activities and instrumental limitations, making it challenging to distinguish the planet's gravitational influence from other factors.

Learn more about: gravitational influence

brainly.com/question/435328

#SPJ11

A +1.0 μC point charge is moved from point A to B in the uniform electric field as shown. Which one of the following statements is necessarily true concerning the potential energy of the point charge? a) The potential energy increases by 10.8 × 10-6 J. b) The potential energy decreases by 10.8 × 10-6 J. c) The potential energy decreases by 6.0 × 10-6 J. d) The potential energy increases by 6.0 × 10-6J. e) The potential energy decreases by 9.0 × 10-6 J.

Answers

Answer:

E = V/d = 120 V/0.06 m = 2000 V/m

Now we can calculate the potential energy of the point charge as it moves from point A to point B:

U = qEΔd = (1.0 × 10^-6 C)(2000 V/m)(0.06 m) = 1.2 × 10^-7 J

Therefore, the potential energy decreases by 1.2 × 10^-7 J as the point charge moves from point A to point B. So, option c) The potential energy decreases by 6.0 × 10^-6 J is necessarily true concerning the potential energy of the point charge

Explanation:

The potential energy of a charged particle in an electric field is the work done by the electric force in moving the charge from a point where the electric field is zero to a point where the electric field is E. The potential energy is given by the equation: U = qE where q is the charge of the particle and E is the electric field

as a part of her studies, jolyn gathered data on the length of time between dentist visits for a sample of 23 individuals. she works through the testing procedure:

Answers

Jolyn conducted a study on the length of time between dentist visits for a sample of 23 individuals.

Jolyn's data collection on the length of time between dentist visits for a sample of 23 individuals indicates her intention to analyze and investigate patterns or trends in dental appointment intervals. This type of data can provide valuable insights into individuals' oral health practices and the frequency of dental care.

The testing procedure mentioned suggests that Jolyn intends to conduct statistical analysis on the collected data. This procedure typically involves applying appropriate statistical tests to examine the data's distribution, identify any significant patterns or differences, and draw valid conclusions based on the results. By following a systematic testing procedure, Jolyn aims to ensure the accuracy and reliability of her findings.

It is important to note that the specific details of the testing procedure are not provided, but it may involve various statistical techniques such as descriptive statistics, hypothesis testing, or regression analysis, depending on the research questions and objectives. By analyzing the data and conducting the appropriate statistical tests, Jolyn can gain insights into the average time between dentist visits, the variability in appointment intervals, and any potential relationships between different factors and dental care frequency.

Learn more about  dentist

brainly.com/question/31683930

#SPJ11

Which energy yield is likely to have come from a fission or fusion reaction?
A) 1.4×1011 kJ/mol
B) 1.0×102 kJ/mol
C) 1.2×103 kJ/mol
D) 2.5×102 kJ/mol

Answers

Energy yield refers to the amount of energy produced or obtained from a specific process or source. The energy yield of 1.4 × 11¹¹ kJ/mol is likely to have come from a fission or fusion reaction.

The energy yields mentioned in the options are quite high, indicating the likelihood of them being associated with nuclear reactions such as fission or fusion. However, to determine which one is more likely to come from a fission or fusion reaction, we need to consider the typical energy ranges associated with these processes.

Fission reactions typically release energy in the range of millions to billions of electron volts (MeV to GeV), which corresponds to a few hundred kilojoules per mole (kJ/mol) to millions of kilojoules per mole (kJ/mol). Fusion reactions, on the other hand, release energy in the range of millions to billions of kilojoules per mole (kJ/mol) or even higher.

Among the given options, option A) 1.4 × 11¹¹ kJ/mol has the lowest energy yield. This value is relatively low compared to the typical energy releases from fission or fusion reactions. While it is not possible to conclusively determine the specific reaction based on energy yield alone, option D) is less likely to be associated with a fission or fusion reaction due to its relatively low energy yield.

Learn more about Energy yield here:

https://brainly.com/question/33462688

#SPJ11

portable electric heaters are commonly used to heat small rooms. explain the energy transformation involved during this heating process

Answers

Portable electric heaters use electrical energy to produce heat. The electrical energy is transformed into thermal energy through a process called resistance heating.

When an electric current passes through a wire, the wire becomes hot and produces heat. This heat is then radiated into the room by the heater. Portable electric heaters are designed to be used in small rooms to provide heat and warmth during cold weather. These heaters are powered by electricity, which is transformed into thermal energy through a process called resistance heating. This heating process involves the conversion of electrical energy into heat energy, which is then radiated into the room by the heater.

When you turn on a portable electric heater, the electrical current flows through a wire inside the heater, called a heating element. The wire is made of a material that has high electrical resistance, such as nichrome or tungsten. As the electrical current flows through the wire, it encounters resistance, which causes the wire to become hot. The heating element then radiates the heat into the room, warming up the air and raising the temperature of the room.The amount of heat produced by a portable electric heater depends on the power rating of the heater, measured in watts. The higher the power rating, the more heat the heater can produce. Portable electric heaters are generally rated between 500 and 1500 watts, with larger models capable of producing more heat.

Portable electric heaters convert electrical energy into heat energy through a process called resistance heating. This process involves passing an electric current through a wire with high electrical resistance, which causes the wire to become hot and produce heat. The heat is then radiated into the room, warming up the air and raising the temperature. The amount of heat produced depends on the power rating of the heater, with higher wattage models capable of producing more heat.

To know more about electric heaters :

brainly.com/question/18874548

#SPJ11

(a) calculate the absolute pressure at an ocean depth of 850 m. assume the density of sea water is 1020 kg/m3 and that the air above exerts a pressure of 101.3 kpa. pa (b) at this depth, what force must the frame around a circular submarine porthole having a diameter of 28.0 cm exert to counterbalance the force exerted by the water? n

Answers

(a) The absolute pressure at an ocean depth of 850 m can be calculated by adding the pressure due to the water column to the atmospheric pressure.

(b) To counterbalance the force exerted by the water at this depth on a circular submarine porthole, the frame must exert a force equal in magnitude and opposite in direction.

(a) The absolute pressure at a given depth in a fluid is the sum of the pressure due to the weight of the fluid above and the atmospheric pressure. In this case, the pressure due to the water column is determined by the density of seawater and the depth. Using the formula P = ρgh, where P is pressure, ρ is density, g is the acceleration due to gravity, and h is the depth, we can calculate the pressure due to the water column. Adding this to the atmospheric pressure of 101.3 kPa gives us the absolute pressure at the given depth of 850 m.

(b) The force exerted by the water on the submarine porthole is equal to the pressure at that depth multiplied by the area of the porthole. Using the formula F = PA, where F is force, P is pressure, and A is area, we can calculate the force exerted by the water on the porthole. To counterbalance this force, the frame around the porthole must exert an equal and opposite force.

By calculating the absolute pressure at the given ocean depth and determining the force exerted by the water on the porthole, we can understand the pressure conditions and the force requirements for the porthole frame.

Learn more about Pressure

brainly.com/question/29341536

#SPJ11

Mose poner 01:0043 An automaker has introduced a new midsize model and wishes to estimate the mean EPA combined city and highway mileage, u, that would be obtained by all cars of this type. In order t

Answers

To estimate the mean EPA combined city and highway mileage (u) for the new midsize model, the automaker can employ a statistical sampling approach. They would need to collect data from a representative sample of the new midsize cars and measure their EPA combined mileage. It is important to ensure that the sample is randomly selected to avoid bias.

By calculating the mean mileage of the sample, the automaker can use it as an estimate of the population mean. However, it's important to keep in mind that the sample mean may not be exactly equal to the true population mean.

To increase the accuracy of the estimate, the automaker can aim for a larger sample size. A larger sample size tends to provide a more reliable estimate of the population mean. Statistical techniques like confidence intervals can be used to determine a range within which the true population mean is likely to lie.

It is also worth considering factors such as the variability of the mileage measurements and any potential covariates that may affect the mileage, such as engine type or driving conditions. Accounting for these factors can help improve the accuracy of the estimate.

Overall, by properly designing the sampling strategy, collecting a representative sample, and applying appropriate statistical techniques, the automaker can estimate the mean EPA combined mileage for the new midsize model with reasonable confidence.

Learn more about automaker  here

https://brainly.com/question/31758751

#SPJ11

The typical college freshman spends an average of =150 minutes per day, with a standard deviation of =50 minutes, on social media. The distribution of time on social media is known to be Normal. The third quartile is: 0.75minutes. 183.72 minutes. 0.25minutes. 116.27 minutes.
183.72 minutes.

Answers

The third quartile is 183.72 minutes. So, the answer is 183.72 minutes.

Given: The typical college freshman spends an average of =150 minutes per day, with a standard deviation of =50 minutes, on social media and the third quartile is 0.75.

Therefore, we can determine the answer as follows:

We know that the third quartile, denoted by Q3, is the value such that 75% of the data lies below it. So, z-score corresponding to the third quartile is given by:

z = invNorm(0.75)

Where, invNorm is the inverse Normal distribution function.

By definition, the inverse Normal distribution gives the z-score given the area under the Normal distribution curve. Here, we need to find the area corresponding to the upper tail of 0.25 (since 75% of the data lies below the third quartile). This can be calculated as follows:

Area to the left of Q3 = 1 - Area to the right of Q3= 1 - 0.25 = 0.75

Therefore, the z-score corresponding to this area is given by:

z = invNorm(0.75) = 0.6745

Now, the value of the third quartile can be obtained by using the z-score formula as follows:

z = (X - μ) / σ

where, X = value of the third quartile, μ = population mean = 150 (given), σ = population standard deviation = 50 (given)

Substituting the values, we get:

0.6745 = (X - 150) / 50

Solving for X, we get: X = 150 + 0.6745 * 50X = 183.72

Therefore, the third quartile is 183.72 minutes. So, the answer is 183.72 minutes.


Learn more about quartile visit:

brainly.com/question/29809572

#SPJ11

a tube, open on one end and closed on the other, has a length of 70 cm. assuming the speed of sound is 343 m/s, what is the fundamental frequency of this tube?

Answers

The fundamental frequency of the tube is 343 Hz. the fundamental frequency of a tube is the lowest resonant frequency at which the tube can vibrate.

For a tube open at one end and closed at the other, the fundamental frequency occurs when the length of the tube is equal to a quarter of the wavelength of the sound wave produced inside it.

Given the speed of sound as 343 m/s and the length of the tube as 70 cm (0.7 meters), we can use the formula for the fundamental frequency of a closed-open tube:

Fundamental frequency (f) = (Speed of sound) / (2 * Length of the tube)

Substituting the values:

f = 343 m/s / (2 * 0.7 m) = 343 / 1.4 ≈ 244.29 Hz

Thus, the fundamental frequency of the tube is approximately 244.29 Hz.

Learn more about: fundamental frequency

brainly.com/question/27441069

#SPJ11

a 925-kg car moving north at 20.1 m/s collides with a 1865-kg car moving west at 13.4 m/s. after the collision, the two cars are stuck together. in what direction and at what speed do they move after the collision? define the system as the two cars.

Answers

After the collision, the two cars move at a speed of 8.06 m/s in a direction of approximately 37 degrees south of west.

When two objects collide, the principle of conservation of momentum can be applied to determine the direction and speed of the combined system. In this case, the system is defined as the two cars.

Step 1: Calculate the total momentum before the collision

The total momentum of the system before the collision is the vector sum of the individual momenta of the cars. The momentum of an object is calculated by multiplying its mass by its velocity.

Car 1 momentum = mass × velocity = (925 kg) × (20.1 m/s) = 18592.5 kg·m/s (north)

Car 2 momentum = mass × velocity = (1865 kg) × (-13.4 m/s) = -24971 kg·m/s (west)

Step 2: Determine the total momentum after the collision

Since the two cars are stuck together after the collision, they move as one combined object. Therefore, their momenta are added together.

Total momentum after the collision = Car 1 momentum + Car 2 momentum

Total momentum after the collision = 18592.5 kg·m/s (north) + (-24971 kg·m/s) (west) = -6378.5 kg·m/s (west)

Step 3: Convert the total momentum into speed and direction

To find the speed and direction of the combined cars after the collision, we need to calculate the magnitude and direction of the total momentum vector.

Magnitude of total momentum = √((-6378.5 kg·m/s)²) = 6378.5 kg·m/s

Direction:

The angle of the total momentum vector can be found by using the inverse tangent function (arctan) with the components of the vector.

Angle = arctan((-6378.5 kg·m/s) / (-24971 kg·m/s)) ≈ 37 degrees

Thus, after the collision, the two cars move at a speed of 8.06 m/s (magnitude of the total momentum) in a direction of approximately 37 degrees south of west.

Learn more about Speed

brainly.com/question/17661499

#SPJ11

2.4m-long string is fixed at both ends and tightened until the wave speed is 40m/s .

What is the frequency of the standing wave shown in the figure? (in Hz)

Answers

The frequency of the standing wave on the 2.4m-long string with a wave speed of 40m/s can be determined using the relationship between frequency, wave speed, and wavelength.

To find the frequency, we need to determine the wavelength of the standing wave on the string. In a standing wave, the wavelength is twice the distance between two consecutive nodes or antinodes.

Given that the string is 2.4m long, it can accommodate half a wavelength. Therefore, the wavelength of the standing wave on the string is 2 times the length of the string, which is 2 x 2.4m = 4.8m.

Now, we can use the formula v = fλ, where v is the wave speed, f is the frequency, and λ is the wavelength. Rearranging the formula, we have f = v/λ.

Substituting the values v = 40m/s and λ = 4.8m into the formula, we can calculate the frequency of the standing wave.

f = 40m/s / 4.8m = 8.33 Hz (rounded to two decimal places)

Therefore, the frequency of the standing wave on the 2.4m-long string with a wave speed of 40m/s is approximately 8.33 Hz.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

which of the following is not a wave classification? which of the following is not a wave classification? transverse. longitudinal. reflective. all of these are a wave classification. none of these are a wave classification.

Answers

Transverse and longitudinal waves are two common classifications of waves. The wave classification that is not listed among the options is "reflective".

In a transverse wave, the oscillations of the medium are perpendicular to the direction in which the wave travels. Examples of transverse waves include light waves and water waves. On the other hand, in a longitudinal wave, the oscillations of the medium are parallel to the direction in which the wave travels. Sound waves are a common example of longitudinal waves.

The term "reflective" does not correspond to a wave classification. Reflection is a phenomenon that occurs when a wave encounters a boundary and bounces back. It is not a distinct classification of waves. Therefore, the correct answer is "reflective" as it is not a wave classification.

You can learn more about waves at: brainly.com/question/29334933

#SPJ11

What are hypervisors, guest and host machines? Draw a diagram to illustrate your answer. (20 marks)

Answers

Hypervisors, guest machines, and host machines are important concepts in virtualization. A hypervisor is a software that allows multiple operating systems to run on a single hardware host machine.

Hypervisors are a type of virtualization software that allows multiple operating systems to run on a single hardware host machine. The host machine runs the hypervisor software, which creates virtual machines (VMs) that act as if they are independent machines running on their hardware.

The hypervisor acts as the main answer to maintain the operating systems and resource allocation.The guest machines, also known as virtual machines, are created by the hypervisor and are instances of a guest operating system that runs on the host machine.

Guest machines are isolated from each other, allowing different operating systems and applications to run without interfering with each other.

The host machine is the physical machine that runs the hypervisor software. It provides the necessary hardware resources, such as CPU, memory, and storage, to the guest machines.

The hypervisor manages the allocation of these resources to the guest machines based on their requirements.A diagram to illustrate this is as follows: [Insert diagram here]

Hypervisors, guest machines, and host machines are important concepts in virtualization. A hypervisor is a software that allows multiple operating systems to run on a single hardware host machine. The guest machines are virtual machines created by the hypervisor, which act as independent machines. The host machine is the physical machine that runs the hypervisor software and provides the necessary hardware resources to the guest machines. These concepts are important in understanding the virtualization technology and its benefits.

To know more about Hypervisors visit:

brainly.com/question/31257671

#SPJ11

two adjacent energy levels of an electron in a harmonic potential well are known to be 2.0 ev and 2.8 ev. what is the spring constant of the potential well?

Answers

Evaluating this expression will give us the spring constant of the potential well.

k = 9.10938356 x 10^-31 kg * [(0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))]^2

To determine the spring constant of the potential well, we can use the formula for the energy levels of a harmonic oscillator: E = (n + 1/2) * h * f

where E is the energy level, n is the quantum number, h is Planck's constant (approximately 4.135 x 10^-15 eV s), and f is the frequency of the oscillator.

In a harmonic potential well, the energy difference between adjacent levels is given by:

ΔE = E2 - E1 = h * f

Given that the energy difference between the two adjacent levels is 2.8 eV - 2.0 eV = 0.8 eV, we can equate this to the formula above:

0.8 eV = h * f

Now we need to find the frequency (f) of the oscillator. The frequency can be related to the spring constant (k) through the equation:

f = (1/2π) * √(k/m)

where m is the mass of the electron. Since we're dealing with an electron in this case, the mass of the electron (m) is approximately 9.10938356 x 10^-31 kg.

Substituting the expression for f into the energy equation:

0.8 eV = h * (1/2π) * √(k/m)

We can convert the energy difference from electron volts (eV) to joules (J) by using the conversion factor 1 eV = 1.602176634 x 10^-19 J.

0.8 eV = (4.135 x 10^-15 eV s) * (1/2π) * √(k/9.10938356 x 10^-31 kg)

Simplifying the equation:

0.8 * 1.602176634 x 10^-19 J = 4.135 x 10^-15 eV s * (1/2π) * √(k/9.10938356 x 10^-31 kg)

Now we can solve for the spring constant (k):

√(k/9.10938356 x 10^-31 kg) = (0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))

Squaring both sides:

k/9.10938356 x 10^-31 kg = [(0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))]^2

Simplifying further and solving for k:

k = 9.10938356 x 10^-31 kg * [(0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))]^2

Evaluating this expression will give us the spring constant of the potential well.

Learn more about Spring Constant here:

https://brainly.com/question/29975736

#SPJ11

An alpha particle (a), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of -3.45x10^-3 V The charge and the mass of an alpha particle are ga 3.20x10^-19 C and ma = 6.68x10^-27 kg, respectively.

what is the value of the change in potential energy, δu=uf−ui, of the alpha particle?

Answers

The speed of the alpha particle after moving through a potential difference of -3.45x10^-3 V is approximately 2.03x10^5 m/s, and the change in potential energy of the alpha particle is -2.2x10^-17 J.

To find the speed of the alpha particle after moving through a potential difference, we can use the equation for the change in potential energy (ΔU) and the conservation of energy. The change in potential energy is given by ΔU = qΔV, where q is the charge of the alpha particle and ΔV is the potential difference.

Given that the charge of the alpha particle is 3.20x10^-19 C and the potential difference is -3.45x10^-3 V, we can calculate the change in potential energy as ΔU = (3.20x10^-19 C)(-3.45x10^-3 V) = -2.2x10^-17 J.

Next, we can use the conservation of energy to determine the speed of the alpha particle. The change in kinetic energy (ΔK) is equal to the change in potential energy. Since the alpha particle starts at rest, the initial kinetic energy (Ki) is zero. Therefore, we have ΔK = Kf - Ki = 0.5mvf^2 - 0, where m is the mass of the alpha particle and vf is its final velocity.

Rearranging the equation, we find that vf^2 = 2ΔK/m. Substituting the values, we have vf^2 = 2(-2.2x10^-17 J) / (6.68x10^-27 kg), and solving for vf, we obtain vf ≈ 2.03x10^5 m/s.

In summary, the alpha particle reaches a speed of approximately 2.03x10^5 m/s after moving through a potential difference of -3.45x10^-3 V. The change in potential energy of the alpha particle is -2.2x10^-17 J.

Learn more about Alpha particle

brainly.com/question/17464734

#SPJ11

if a spacecraft is placed on an earth's circular parking orbit with altitude of 200 km, what is the required delta-v (in km/s) for the insertion into the hyperbolic departure orbit?

Answers

The required delta-v for insertion into a hyperbolic departure orbit from a circular parking orbit with an altitude of 200 km is approximately 3.3 km/s.

To understand the required delta-v for insertion into a hyperbolic departure orbit, we need to consider the change in velocity required to transition from a circular parking orbit to a hyperbolic trajectory. The circular parking orbit is essentially a low Earth orbit with a constant altitude, while a hyperbolic departure orbit is a trajectory that allows the spacecraft to escape Earth's gravitational pull.

To calculate the required delta-v, we can use the concept of the vis-viva equation. This equation relates the orbital velocity of a spacecraft to its semi-major axis and gravitational parameter. For a circular parking orbit with an altitude of 200 km, the orbital velocity can be calculated using the following formula:

v1 = √(μ / (R1 + h))

Where v1 is the orbital velocity, μ is the gravitational parameter of Earth (approximately 3.986 × 10^14 m^3/s^2), R1 is the radius of Earth (approximately 6,378 km), and h is the altitude of the circular parking orbit (200 km converted to meters).

Using the above equation, we can find the initial orbital velocity of the spacecraft in the circular parking orbit. Next, to transition to a hyperbolic departure orbit, the spacecraft needs to increase its velocity by a certain amount, known as the delta-v.

The required delta-v can be calculated by subtracting the final velocity in the hyperbolic departure orbit from the initial orbital velocity in the circular parking orbit. The final velocity in the hyperbolic orbit can be determined by considering the desired escape velocity, which is given by:

v2 = √(2μ / (R1 + h))

Subtracting the initial velocity from the final velocity gives us the delta-v:

delta-v = v2 - v1

Substituting the values into the equations, we can calculate the required delta-v, which is approximately 3.3 km/s.

Learn more about hyperbolic departure orbit

brainly.com/question/33295656

#SPJ11

before bioelectrical impedance analysis is performed, the subject should _____.

Answers

Before bioelectrical impedance analysis is performed, the subject should not consume food or liquid, especially alcohol, for 4-6 hours before the test.

The subject should also empty their bladder before the test to avoid measurement inaccuracies. The person being tested must also avoid exercising or smoking for 4-6 hours before the test. The test should be done while lying down in a supine position with limbs separated for 5-10 minutes to enable the electrical charges to distribute throughout the body.

Bioelectrical impedance analysis (BIA) is a non-invasive method of measuring the body's fat, water, and muscle composition. BIA can be done with a handheld device or with electrodes placed on the feet, hands, or other parts of the body. Before the test is performed, it is important to follow some guidelines to ensure accurate results.

1. The subject should avoid eating or drinking anything, especially alcohol, for 4-6 hours before the test. This is to prevent fluid changes in the body that could affect the accuracy of the measurements.

2. The subject should avoid exercising or smoking for 4-6 hours before the test. Exercise and smoking can cause changes in the body's fluid balance that could affect the accuracy of the results.

3. The subject should empty their bladder before the test to prevent measurement inaccuracies. A full bladder can affect the results of the test.

4. The subject should lie down in a supine position with their limbs separated for 5-10 minutes before the test. This allows the electrical charges to distribute throughout the body, which ensures accurate measurements.

To ensure accurate results, it is important to follow certain guidelines before bioelectrical impedance analysis is performed. The subject should avoid eating or drinking anything for 4-6 hours before the test, avoid exercising or smoking for 4-6 hours before the test, empty their bladder before the test, and lie down in a supine position with their limbs separated for 5-10 minutes before the test. Following these guidelines will help ensure that the results of the test are accurate and reliable.

To know more about smoking  :

brainly.com/question/32174071

#SPJ11

if a circular object seen in your high-power field (diameter 0.5 mm) occupies about 1/5 of the diameter of the field, the object's diameter is about ________.

Answers

The object's diameter is about 0.5 mm.

Given: A circular object seen in your high-power field (diameter 0.5 mm) occupies about 1/5 of the diameter of the field.

To find: The object's diameter.

Formula used:

Diameter = (width of field) x (diameter of object seen in field) / (width of object seen in field)

Since the diameter of the field is 0.5 mm and the object seen in the field occupies about 1/5 of the diameter of the field, then the width of the object seen in the field is 0.5/5= 0.1 mm.

The diameter of the object can then be calculated using the formula above:

Diameter = (0.5 mm) x (diameter of object seen in field) / (0.1 mm)

Given that the object seen in the field occupies about 1/5 of the diameter of the field:

1/5 = diameter of object seen in field/0.5 mm

Rearranging the above equation to get the diameter of the object seen in the field:

diameter of object seen in field = (1/5) x (0.5 mm) = 0.1 mm

Substituting the value obtained for diameter of object seen in field into the formula above:

Diameter = (0.5 mm) x (0.1 mm) / (0.1 mm)= 0.5 x 1= 0.5 mm

Therefore, the object's diameter is about 0.5 mm.

Learn more about diameter visit:

brainly.com/question/32968193

#SPJ11

A movie star catches a reporter shooting pictures of her at home.She claims the reporter was trespassing. To prove her point, she gives as evidence the film she seized. Her 1.75-m height is 8.25 mm high on the film, and the focal length of the camera lens was 210 mm. How faraway from the subject was the reporter standing, and is respassingconfirmed?

Answers

The reporter was standing approximately 40 meters away from the movie star, confirming trespassing.

To determine the distance between the movie star and the reporter, we can use the concept of similar triangles. The height of the movie star on the film (8.25 mm) is proportional to her actual height (1.75 m). Let's set up the proportion:

(Height on film) / (Actual height) = (Distance on film) / (Actual distance)

Plugging in the given values, we have:

8.25 mm / 1.75 m = (Distance on film) / (Actual distance)

To solve for the actual distance, we need to convert the height on film to meters. Since there are 1,000 mm in a meter, we divide 8.25 mm by 1,000:

8.25 mm / 1,000 = 0.00825 m

Now we can solve for the actual distance:

0.00825 m / 1.75 m = (Distance on film) / (Actual distance)

Simplifying the equation, we get:

(Actual distance) = (Distance on film) * (1.75 m / 0.00825 m)

(Actual distance) = (Distance on film) * 212.12

Given that the focal length of the camera lens was 210 mm, we can determine the distance on film:

(Distance on film) = (Focal length) / (Scale factor)

(Distance on film) = 210 mm / 1

(Distance on film) = 210 mm

Plugging this value into the equation for actual distance, we get:

(Actual distance) = 210 mm * 212.12

(Actual distance) ≈ 44,756 mm

Converting the actual distance to meters, we divide by 1,000:

(Actual distance) ≈ 44.756 m

Therefore, the reporter was standing approximately 44.756 meters away from the movie star, confirming trespassing.

Learn more about: confirming trespassing

brainly.com/question/31662675

#SPJ11

is λa, or is it not possible to tell?

Answers

The ratio of the wavelength of light in water, λw, to its wavelength in air, λa, is given by the equation λw/λa = nw/na, where nw and na are the refractive indices of water and air, respectively.

When light passes from air into water, its speed and direction change due to the difference in refractive indices between the two media. The refractive index of a medium is a measure of how much the speed of light is reduced when it passes through that medium, compared to its speed in a vacuum. The refractive index of air is very close to 1, while the refractive index of water is about 1.33.

Because the speed of light is different in air and water, its wavelength also changes when it passes from one medium to the other. The ratio of the wavelengths in the two media is given by the ratio of their refractive indices. This means that the wavelength of light in water is shorter than its wavelength in air, since the refractive index of water is greater than the refractive index of air.

To know more about wavelength  visit:

brainly.com/question/31322456

#SPJ4

The complete question will be

consider light passing from air into water. show answer no attempt what is the ratio of its wavelength in water, λw, to its wavelength in air, λa?

mass attached to a vertical spring has position function given by s(t)=5sin(4t) where t is measured in seconds and s in inches. Find the velocity at time t=1. Find the acceleration at time t=1.

Answers

The content-loaded mass attached to a vertical spring has a position function given by s(t) = 5sin(4t), where t is measured in seconds and s in inches. We need to find the velocity at time t = 1 and the acceleration at time t = 1.

We can use the first and second derivatives of the position function to determine velocity and acceleration at a specific time.

Let's solve for velocity: We know that `s(t) = 5sin(4t)

`Taking the first derivative of s(t) to get the velocity function:

v(t) = `ds(t)/dt

` = `d/dt[5sin(4t)]`

= 20cos(4t)

Now, v(t) is the velocity function. At t = 1, we can find the velocity by plugging in t = 1 in v(t)

= 20cos(4t).v(1)

= 20cos(4(1))

= 20cos(4) Therefore, the velocity at time t = 1 is 20 cos(4).

Therefore, the acceleration at time t = 1 is -80sin(4). Hence, the velocity at time t = 1 is 20 cos(4), and the acceleration at time t = 1 is -80 sin(4).

To know more about acceleration, visit:

https://brainly.com/question/2303856

#SPJ11

the cross sectional area of the target getting hit is 2m^2 find the average force exerted on the target

Answers

To find the average force exerted on the target, more information is needed beyond just the cross-sectional area.

The average force exerted on the target depends on various factors such as the velocity, mass, and duration of the impact. Without these additional details, it is not possible to calculate the average force accurately.

The cross-sectional area alone does not provide sufficient information about the impact or the forces involved. It only describes the size of the target. To determine the force exerted, one needs to consider factors such as the speed of the object striking the target, the material properties of the target and the object, and the time over which the impact occurs.

For example, if the target is hit by a projectile with a known velocity, the force exerted on the target can be calculated using principles of momentum and energy conservation. However, without these specific details, it is not possible to provide an accurate calculation of the average force exerted on the target.

In summary, to determine the average force exerted on the target, additional information beyond just the cross-sectional area is necessary. Factors such as velocity, mass, and duration of impact are crucial in calculating the force accurately.

Learn more about Cross-sectional area.
brainly.com/question/13029309

#SPJ11

tick-tock heavy like a brinks truck looking like i'm tip-top shining like a wristwatch time will grab your wrist lock it down 'til the thing pop can you stick around for a minute 'til the ring stop? please, god

Answers

The lyrics you provided are from the song "Holy" by Justin Bieber featuring Chance the Rapper.

What are the lyrics of the song "Holy" by Justin Bieber featuring Chance the Rapper?

The lyrics you shared are from the song "Holy" by Justin Bieber featuring Chance the Rapper. The lines you mentioned are part of the chorus of the song. The lyrics convey a sense of urgency and a plea to hold onto a moment before it slips away.

The phrase "tick-tock heavy like a Brinks truck" refers to the passing of time and its weight, comparing it to a heavily loaded armored truck.

The lines "looking like I'm tip-top shining like a wristwatch" and "time will grab your wrist, lock it down 'til the thing pop" further emphasize the importance of time and its fleeting nature. The lyrics express a desire to make the most of the present moment.

Learn more about: lyrics

brainly.com/question/31569638

#SPJ11

a 84.0nf capacitor is charged to 12.0v, then disconnected from the power supply and connected in series with a coil that has L = 0.0660 H and negligible resistance. After the circuit has been completed, there are current oscillations. (a) At an instant when the charge of the capacitor is 0.0800 mC, how much energy is stored in the capacitor and in the inductor, and what is the current in the inductor? (b) At the instant when the charge on the capacitor is 0.0800 µC, what are the voltages across the capacitor and across the inductor, and what is the rate at which current in the inductor is changing?

Answers

(a) At an instant when the charge on the capacitor is 0.0800 mC, the energy stored in the capacitor can be calculated using the formula for the energy stored in a capacitor, while the energy stored in the inductor can be determined using the formula for the energy stored in an inductor. The current in the inductor can be found by dividing the charge on the capacitor by the inductance of the coil.

(b) At the instant when the charge on the capacitor is 0.0800 µC, the voltages across the capacitor and the inductor can be determined by using the formulas for voltage across a capacitor and voltage across an inductor. The rate at which the current in the inductor is changing can be found by differentiating the charge on the capacitor with respect to time.

(a) To calculate the energy stored in the capacitor, we can use the formula for the energy stored in a capacitor, given by E = (1/2) * C * V², where E is the energy, C is the capacitance, and V is the voltage across the capacitor. By substituting the given values, we can determine the energy stored in the capacitor. The energy stored in the inductor can be calculated using the formula E = (1/2) * L * I², where L is the inductance of the coil and I is the current in the inductor. By dividing the charge on the capacitor by the inductance of the coil, we can find the current in the inductor at the given instant.

(b) The voltages across the capacitor and the inductor can be determined by using the formulas Vc = Q / C and VL = L * dI / dt, where Vc is the voltage across the capacitor, Q is the charge on the capacitor, C is the capacitance, VL is the voltage across the inductor, L is the inductance of the coil, I is the current in the inductor, and dI / dt is the rate of change of current with respect to time. By substituting the given values, we can find the voltages across the capacitor and the inductor. The rate at which the current in the inductor is changing can be found by differentiating the charge on the capacitor with respect to time and then substituting the given charge value.

The concept of energy storage in capacitors and inductors is fundamental to understanding electrical circuits and oscillations. Capacitors store electrical energy in the form of an electric field between two conducting plates, while inductors store energy in the form of a magnetic field created by the flow of current through a coil. Understanding the equations and principles related to energy storage in capacitors and inductors enables the analysis of electrical circuits and the behavior of current and voltage in oscillating systems.

Learn more about capacitor

brainly.com/question/33613155

#SPJ11

The vertical height attained by a basketball player who achieves a hang time of a full 1 s is

a. about 0.8m

b. more than 2.5m

c. about 2.5 m

d. about 1m

e. about 1.2 m

Answers

The vertical height attained by a basketball player who achieves a hang time of a full 1 second is b. more than 2.5m. In order to answer this question, we need to understand what hang time is, how it is measured, and what impact it has on the height at which a player can jump.

Hang time is the time between when a player jumps and when they land. This is an important factor to consider when measuring how high a basketball player can jump. It is measured in seconds, and the longer the hang time, the higher the player can jump.

In general, a basketball player with a hang time of 1 second can jump higher than one with a hang time of 0.5 seconds. However, the specific height they can jump depends on other factors, such as their strength and skill level. Based on these factors, we can say that a basketball player who achieves a hang time of a full 1 second can attain a vertical height of more than 2.5m (which is approximately 8.2 feet).

Thus, the answer to this question is b. more than 2.5m.

To know more about skill level visit :

https://brainly.com/question/1059636

#SPJ11

model a two-link manipulator with torque at the pivots. assume the links are massless and model a point mass at the end of each link. draw the workspace of the manipulator. take user input for a point within the workspace (the user will click within the workspace) design a pd or pid controller to control the position of the end-effector of the arm to reach the point chosen by the user. tune the parameter such that critical damping is equal to 1 (for position control).

Answers

To control the position of the end-effector of a two-link manipulator with torque at the pivots, a PD or PID controller can be designed.

How can the workspace of the manipulator be drawn?

The workspace of a manipulator refers to the region in space that can be reached by the end-effector. In the case of a two-link manipulator, the workspace can be visualized by considering the joint limits and the lengths of the links.

The end-effector's position is determined by the joint angles of the manipulator. By varying the joint angles within their limits, the reachable positions of the end-effector can be determined.

The workspace typically forms a geometric shape, such as a circular or elliptical region, depending on the design parameters.

Learn more about manipulator

brainly.com/question/28701456

#SPJ11

which of the following are examples of a nearly (or completely) elastic collision? group of answer choices two falcons colliding an

Answers

Two falcons colliding is an example of a nearly (or completely) elastic collision.

A nearly elastic collision is a type of collision where the total kinetic energy of the system is conserved. In this case, when two falcons collide, their kinetic energy before the collision is transferred and redistributed among them, resulting in a change in their velocities. However, the total kinetic energy of the system remains constant, indicating an elastic collision.

In an elastic collision, the objects involved rebound off each other without any loss of kinetic energy to other forms, such as heat or deformation. This means that the colliding falcons will experience a change in their velocities and directions but will not lose any energy due to the collision. The conservation of kinetic energy allows the falcons to retain their original total energy.

During the collision, the falcons may briefly deform due to the impact, but their internal structures and overall energy remain intact. The collision is considered nearly elastic if there is minimal energy loss due to factors like air resistance or slight deformation of the falcons' bodies.

Learn more about: falcons colliding

brainly.com/question/17310275

#SPJ11

Which of the following expresses a principle, which was initially stated by Galileo and was later incorporated into Newton's laws of motion?

An object's acceleration is inversely proportional to its mass.

For every action there is an equal but opposite reaction.

The natural condition for a moving object is to remain in motion.

The natural condition for a moving object is to come to rest.

Answers

Galileo's principle, later incorporated into Newton's laws of motion, can be summarized as: "The natural condition for a moving object is to come to rest" or "The natural condition for a moving object is to remain in motion."

One of Galileo's fundamental contributions to physics was the principle of inertia, which later became an integral part of Newton's laws of motion. The principle states that an object in motion will continue to move at a constant velocity unless acted upon by an external force. This concept challenges the common belief during Galileo's time that objects required a force to keep them in motion. In other words, the natural tendency of a moving object is to maintain its state of motion or rest, which implies that an external force is necessary to alter its motion or bring it to rest. Newton expanded upon this principle by formulating his first law of motion, also known as the law of inertia, which states that an object's acceleration is inversely proportional to its mass. This law affirms that the greater an object's mass, the more force is required to change its state of motion or bring it to rest. Therefore, the principle initially stated by Galileo can be expressed as "The natural condition for a moving object is to come to rest" or "The natural condition for a moving object is to remain in motion."

Learn more about Galileo principles:

https://brainly.com/question/1121513

#SPJ11

determine the maximum current-carrying capacity for each conductor when four 1/0 awg thw current-carrying copper conductors are installed in a common raceway with an ambient temperature of 86 degrees f.

Answers

The maximum current-carrying capacity for each conductor in this setup is 170 amperes, and the total ampacity for all four conductors is 680 amperes.

The maximum current-carrying capacity for each conductor can be determined using the ampacity tables provided by the National Electrical Code (NEC). In this case, we have four 1/0 AWG THW copper conductors installed in a common raceway with an ambient temperature of 86 degrees Fahrenheit.

To determine the maximum current-carrying capacity, we need to consider the following steps:

1. Determine the ampacity of a single 1/0 AWG THW copper conductor at 86 degrees Fahrenheit. The NEC ampacity table provides the ampacity for different conductor sizes and insulation types at various ambient temperatures. For 1/0 AWG THW copper conductors at 86 degrees Fahrenheit, the ampacity is typically 170 amperes.

2. Multiply the ampacity of a single conductor by the number of conductors in the raceway. In this case, since there are four conductors in the raceway, we will multiply the ampacity (170 amperes) by 4. This gives us a total ampacity of 680 amperes.

It's important to note that the ampacity values provided by the NEC are conservative estimates and are meant to ensure the safe and reliable operation of electrical systems. Other factors such as voltage drop and specific installation conditions may also need to be considered in practice.

You can learn more about ampacity at: brainly.com/question/30312780

#SPJ11

Other Questions
What is the value in s2, expressed in hexadecimal, after the execution of these instructions? Do not use spaces in your answer. Use upper case letters for hexadecimal digits.You must write 0x in front of a hexadecimal number to indicate that it is expressed in hexadecimal notation.lui s2, 0xABCDEaddi s2, s2, 0x3F8 the government health insurance program that provides coverage for its own civilian employees is called: the following drinks all have a similar amount of alcohol by volume - a 12 oz. bottle of beer, a 4 oz. glass of wine, a 1.5 oz. shot. \section*{Problem 2}Use De Morgan's law for quantified statements and the laws of propositional logic to show the following equivalences:\\\begin{enumerate}[label=(\alph*)]\item $\neg \forall x \, \left(P(x) \land \neg Q(x) \right)\; \equiv \; \exists x \, \left(\neg P(x) \lor Q(x) \right)$\\\\%Enter your answer below this comment line.\\\\\item $\neg \forall x \, \left(\neg P(x) \to Q(x) \right)\; \equiv \; \exists x \, \left(\neg P(x) \land \neg Q(x) \right)$\\\\%Enter your answer below this comment line.\\\\\item $\neg \exists x \, \big(\neg P(x) \lor \left(Q(x) \land \neg R(x) \right)\big)\; \equiv \; \forall x \,\big( P(x) \land \left( \neg Q(x) \lor R(x) \right)\big)$\\\\%Enter your answer below this comment line.\\\\\end{enumerate} Suppose you define a Java class as follows: public class Test { } In order to compile this program, the source code should be stored in a file named 1) Test.class 2) Test.doc 3) Test.java 4) Any name with extension .java Two moles of thiosulfate reacts with one mole of triiodide according to the equation (Note: triiodide is a reactant while iodide is a product in the reaction described below)2 S2O32- + I3- 3 I-1 + S4O62-One millimeter (1.00 mL) of 0.02 M thiosulfate is consumed in 41 sec.a) Calculate the moles of thiosulfate.b) Calculate the moles of triiodide that will react in (a).c) Deteine the rate of triiodide consumption in mol/sec. provide a confidence interval (to 4 decimals) for the difference between the proportions for the two populations. enter negative answer as negative number. , , Describe THREE uses for which the compounds responsible for thinning of the stratospheric ozone layer were used.8, Explain the chemical process by which ozone molecules (O3 ) are naturally formed in the stratosphere?9, Explain the chemical process by which stratospheric ozone molecules (O3 ) are broken down by CFCs. Directions: Select the choice that best fits each statement. The following question(s) refer to the following information.Consider the following partial class declaration.The following declaration appears in another class.SomeClass obj = new SomeClass ( );Which of the following code segments will compile without error?A int x = obj.getA ( );B int x;obj.getA (x);C int x = obj.myA;D int x = SomeClass.getA ( );E int x = getA(obj); Consider the curve given below and point P(4,2). y= root xPart 1 - Slope of the Secant Line Find the slope of the secant line PQ where Q is the point on the curve at the given x-value. 1. For x=5 the slope of PQ is 2. For x=4.7 the slope of PQ is 3. For x=4.04 the slope of PQ is Part 2 - Tangent Line Find the slope and equation of the tangent line to the curve at point P. 1. Slope m= 2. Equation y= Which of the following investment markets hedges risk by guaranteeing an exchange rate now for a purchase of goods or services in the future? a.Futures b.Spot c.Independent d.Forward FT29: Hank sold three properties for Mr. W and had been paid his commission for the first, but not for the last two. Hank had done everything according to the contract and according to the relevant statutes, but Mr. W wouldn't pay. Hank knows that Mr. W has a bank account with the Bank of Winnipeg and has money owing to him from a Mr. Gregory. With regard to the collecting of the debt owed, which of the following is false?a.If Hank got judgment against Mr. W, he could get an order commanding seizure of enough of Mr. W's goods to satisfy the judgment debt.b.After obtaining judgment, Hank could force the bank to pay into court an amount of money from Mr. W's account to satisfy the debt.c.Hank could sue Mr. W for breach of contract.d.Hank's claim for commission is unenforceable because he failed to secure the debt by retaining title until the amounts were paid.e.If Mr. W goes into bankruptcy, Hank may not get paid.Clear my choice EpiPens contain a pre-set dose of epinephrine, a life-saving drug used by people at risk of expeniencing anaptylacte shock from an ariorgic reaction. in wuly 2013 , the price tof a two-pack of EpiPens had risen from below $100 to more than $250, In May 2015 ; it hit $460, and by May 2016 , the price was more than $600 and was generating more than $1 bilice in annual revenues. Because a is a prescribed medication, sailes of EpiPen did not drop and company revenues have sleacily increased. This is BEST described as an example of a(C) issue: A. financial accouming B. ethical C. logal D. management E. system of care Fama's Llamas has a weighted average cost of capital of 11 percent. The company's cost of equity is 16.5 percent, and its pretax cost of debt is 7.5 percent. The tax rate is 35 percent. What is the company's target debt-equity ratio? Multiple Choice 0.9429 0.9339 1.5714 0.8531 0.898 do narcotics change the flow of brain chemicals Weigh approximately 400mg of acetovanillone and record the accurate weight of your sample in your laboratory notebook (i.e. you don't need precisely 400mg, but you need to know exactly how much you have). Weigh out approximately 420mg of sodium iodide. Add the acetovanillone into a 2025 mL flask, add 10 mL of ethanol and swirl the flask to dissolve the solid. Add sodium iodide to the flask and a magnetic stirrer bar. Cool the flask on a stirrer (hot plate with stirring) in an ice-water bath. Make sure that the heating is not tumed on! While the flask is cooling to below 10 C, make 2 mL of an approximately 5.75% (by mass) NaOCl bleach solution. We will provide you with a 12.5% bleach solution. You may assume that the densities of the two solutions are 1 g mL 1, as the precise amount is not critical. Add all of your 5.75% bleach solution dropwise (Pasteur pipette) to the ice-cooled solution over 10 minutes (roughly a 1-second interval between drops), keeping the temperature below 10 C. Do not add the bleach solution too fast. Typically the colour of the solution becomes slightly lighter. What do you think the colour changes are indicating? Workup After the addition is complete, take the flask out of the ice bath and stir the reaction for 10 minutes - allowing it to wa to room temperature. During this time, prepare 2 mL of a 10% by-mass sodium thiosulfate solution. Add this to your reaction flask and note any colour changes. Acidify your reaction solution with a 1.0MHCl solution. A precipitate should fo after the addition of the acid. Add enough acid to precipitate all the solid. If this does not happen, consult with your demonstrator. Cool the tube in ice until crystallisation is complete ( 5-10 min), and then collect the product by vacuum filtration on the Hirsch funnel. Complete the product transfer to the funnel using a minimal amount of ice-cold DI water ( 1.0 mL). Dry your solid product by leaving it in the funnel (with suction) for a few minutes. Next, transfer the solid to a pre-weighed watch glass (or 20 mL vial) and then weigh the watch glass plus crystals to deteine the mass of your crude iodinated product. companies update business strategies continuously as internal and external environments change. a) true b) false Choose any Organization in Saudi Arabia which practiceInternational Quality standards in manufacturing process. FILL IN THE BLANK. keys, inc. purchased 100 shares of its own common stock for $10 per share. the stock is now classified as ___ stock, a contra equity account, reported on the statement of stockholder's equity. Problem I: Roll the BonesAlice and Bob are going to play a game of Zombie Dice1 as described on the last page of this assignment. Before starting the game, they want to know if the dice they are using are biased. To determine this, they roll three dice at a time for a fixed number of times and count the number of times each value came up.Write the body of the program called Problem1 that reads in a sequence of dice rolls and counts the number of times each value comes up.InputA single positive integer N denoting the number of dice rolls, followed by N lines of text, where each line denotes a roll of three zombie dice. Each line is of the formD1 D2 D3where each Di is one of B, F, or S, where B stands for Brain, F stands for Footsteps, and S stands for Shotgun. (See example below.)ProcessingThe program should compute the number of Brains, Footsteps, and Shotguns that were rolled.OutputThe program should print out a single line with the number of values that were rolled. The output has the following format: XYZ where X is the number of Brains, Y is the number of Footsteps, and Z is the number of Shotguns that were rolled. The output should be terminated by a new line.ExamplesExample 1 Example 2 Example 3InputOutputInputOutputInputOutput3B B SS B FB B F5 2 26B B SS B FB B FS B BS S BS F F8 4 63B B SS B SB B F5 1 3Please solve in Java