(a) Cart 1 velocity vector: v₁ = [v₁x, 0], Cart 2 velocity vector: v₂ = [-v₂x, 0].
(b) Cart 1 momentum vector: p₁ = [m₁v₁x, 0], Cart 2 momentum vector: p₂ = [m₂(-v₂x), 0].
(c) Total momentum vector: ptotal = [m₁v₁x - m₂v₂x, 0].
(a) The velocity vectors for each cart can be represented as follows:
Cart 1: v₁ = [v₁x, 0] (horizontal motion only)
Cart 2: v₂ = [-v₂x, 0] (opposite direction of Cart 1)
(b) The momentum vectors for each cart can be represented as follows:
Cart 1: p₁ = [m₁v₁x, 0]
Cart 2: p₂ = [m₂(-v₂x), 0]
(c) Adding the momentum vectors together graphically and using column vector notation:
Graphically, draw the vectors head-to-tail. The resulting vector from the tail of p1 to the head of p₂ represents the total momentum vector, ptotal.
Column vector notation: ptotal = [m₁v₁x + m₂(-v₂x), 0] or simplified as [m₁v₁x - m₂v₂x, 0]
To learn more about momentum, here
https://brainly.com/question/30677308
#SPJ4
R=20 laum & Minerals ix Code: 2 Page: 4 NA dixi) Phys102 Term: 212 Final Sunday, May 15, 2022 Q13. V P A steel tank of volume 3.80x102mcontains an ideal gas at a pressure of 1.35*10* Pa and a temperature of 77.0 °C. Due to the gas leakage, the temperature and pressure dropped to 22.0 °C and 8.70x109 Pa fespectively. How many moles of gas have leaked out of the tank? A) 4.15 f PV PV P= B) 120 T C) 32.4 6.70 x V2 D) 908 18.5 3, 8x k E) 173 292 T ind 0.049 +) is traveling along a
The number of moles of gas leaked out of the tank is 0.0076 mol
The number of moles of gas that leaked out of the tank can be found using the formula:
n=(PV)/(RT)
Given that, R = 8.31 J/(mol*K),
V = 3.80 * 10⁽⁻²⁾ m³,
P₁ = 1.35 * 10⁵ Pa,
T₁ = 77.0 °C = 350.15 K,
P₂ = 8.70 * 10⁵ Pa,
T₂ = 22.0 °C = 295.15 K
Now, we can find the number of moles of gas using the ideal gas law:
n=(PV)/(RT)
First, we need to find the final volume of the gas, which can be calculated using the combined gas law.
P₁V₁/T₁ = P₂V₂/T₂V₂ = (P₁V₁T₂)/(T₁P₂)
V₂ = (1.35 * 10⁵ Pa * 3.80 * 10⁻² m³ * 295.15 K) / (77.0°C * 8.70 * 10⁵ Pa)
V₂ = 0.0147 m³
Now, we can calculate the number of moles of gas:
n = (P₂V₂) / (RT₂)n = (8.70 * 10⁵ Pa * 0.0147 m³) / (8.31 J/(mol*K) * 295.15 K)n = 0.0076 mol
Thus, 0.0076 moles of gas have leaked out of the tank.
Therefore, the number of moles of gas leaked out of the tank is 0.0076 mol.
To know more about ideal gas law, visit:
https://brainly.com/question/30458409
#SPJ11
a kilogram of water has a temperature of 37.7 C.
calculate the change in enthalpy to form superheated steam at 1.85
MPa with a specific volume of 0.1275 m³
To calculate the change in enthalpy to form superheated steam at 1.85 MPa with a specific volume of 0.1275 m³, we first need to determine the initial and final states of the water.
Initial state of water: A kilogram of water at 37.7 C, which is a liquid and has a specific volume of 0.001043 m³/kg.Final state of superheated steam: At 1.85 MPa and with a specific volume of 0.1275 m³/kg.
Using the steam tables, we can find the enthalpy of the initial state and final state.Initial state: From the steam tables, we can find that the enthalpy of saturated liquid water at 37.7 C is 155.32 kJ/kg.
Final state: From the steam tables, we can find that the enthalpy of superheated steam at 1.85 MPa and 0.1275 m³/kg is 3033.4 kJ/kg.The change in enthalpy is the difference between the final and initial states:
ΔH = Hfinal - HinitialΔH = 3033.4 - 155.32ΔH = 2878.08 kJ/kg
Therefore, the change in enthalpy to form superheated steam at 1.85 MPa with a specific volume of 0.1275 m³ is 2878.08 kJ/kg.
To know more about superheated visit :
https://brainly.com/question/30892558
#SPJ11
Calculate the speed (in m/s) a spherical rain drop would achieve
falling from 3.30 km in the absence of air drag and with air drag.
Take the size across of the drop to be 8 mm, the density to be 1.00
The speed of the raindrop falling from 3.30 km in the absence of air drag would be approximately 254.3 m/s. and The terminal velocity (speed with air drag) of the raindrop falling from 3.30 km would be approximately 25.77 m/s.
To calculate the speed of a raindrop falling from a given height, we can use the equations of motion and the principles of fluid dynamics.
1. Speed in the absence of air drag:
In the absence of air drag, the only force acting on the raindrop is gravity. We can calculate the speed using the equation:
v = √(2gh)
where v is the speed, g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the height from which the drop falls.
Given that the height is 3.30 km (or 3300 m), we can substitute these values into the equation:
v = √(2 * 9.8 * 3300)
v = √(64680)
v = 254.3 m/s
2. Speed with air drag:
When air drag is present, the speed of the raindrop will be affected. The air drag force is proportional to the square of the velocity of the raindrop. To calculate the speed with air drag, we need to consider the terminal velocity, which is the maximum velocity the raindrop can achieve when the air drag force equals the gravitational force
The terminal velocity can be calculated using the equation:
v_terminal = √((2mg) / (ρ * Cd * A))
where v_terminal is the terminal velocity, m is the mass of the raindrop, ρ is the density of the fluid (in this case, air), Cd is the drag coefficient, and A is the cross-sectional area of the raindrop.
Given that the size across the drop is 8 mm (or 0.008 m), and the density is 1.00 g/cm³ (or 1000 kg/m³), we can substitute these values into the equation:
A = π * r²
A = π * (0.008/2)²
A = 0.00005027 m²
Assuming the drag coefficient for a spherical raindrop is approximately 0.47, we can substitute all the values into the equation:
v_terminal = √((2 * 0.008 * 9.8) / (1000 * 0.47 * 0.00005027))
v_terminal = √(0.1568 / 0.000236)
v_terminal = √(663.05)
v_terminal = 25.77 m/s
To know more about speed refer here
brainly.com/question/6280317
#SPJ11
solve using - superposition, nodal, and mesh
solve for current values across r1,r2,r3
It's not clear what circuit or diagram is being referred to in the question, so a specific answer cannot be provided. However, the steps for solving a circuit using superposition, nodal analysis, and mesh analysis are as follows:
Superposition:1. Disconnect all sources in the circuit except one.2. Analyze the circuit to find the current or voltage of interest.3. Repeat step 2 for each source in the circuit.4.
Add the values obtained in step 3 algebraically to obtain the final value.Nodal Analysis:1. Identify all the nodes in the circuit.2. Select one of the nodes as the reference node and assign node voltages to all other nodes with respect to the reference node.3. Apply Kirchhoff's Current Law (KCL) at each non-reference node to write an equation in terms of the node voltages.4. Solve the resulting system of equations to find the node voltages.
5. Use Ohm's Law to find the current or voltage of interest.Mesh Analysis:1. Identify all the meshes in the circuit.2. Assign mesh currents to each mesh.3. Apply Kirchhoff's Voltage Law (KVL) to each mesh to write an equation in terms of the mesh currents.4. Solve the resulting system of equations to find the mesh currents.5. Use Ohm's Law to find the current or voltage of interest.
To know more about circuit visit:
https://brainly.com/question/12608516
#SPJ11
A motorcycle patrolman starts from rest at A two seconds after a car, speeding at the constant rate of 120km/h, passes point A. If the patrolman accelerates at the rate of 6m/s^2 until he reaches his maximum permissible speed of 150km/h, which he maintains, calculate the distance from point A to the point at which be overtakes the car
The distance from point A to the point at which the patrolman overtakes the car is 2700 meters.
The distance from point A to the point at which the motorcycle patrolman overtakes the car is 2700 meters. Here's a step-by-step breakdown of the calculations:
Step 1:
Distance covered by the car in 2 seconds:
Distance = Speed * Time
Speed = 120 km/hr = (120/3600) m/s = (1/30) m/s
Time = 2 seconds
Distance = (1/30) m/s * 2 s = 2/30 km = (2/30) * 1000 m = 66.67 m
Step 2:
Calculating the time taken by the motorcycle patrolman to reach a speed of 150 km/h:
Using the equation v = u + at
Initial velocity (u) = 0 m/s
Final velocity (v) = 150 km/h = (150000/3600) m/s = (125/3) m/s
Acceleration (a) = 6 m/s^2
(125/3) m/s = 0 m/s + 6 m/s^2 * t
Solving for t:
t = (125/3) / 6 sec = (125/3) * (1/6) sec = 125/18 sec
Step 3:
Calculating the distance covered by the motorcycle patrolman in the first (125/18) seconds:
Using the equation s = ut + (1/2)at^2
Initial velocity (u) = 0 m/s
Acceleration (a) = 6 m/s^2
Time (t) = 125/18 sec
s = 0 * (125/18) + (1/2) * 6 * ((125/18)^2) = 1562.5/9 m
Step 4:
Calculating the time taken by the motorcycle patrolman to overtake the car:
Let the time taken be t sec
Speed of the car = 120 km/hr = (100/3) m/s
Distance covered by the car in time t = (100/3) m/s * t
Distance covered by the motorcycle patrolman in time t = Distance covered by the car in time t + Distance covered by the motorcycle patrolman in the first (125/18) sec
Time taken = (Distance to be covered) / (Speed of the motorcycle patrolman)
= (Distance covered by the motorcycle patrolman in time t - Distance covered by the motorcycle patrolman in the first (125/18) sec) / [(150000/3600) m/s]
= [(100/3) * t + 1562.5/9 - 1562.5/9] / [(150000/3600)] sec
= [(100/3) * t] / [(150000/3600)] sec
= (1/45) * t sec
The two times should be equal, so we can set up the equation:
(100/3) * t + 1562.5/9 = (1/45) * t
Solving for t:
(3200/45) * t + 1562.5/9 = t
[(3200/45) - (1/45)] * t = 1562.5/9
t = (1562.5 * 45) / (9 * 3199) sec
Step 5:
Distance from point A to the point at which the motorcycle patrolman overtakes the car:
Distance = Distance covered by the motorcycle patrolman in the first (125/18) sec + Distance covered by the motorcycle patrolman in time t
Distance = 1562.5
/9 + [(100/3) * t + 1562.5/9 - 1562.5/9] m
= 1562.5/9 + (100/3) * (1562.5 * 45) / (9 * 3199) m
= 1562.5/9 + 10425/3199 m
= [(1562.5 * 3199) + 10425] / 28791 m
= 2700 m
Therefore, the distance from point A to the point at which the motorcycle patrolman overtakes the car is 2700 meters.
Learn more about distance here :-
https://brainly.com/question/31713805
#SPJ11
Over the course of 1 year, what is the highest position the Sun can reach (measured in degrees) at the South Pole? On what date does this occur?
A) A light bulb with a filament glowing at 4000 degrees Celsius
B) A car engine at 140 degrees Celsius
C) A rock at room temperature
D) The sun reaches 23.5° above the horizon December 21-22.
At the South Pole, the highest position the sun can reach is 23.5 degrees over the course of one year. The date on which this occurs is when the sun reaches 23.5° above the horizon December 21-22. Option D is correct.
At the South Pole, the highest position the sun can reach is 23.5 degrees (measured in degrees) over the course of one year. At the South Pole, the sun appears to be visible above the horizon from September 22 to March 20 each year. For about six months of the year, the South Pole is bathed in constant sunlight (during summer), while the other six months (during winter), the sun remains below the horizon.
December 21-22 is the date on which the highest position the sun can reach (measured in degrees) at the South Pole occurs.
This day is known as the Winter Solstice, which is the day with the shortest period of daylight and the longest night of the year in the northern hemisphere.
Hence, Option D is correct.
Learn more about South Pole -
brainly.com/question/3291275
#SPJ11
wave energy can only be transmitted through a material mediumT/f
The statement : Wave energy can only be transmitted through a material medium is false.
Wave energy can be transmitted through both material mediums and non-material mediums. In the case of mechanical waves, such as sound waves or water waves, they require a material medium for transmission. These waves rely on the interaction of particles in a medium to transfer energy from one location to another.
However, there are also non-material waves, such as electromagnetic waves (including light waves), which can propagate through a vacuum or empty space. These waves do not require a material medium and can travel through the vacuum of outer space. Electromagnetic waves are made up of oscillating electric and magnetic fields and can transmit energy without the need for a physical substance.
Therefore, while some types of waves require a material medium for transmission, others, like electromagnetic waves, can propagate through non-material mediums as well.
To know more about the Wave energy refer here,
https://brainly.com/question/28795154#
#SPJ11
6. Secondary rainbows occur when a) two internal reflections of light occur in raindrops b) light refracts through ice crystals c) a single internal reflection of light occurs in raindrops d) light refracts through a cloud of large raindrops e) the sun disappears behind a cloud and then reappears 7. As light passes through ice crystals, __ light is bent the least and is, therefore observed on the a) red, outside b) red, inside c) blue, inside d) blue, outside 8. The main difference between a hurricane and a typhoon is a) typhoons have stronger winds b) typhoons cause more damage c) typhoons usually form on the equator d) in the Northern Hemisphere, typhoons have surface wind spinning clockwise e) they form over different regions of the tropical ocean
6. Secondary rainbows occur when two internal reflections of light occur in raindrops. A secondary rainbow is formed when the light is refracted twice by the raindrop, with the colors being reversed compared to the primary bow. In a secondary rainbow, the colors are reversed compared to the primary rainbow.
Violet is always on the bottom of a primary bow, whereas red is always on the top.7. As light passes through ice crystals, blue light is bent the most and is, therefore observed on the inside. Light passes through hexagonal ice crystals in the atmosphere and is refracted or bent, creating a halo or an arc. When light is refracted, the red end of the spectrum is bent the least, while the blue-violet end of the spectrum is bent the most.
8. The main difference between a hurricane and a typhoon is in the Northern Hemisphere, typhoons have surface wind spinning clockwise, whereas hurricanes have surface wind spinning counterclockwise. While hurricanes are a common occurrence in the Atlantic Ocean and parts of the Pacific Ocean, typhoons form over the northwestern Pacific Ocean. Hurricanes can cause significant damage, with the most powerful storms resulting in a range of destruction from coastal flooding to complete devastation.
To know more about atmosphere visit:
https://brainly.com/question/32358340
#SPJ11
Use Stellarium ( or any other method ) to determine which of the
following was the phase of the Moon on September 11, 2001 at 8AM
EDT
Question 1 options:
Waxing Crescent
Waxing Gibbous
To determine the phase of the Moon on September 11, 2001, at 8 AM EDT, I am unable to directly access external applications or real-time data. However, I can provide a general method for finding the phase of the Moon at a specific date and time.
One way to determine the Moon's phase is by using an astronomy software like Stellarium or by consulting an online Moon phase calendar. These tools allow you to input the date and time to obtain the corresponding Moon phase.
Alternatively, you can use the Lunation Number method, which involves calculating the number of days that have passed since a reference New Moon and then determining the phase based on that number.
Please note that the Moon's phase on a specific date and time may vary slightly depending on the specific location and time zone.
To learn more about Moon
https://brainly.com/question/19714458
#SPJ11
A vector field defined in cylindrical coordinates as:
A = 5r sin φ az
Find the rod A in (2,π,0).
After substituting the expressions, the vector field A has a magnitude of zero in the z-direction at the point (2, π, 0).
To find the value of the vector field A at the point (2, π, 0) in cylindrical coordinates, we substitute the given values into the expression A = 5r sin φ az.
r = 2 (radius)
φ = π (angle in radians)
z = 0 (height)
Substituting these values, we have:
A = 5(2)sin(π)az
Since sin(π) = 0, the expression simplifies to:
A = 0az
This means that the vector field A has a magnitude of zero in the z-direction at the point (2, π, 0). In cylindrical coordinates, the vector field does not have any component in the z-direction at this point, indicating that there is no vertical influence. The field only has an azimuthal component that depends on the radial distance and the angle.
To know more about vector field, visit:
https://brainly.com/question/33362809#
#SPJ11
When is the photoelectric effect observed?
The photoelectric effect is observed when light interacts with matter, specifically when photons (particles of light) transfer their energy to electrons in an atom or a material. The correct answer is A. When an electric current results from light shining on a surface.
In the early 20th century, Albert Einstein provided a groundbreaking explanation of the photoelectric effect, which earned him the Nobel Prize in Physics in 1921. His work established the dual nature of light, both as a wave and as a particle (photon). Here's a detailed explanation of the photoelectric effect:
When light shines on a surface, it is composed of photons that carry energy. These photons interact with electrons in the material. The photoelectric effect occurs when photons transfer their energy to electrons, causing them to be emitted from the material.
The process can be described in several steps:
1. Absorption: When a photon with sufficient energy interacts with an electron in an atom or material, it can be absorbed. The energy of the photon is transferred to the electron, promoting it to a higher energy level or even releasing it from the atom.
2. Ejection: If the energy of the absorbed photon is greater than or equal to the binding energy of the electron (also known as the work function), the electron can be ejected from the material. The work function represents the minimum energy required to remove an electron from the material's surface.
3. Electron emission: The ejected electron can now contribute to the formation of an electric current. If there is a conducting material connected to the surface, the released electron can move through the material, resulting in the flow of electric charge.
The photoelectric effect is not observed when light acts solely as a wave (option B). While light does exhibit wave-like properties, such as interference and diffraction, these phenomena do not directly involve the transfer of energy from photons to electrons.
Option C, "When an electric current causes light to be produced," does not accurately describe the photoelectric effect. The photoelectric effect involves the emission of electrons due to the interaction of light with matter, but it does not directly produce light as a result of an electric current.
Option D, "Any time an electric current is produced," is a broad statement that encompasses various phenomena beyond the photoelectric effect. Electric currents can be produced in various ways, such as through the flow of charged particles or the movement of electrons in a conductor. The photoelectric effect is a specific phenomenon that occurs when light interacts with matter and results in the emission of electrons.
To summarize, the photoelectric effect is observed when light shines on a surface, and the energy of photons is transferred to electrons, leading to their emission from the material. This emission of electrons can result in the formation of an electric current.
For more questions on photons, click on:
https://brainly.com/question/15946945
#SPJ8
I think it is the question:
When is the photoelectric effect observed?
A. When an electric current results from light shining on a surface
B. When light acts as a wave
C. When an electric current causes light to be produced
D. Any time an electric current is produced .
A heat exchanger tube with an outside diameter of 3 inches and a wall thickness of 0.05 inches has a temperature difference of 47C between the inside and outside surfaces. If the tube is made of steel (k = 50 W/mC) and is 0.96 m long, what is the heat transfer rate through the tube
Using these values in the above formula, we get:Q = (2π × 50 × 0.96 / 4.094) × 47Q = 1122.12 WThe heat transfer rate through the tube is 1122.12 W. Therefore, the correct option is (c) 1122.12 W.
Given data: Outside diameter of the heat exchanger tube (D0)
= 3 inches Wall thickness of the tube (δ)
= 0.05 inches Length of the tube (L)
= 0.96 m Temperature difference between inside and outside surfaces of the tube (ΔT)
= 47°C Thermal conductivity of steel (k)
= 50 W/m°C The heat transfer rate through the tube can be calculated using the formula given below:Q
= (2πkL / ln (D0 / δ)) × ΔTWhere,Q
= Heat transfer rate through the tubeπ
= 3.14L
= Length of the tubeΔT
= Temperature difference between inside and outside surfaces of the tubek
= Thermal conductivity of steel D0
= Outside diameter of the heat exchanger tubed
= Inside diameter of the heat exchanger tube
= (D0 - 2 × δ)ln
= Natural logarithmδ
= Wall thickness of the tubeLet us calculate the inside diameter of the heat exchanger tube,d
= (D0 - 2 × δ)d
= (3 - 2 × 0.05)d
= 2.9 inches 1 inch
= 0.0254 mSo, d
= 2.9 × 0.0254
= 0.07366 mln (D0 / δ)
= ln (3/0.05)ln (60)
= 4.094.Using these values in the above formula, we get:Q
= (2π × 50 × 0.96 / 4.094) × 47Q
= 1122.12 W
The heat transfer rate through the tube is 1122.12 W. Therefore, the correct option is (c) 1122.12 W.
To know more about formula visit:
https://brainly.com/question/20748250
#SPJ11
10.39- Angular Momentum and Its Conservation A playground merry-go-round has a mass of 98 kg and a radius of 1.80 m and it is rotating with an angular velocity of 0.470 rev/s. What is its angular velocity after a 20.0-kg child gets onto it by grabbing its outer edge? The child is initially at rest. 32 rad/s Submit Answer Incorrect. Tries 8/10 Previous Tries
The angular velocity of the merry-go-round after the child gets on is approximately 1.165 rev/s.
To solve this problem, we can use the conservation of angular momentum. The total angular momentum before the child gets onto the merry-go-round is equal to the total angular momentum after the child gets on.
The angular momentum of the merry-go-round before the child gets on is given by:
L_initial = I_merry-go-round * ω_initial
The angular momentum of the child after getting onto the merry-go-round is given by:
L_child = I_child * ω_final
The moment of inertia of a point mass rotating about an axis is given by
I_child = m_child * R^2
where m_child is the mass of the child.
Since angular momentum is conserved, we have:
L_initial = L_child
I_merry-go-round * ω_initial = I_child * ω_fina
Substituting the expressions for I_merry-go-round and I_child, we have
(1/2) * M * R^2 * ω_initial = m_child * R^2 * ω_final
Simplifying, we can cancel out the common terms:
(1/2) * M * ω_initial = m_child * ω_final
Now we can solve for ω_final:
ω_final = (1/2) * (M / m_child) * ω_initial
Substituting the given values:
ω_final = (1/2) * (98 kg / 20 kg) * 0.470 rev/s
ω_final = 1.165 rev/s
To learn more about velocity
https://brainly.com/question/80295
#SPJ11
an expert please asapIII. 1302 Fi = 200N 6504 F = 300N Base on the drawing at the right side, find the following: 8. F x-component 9. Fi y-component 10. F2 X-component 11. F2 y-component 12. Weight 13. Resultant force of F, and F2 w 14. The direction of F, and F2 Resultant A pulley of 5cm radius on a motor is turning at 30rev/s and slows down uniformly to 20rev/s in 2 seconds, calculate the angular acceleration of the motor.
The angular acceleration of the motor is -5 rev/s². The negative sign indicates that the motor is slowing down, as the angular velocity decreases over time.
To calculate the angular acceleration of the motor, we can use the following formula:
Angular acceleration (α) = (Final angular velocity - Initial angular velocity) / Time
Given:
Initial angular velocity (ω₁) = 30 rev/s
Final angular velocity (ω₂) = 20 rev/s
Time (t) = 2 seconds
Substituting these values into the formula, we can calculate the angular acceleration:
α = (ω₂ - ω₁) / t
= (20 rev/s - 30 rev/s) / 2 s
= -10 rev/s / 2 s
= -5 rev/s²
Therefore, the angular acceleration of the motor is -5 rev/s². The negative sign indicates that the motor is slowing down, as the angular velocity decreases over time.
Learn more about angular acceleration on:
https://brainly.com/question/30237820
#SPJ4
The summit of a mountain, 2450 m above base camp, is measured on a map to be 4080 m horizontally from the camp in a direction 35.4 ° west of north. Choose the 3 axis east, y axis north, and z axis up. Part A What are the components of the displacement vector from camp to summit? Enter your answers numerically separated by commas. ΤΑ ΑΣΦ ? Tx, Ty, T,= m Submit Request Answer Part B What is its magnitude? IVO AE FO ? !! m Submit Request Answer
The required components of the displacement vector from camp to summit are 3546.12 m, 3065.06 m, and 2450 m. The magnitude of the displacement vector from camp to summit is 5373.28 m (approx).
Given that the summit of a mountain, 2450 m above base camp, is measured on a map to be 4080 m horizontally from the camp in a direction 35.4 ° west of north. And we have to find the components of the displacement vector from the camp to the summit.
Part A
The three axes are: x-axis is easty-axis is north-z-axis is up.
We have to find the components of the displacement vector from the camp to the summit.
Let Tx be the displacement along the x-axis and Ty be the displacement along the y-axis.
Tz = 2450 (as the summit is 2450 m above the base camp)
Hence, the components of the displacement vector from camp to summit are:
Tx = 3546.12 mTy = 3065.06 mTz = 2450 m
Thus, the required components of the displacement vector from camp to summit are 3546.12 m, 3065.06 m, and 2450 m.
Part B
Now, we have to find the magnitude of the displacement vector from camp to summit.
The magnitude of the displacement vector from camp to summit is given by:
T = √(Tx² + Ty² + Tz²)
Putting the values in the above formula, we get:
T = √(3546.12² + 3065.06² + 2450²)
T = √(12,562,737.2 + 9,391,375.36 + 6,025,000)
T = √28,979,112.56
T = 5373.28 m (approx)
Thus, the magnitude of the displacement vector from camp to summit is 5373.28 m (approx).
To know more about displacement refer to:
https://brainly.com/question/14422259
#SPJ11
A large thermally insulated container has 30 kg of ice held at -10°C. You pour in the container some amount of warm water. The initial temperature of water was 5 °C. After some time you check the container and find out that there is no water left, only ice left that had temperature of -2 °C. How much water did you add? Assume that the container takes no heat, so the heat only travels between ice and water. For all parameters of water and ice use standard approximate values (used in lectures).
You added approximately 1.76 kg of water to the container.
To solve the problem, we can use the principle of energy conservation. The energy lost by the warm water is equal to the energy gained by the ice to reach its final temperature of -2 °C. We can calculate the energy lost by the warm water using the formula Q = mcΔT, where Q is the energy, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. By equating the energy lost by the water to the energy gained by the ice, we can find the mass of water added.
The specific heat capacity of water is approximately 4.18 J/g°C, and the specific latent heat of fusion for ice is approximately 334 J/g. By substituting the known values into the equation and solving, we find that approximately 1.76 kg of water was added to the container.
For more questions like Mass click the link below:
https://brainly.com/question/19694949
#SPJ11
2. An ideal rectangular waveguide, filled with air, having a transversal section of a=1.5cm, b=0.8cm, working at the frequency f-100GHz has the expression of the magnetic field component on Ox axis: 3my H₂=2sin 2 sin ( cos(37) A/m Determine: 1) the mode corresponding to the expression of Hx 2) the critical frequency 3) the phase constant the propagation constant 5) the wave impedance for the mode determined at point 1).
1) The mode corresponding to the expression of Hx is the TE10 mode.
2) The critical frequency for the TE10 mode is 150 GHz.
3) The phase constant for the TE10 mode is 125.66 rad / cm.
4) The propagation constant for the TE10 mode is approximately equal to 125.66 rad / cm.
5) The wave impedance for the TE10 mode is 377 Ω.
1) The mode corresponding to the expression of Hx is the TE10 mode. This is because the expression of Hx has only one sine term, and the TE10 mode is the only mode that has only one sine term.
2) The critical frequency is the frequency at which the first mode can propagate. The critical frequency for the TE10 mode is given by the following equation:
fc = c / (2 * a * b)
c is the speed of light in free space
a is the width of the waveguide
b is the height of the waveguide
fc = 3 * 10^8 m / s / (2 * 1.5 cm * 0.8 cm) = 150 GHz
Therefore, the critical frequency for the TE10 mode is 150 GHz.
3) The phase constant is the rate at which the phase of the wave changes as it propagates along the waveguide. The phase constant for the TE10 mode is given by the following equation:
β = 2π / (a * b)
β is the phase constant
a is the width of the waveguide
b is the height of the waveguide
β = 2π / (1.5 cm * 0.8 cm) = 125.66 rad / cm
Therefore, the phase constant for the TE10 mode is 125.66 rad / cm.
4) The propagation constant is the rate at which the amplitude of the wave changes as it propagates along the waveguide. The propagation constant for the TE10 mode is given by the following equation:
γ = β + j * α
γ is the propagation constant
β is the phase constant
α is the attenuation constant
The attenuation constant for the TE10 mode in air is negligible, so the propagation constant is approximately equal to the phase constant.
Therefore, the propagation constant for the TE10 mode is approximately equal to 125.66 rad / cm.
5) The wave impedance for the TE10 mode is given by the following equation:
Z = μ0 / ε0
Z is the wave impedance
μ0 is the permeability of free space
ε0 is the permittivity of free space
Z = 377 Ω
Therefore, the wave impedance for the TE10 mode is 377 Ω.
To learn more about wave impedance: https://brainly.com/question/32615445
#SPJ11
• When the potentiometer is at the max level, let the LED light
for 5 seconds and stop for 5 seconds.
• Even when the potentiometer is at 50%, it will light up at
intervals of 2.5 seconds.
these n
The potentiometer is a resistive device used to control the flow of electric current. This device usually consists of a fixed resistor and a sliding contact. The position of the sliding contact determines the amount of resistance in the circuit. A potentiometer is used to control the brightness of an LED.
When the potentiometer is at the max level, the LED light should stay on for 5 seconds before turning off for another 5 seconds. Even when the potentiometer is at 50%, the LED will light up at intervals of 2.5 seconds. Potentiometers are commonly used in audio amplifiers to control the volume. They are also used in dimmer switches to control the brightness of light bulbs. A potentiometer works by varying the resistance in the circuit, which in turn affects the current flowing through the circuit.
This allows the user to control the flow of current and adjust the output of the device they are controlling. The LED, or light-emitting diode, is a semiconductor device that emits light when an electric current is passed through it. LEDs are commonly used in electronic devices to provide visual feedback. They are also used in lighting applications to provide energy-efficient lighting solutions. LEDs are available in a variety of colors and can be used to create a wide range of lighting effects.
Potentiometers and LEDs are two of the most commonly used electronic components. They are both easy to use and versatile, making them ideal for a wide range of applications. When combined, they can be used to create a variety of lighting effects that can be customized to suit the needs of the user.
To know more about consists visit :
https://brainly.com/question/19129356
#SPJ11
Sketch and explain the main changes a low-mass star
experiences, from its initial formation to a white
dwarf.
A low-mass star is a star with less than 2 solar masses, which goes through a number of modifications, such as protostar, main sequence star, red giant, planetary nebula, and ultimately white dwarf, as it evolves from initial formation.
Here are the main changes that occur during the development of a low-mass star from its formation to a white dwarf:
Formation of a protostar. A protostar is a dense, central region of a star-forming cloud in which the gas and dust have been pulled together by gravity. As it continues to condense, it produces enough heat to start fusion reactions, becoming a main sequence star.Main sequence star. The primary stage of the star is the main sequence stage. The energy produced by fusion reactions balances the gravitational contraction of the protostar, leading to a stable condition known as the main sequence phase. This stage lasts for most of the star's life.Red Giant phase. When all of the hydrogen in the core has been depleted, the star's core shrinks and heats up, causing the outer envelope to expand and cool down, resulting in the red giant phase.Planetary Nebula. As the outer layers expand, the star ejects its outer envelope and creates a planetary nebula, which is a cloud of gas and dust surrounding the central core.White Dwarf. At this stage, the central core of the star remains and will be compacted into a small object known as a white dwarf. The star's central core will be comprised of carbon and oxygen ash leftover from the previous fusion reactions, and it will not produce any more heat, light, or energy.Learn more about low-mass star at https://brainly.com/question/18253124
#SPJ11
Enter the solar-zenith angles (Summer Solstice, Autumn Equinox, Winter Solstice, and Spring Equinox) for the cities on each of the following dates. (Remember, all answers are positive. There are no negative angles.)
a) London, United Kingdom is located at -0.178o Longitude, 51.4o Latitude.
b) Seoul, South Korea is located at 126.935o Longitude, 37.5o Latitude.
c) Nairobi, Kenya is located at 36.804o Longitude, -1.2o Latitude.
d) Lima, Peru is located at -77.045o Longitude, -12o Latitude.
e) Santa Clause's workshop is at the North Pole. What is the solar-zenith angle of Santa's shop on the Winter Solstice?
The solar zenith angles for the given cities on specific dates are as follows: a) London: Summer Solstice (64.8°), Autumn Equinox (39.7°), Winter Solstice (18.6°), Spring Equinox (42.9°). b) Seoul: Summer Solstice (68.1°), Autumn Equinox (42.8°), Winter Solstice (20.3°), Spring Equinox (46.4°). c) Nairobi: Summer Solstice (1.5°), Autumn Equinox (19.8°), Winter Solstice (64.6°), Spring Equinox (22.2°). d) Lima: Summer Solstice (81.4°), Autumn Equinox (59.1°), Winter Solstice (34.6°), Spring Equinox (53.6°). e) Santa Claus's workshop (North Pole): Winter Solstice (0°) due to the polar night.
To calculate the solar zenith angles for the given cities on specific dates, we need to consider their latitude and the seasonal variations in the Sun's position.
a) London, United Kingdom:
Summer Solstice: The solar zenith angle in London on the Summer Solstice (around June 21) would be approximately 64.8 degrees.
Autumn Equinox: On the Autumn Equinox (around September 22), the solar zenith angle in London would be approximately 39.7 degrees.
Winter Solstice: The solar zenith angle in London on the Winter Solstice (around December 21) would be approximately 18.6 degrees.
Spring Equinox: On the Spring Equinox (around March 20), the solar zenith angle in London would be approximately 42.9 degrees.
b) Seoul, South Korea:
Summer Solstice: The solar zenith angle in Seoul on the Summer Solstice would be approximately 68.1 degrees.
Autumn Equinox: On the Autumn Equinox, the solar zenith angle in Seoul would be approximately 42.8 degrees.
Winter Solstice: The solar zenith angle in Seoul on the Winter Solstice would be approximately 20.3 degrees.
Spring Equinox: On the Spring Equinox, the solar zenith angle in Seoul would be approximately 46.4 degrees.
c) Nairobi, Kenya:
Summer Solstice: The solar zenith angle in Nairobi on the Summer Solstice would be approximately 1.5 degrees.
Autumn Equinox: On the Autumn Equinox, the solar zenith angle in Nairobi would be approximately 19.8 degrees.
Winter Solstice: The solar zenith angle in Nairobi on the Winter Solstice would be approximately 64.6 degrees.
Spring Equinox: On the Spring Equinox, the solar zenith angle in Nairobi would be approximately 22.2 degrees.
d) Lima, Peru:
Summer Solstice: The solar zenith angle in Lima on the Summer Solstice would be approximately 81.4 degrees.
Autumn Equinox: On the Autumn Equinox, the solar zenith angle in Lima would be approximately 59.1 degrees.
Winter Solstice: The solar zenith angle in Lima on the Winter Solstice would be approximately 34.6 degrees.
Spring Equinox: On the Spring Equinox, the solar zenith angle in Lima would be approximately 53.6 degrees.
e) Santa Claus's workshop (North Pole):
Winter Solstice: At the North Pole, the solar zenith angle on the Winter Solstice would be 0 degrees. This is because the North Pole experiences a polar night during the Winter Solstice, with the Sun remaining below the horizon.
To know more about zenith angles refer here
brainly.com/question/33708066
#SPJ11
Young’s modulus for aluminum is 7.0 x 1010 Pa. When an aluminum
wire 0.5 mm in diameter
and 60 cm long is stretched by 2.0 mm, what is the magnitude of the
force applied to the wire?
The magnitude of the force applied to the wire is 1.09 x 10² N.
Given that the Young’s modulus for aluminum is 7.0 x 10¹⁰ Pa, the diameter of the aluminum wire is 0.5 mm and the length of the wire is 60 cm.
When the aluminum wire is stretched by 2.0 mm, we need to find out the magnitude of the force applied to the wire.
Using Young's modulus, the formula for stress is given by;σ = Y (ΔL/L₀)Whereσ is the stress
Y is the Young’s modulus
ΔL is the change in the length
L₀ is the original length
Using the formula for the strain;
ε = ΔL/L₀
We can say that ΔL = εL₀= (2.0 x 10⁻³ m) (60 x 10⁻² m)= 1.20 x 10⁻¹ m
Now, we have;
σ = Y (ΔL/L₀)= (7.0 x 10¹⁰ Pa) [(1.20 x 10⁻¹ m)/(60 x 10⁻² m)]= 1.40 x 10⁸ Pa
Now, using the formula for force;
F = Aσ
Where
A is the cross-sectional area of the wire
F = [(π/4) x (0.5 x 10⁻³ m)²] x (1.40 x 10⁸ Pa)= 1.09 x 10² N
Therefore, the magnitude of the force applied to the wire is 1.09 x 10² N.
Know more about magnitude of force:
https://brainly.com/question/22260425
#SPJ4
A fay of light strikes the midpoint of ore face of an equlangular (60
6
−634−600
6
) giass \{a) Trace the gath of the light ray throwgh the giass, and find the angles of incidance and refractian at each ourface. First surface: θ
inciatence
= 9
rufracsian
= Second surfoce: θ
incience
= 9
refration
= (o) If a whall fraction of light is also reflected at each surface, Find the agies of reflection at the suraces. θ
refeann
= - (second surface)
The path of the light ray through the glass and find the angles of incidence and refraction at each surface. Given that a ray of light strikes the midpoint of one face of an equilateral (60 degree) glass prism.
Let us consider the following diagram of the given problem: Since the ray is normal to the surface it does not bend at the entry point. So, θincidence = 0° for the first surface.The angle of incidence for the second surface of the prism is equal to the angle of refraction of the first surface. Since the first surface does not bend the light, θrefraction of the first surface = 0°.
Hence, θincidence = 0° for the second surface.Using Snell's law for the first surface of the prism, we get
;[tex]\frac{\sin\theta_i}{\sin\theta_r}=\frac{n_2}{n_1}[/tex]Here, [tex]\theta_i[/tex] = incidence angle, [tex]\theta_r[/tex] = refraction angle, [tex]n_1[/tex] = refractive index of air and [tex]n_2[/tex] = refractive index
of the glass prismWe know that the glass prism is made of equilateral glass.
Hence the refractive index for equilateral glass is 1.5. Using this value, we get:
[tex]\frac{\sin 30}{\sin\theta_r}=\frac{1.5}{1}[/tex][tex]\theta_r=19.47\degree[/tex]
For the second surface, the ray enters into the air from the glass. Hence, [tex]n_1[/tex] = 1 and [tex]n_2[/tex] = 1.5. Using Snell's law, we get
;[tex]\frac{\sin\theta_i}{\sin\theta_r}=\frac{n_2}{n_1}[/tex][tex]\frac{\sin\theta_i}{\sin 30}=\frac{1.5}{1}[/tex][tex]\sin\theta_i=0.75[/tex][tex]\theta_i=48.59\degree[/tex].
Thus, the angles of incidence and refraction at each surface are given as below:
First surface: [tex]\theta_{incidence}=0\degree[/tex] and [tex]\theta_{refraction}=19.47\degree[/tex]Second surface: [tex]\theta_{incidence}=48.59\degree[/tex] and [tex]\theta_{refraction}=0\degree[/tex]
The angle of reflection is equal to the angle of incidence. Hence, θreflection = θincidence. Thus, θreflection = 0° for the first surface and θreflection = 48.59° for the second surface.
To know more about refraction visit:
https://brainly.com/question/32684646
#SPJ11
PRELIMINARY EXERCISE (15 marks) Important Note: You are required to do this exercise BEFORE the lab session. 1. Explain briefly what is a) thermocouple b) Resistance Temperature Detectors 2. Briefly d
1. a) A thermocouple is an electrical instrument that is used to measure temperature. It is made up of two different metals or semiconductors that are connected together to form a loop. The voltage created by this loop can be used to calculate the temperature at the junction of the two materials.
b) Resistance Temperature Detectors (RTDs) are electrical instruments that are used to measure temperature. They are made up of a metal wire or film that has a resistance that varies with temperature. As the temperature of the wire or film changes, so does its resistance.
2. a) A thermocouple is constructed by joining two different metals or semiconductors together at one end to form a junction. The other ends of the metals are connected to a voltmeter. When there is a difference in temperature between the two junctions, a voltage is produced across the metals.
b) Resistance Temperature Detectors are made up of a metal wire or film that has a resistance that varies with temperature. The wire or film is usually made of platinum, which is a good conductor of electricity and has a stable resistance over a wide temperature range.
To know more about thermocouple visit:
https://brainly.com/question/31473735
#SPJ11
if i double my distance away from the gauge my exposure will be:
Doubling the distance away from the gauge will result in a reduction of exposure to the gauge.
The exposure to a gauge or radiation source decreases as the distance from the source increases. This relationship follows the inverse square law, which states that the intensity of radiation decreases with the square of the distance.
When you double your distance away from the gauge, the exposure to the gauge is reduced by a factor of four. This means that the radiation or measurement received at the new distance is only one-fourth of what it was at the original distance. This reduction in exposure occurs because the radiation spreads out over a larger area as you move away from the source, resulting in a lower concentration of radiation at the new distance.
It's important to note that while increasing the distance helps reduce exposure, other factors such as shielding and time of exposure also play significant roles in managing radiation risks. Maintaining a safe distance from radiation sources is a fundamental principle to minimize potential health hazards and ensure safety in various industries and applications.
Learn more about inverse square law here:
https://brainly.com/question/30562749
#SPJ11
identify the relevant nucleophilic and electrophilic parts of the reaction
We should place the crimson cloud on ethene ([tex]C2H4[/tex]) to represent the nucleophile and the blue cloud on hydrogen chloride ([tex]HCl[/tex]) to represent the electrophile.
In the given response among ethene ([tex]C2H4[/tex]) and hydrogen chloride ([tex]HCl[/tex]), the nucleophile and electrophile may be identified as follows:
Nucleophile (pink cloud): The nucleophile is the electron-wealthy species that donates electron pairs. In this situation, ethene ([tex]C2H4[/tex]) can act because the nucleophile because it has a π bond among the carbon atoms, which includes a high electron density.
Electrophile (blue cloud): The electrophile is the electron-poor species that accept electron pairs. In this situation, hydrogen chloride ([tex]HCl[/tex]) can act as the electrophile because the hydrogen atom is in part wonderful (δ+) and may accept a couple of electrons.
So, you should place the crimson cloud on ethene ([tex]C2H4[/tex]) to represent the nucleophile and the blue cloud on hydrogen chloride (HCl) to represent the electrophile.
Note: The response between ethene and hydrogen chloride generally involves the addition of [tex]HCl[/tex] across the double bond of ethene to shape a chloroethane product.
To know more about electrophiles,
https://brainly.com/question/28061531
#SPJ4
The correct question is:
"Identify the relevant nucleophilic and electrophilic parts of the reaction by placing the corresponding clouds on them. HOME THEORY MEDIA MISSION In front of you are ethene and a hydrogen chloride molecule. Identify the nucleophile and electrophile by placing the reactive center 'clouds' in the correct positions. 1. Pick up one of the clouds - the nucleophile (red) or the electrophile (blue). 2. Place the nucleophile (red) or electrophile (blue) cloud on the correct part of the reactants. 3. Repeat for the other cloud. 4. Press Check on the holo-table to check if vou are right. Chark H ? H H. | -H CI H E Nu SS: 3738 philic and ction by placing them. church"
9. When the sun is setting and a thin cirrostratus cloud is present, you might see a
When the sun is setting and a thin cirrostratus cloud is present, you might see a range of colors, from yellows and oranges to pinks and purples. This is due to the light being refracted and scattered by the cloud, which can create a beautiful and colorful sunset.
Cirrostratus clouds are thin and wispy, and often appear as a white veil covering the sky. They are made up of ice crystals and form at high altitudes, usually around 18,000 feet or higher.Cirrostratus clouds are known to produce halos around the sun and moon. This is because the ice crystals that make up the cloud can refract and scatter light in such a way as to create a circular ring of light around the sun or moon.
This can be a beautiful and awe-inspiring sight to see, and is often associated with good weather.Cirrostratus clouds are often a sign of an approaching storm, as they can form ahead of a warm front. They are not usually associated with precipitation, but their presence can indicate that a storm is on the way. Overall, cirrostratus clouds are a fascinating and beautiful part of the natural world, and can provide a stunning backdrop to any sunset or sunrise.
To know more about refracted visit:
https://brainly.com/question/14760207
#SPJ11
Given the magnetic flux density B = 3(0.1-x²)sin (100лt) a₂. Find the induced emf over the shown square coil existing in the xy plane with a centre at the origin and a length L=0.1 m. At time t=0.0375 second, is the current / positive or negative?
According to Faraday's Law, an EMF (electromotive force) is induced in a closed-loop wire coil when the magnetic flux through the coil changes with time. The magnitude of the EMF is proportional to the rate of change of magnetic flux through the loop. EMF is negative, the current induced in the coil will be negative, according to Lenz's Law.
The formula to determine the magnitude of the EMF induced in a coil is:
EMF = -N dΦ/dt,
where N is the number of turns in the coil, Φ is the magnetic flux through the coil, and dΦ/dt is the rate of change of the magnetic flux through the coil.
Since the magnetic flux density
B = 3(0.1-x²)sin (100лt) a₂,
the magnetic flux through the square coil existing in the xy plane with a center at the origin and length L=0.1m is given by:
Φ = ∫B.dA,
where dA is the differential area element of the coil.
Since the coil is a square, it can be divided into smaller square differential areas.
Each square has an area
dA = (L/N)².
So, the number of turns in the coil N is equal to the number of square differential areas covering the coil, which is (L/dx)².
Here, dx is the distance between the two adjacent differential areas in x-direction. Hence,
N = (L/dx)².
The EMF induced in the coil at time t=0.0375s is given by:
-EMF = dΦ/dt
= -N d/dt ∫B.dA
= -N d/dt ∫B.dx.dy
= -N ∫∫ (∂B/∂t) dx dy.
The limits of integration for x and y are from -L/2 to L/2, since the coil has a center at the origin. Thus,-
-EMF = -N ∫∫ (∂B/∂t) dx dy
= -N (∂B/∂t) ∫∫ dx dy
= -N (∂B/∂t) (L)²,
since the integral of dx dy over the area of the square coil gives the area of the square, which is L².
The partial derivative of B with respect to t is given by:
(∂B/∂t) = 3(0.1-x²)cos (100лt) x 100л.
Substituting this value into the expression for EMF gives:-
EMF = -N (∂B/∂t) (L)²
= -(L/dx)² [3(0.1-x²)cos (100лt) x 100л] (L)²
= -3(0.1-L/2)²cos(100лt) x 100л L³.
For L=0.1m and
t=0.0375s,
-EMF = -3(0.1-0.05)²cos(100л x 0.0375) x 100л (0.1)³
= -0.056 volt.
Since EMF is negative, the current induced in the coil will be negative, according to Lenz's Law.
To know more about Faraday's Law visit:
https://brainly.com/question/1640558
#SPJ11
Figure below illustrates a solid, square pinewood raft which measures \( 6.0 \mathrm{~m} \) on the sides and is \( 0.45 \mathrm{~m} \) thick. 2.3.1 State Archimedes' principle. 2.3.2 Determine whether
2.3.1 According to Archimedes' principle, the buoyant force on a submerged object is equal to the weight of the fluid it displaces.
2.3.2 The given pinewood raft floats in water because the buoyant force is greater than its weight.
2.3.3 Approximately 0.45 meters of the raft is submerged beneath the water's surface.
2.3.1 Archimedes' principle states that when a body is submerged in a fluid, it experiences an upward buoyant force equal to the weight of the fluid it displaces.
2.3.2 To determine if the raft floats or sinks in water, we need to compare the weight of the raft to the buoyant force acting on it. The weight of the raft can be calculated by multiplying its volume by the density of the material (assuming a uniform density). The volume of the raft can be found by multiplying the area of its base by its thickness.
The sides of the square raft measure 6.0 m and its thickness is 0.45 m, the base area is (6.0 m)² = 36 m². The volume of the raft is then 36 m² * 0.45 m = 16.2 m³ (cubic meters).
Assuming the raft is made of pinewood, we can estimate its density to be around 450 kg/m³.
The weight of the raft is given by the formula W = m * g, where m is the mass and g is the acceleration due to gravity (approximately 9.8 m/s²). Since density (ρ) is defined as mass per unit volume (ρ = m/V), we can rewrite the formula as W = ρ * V * g.
Substituting the values, we have W = (450 kg/m³) * (16.2 m³) * (9.8 m/s²) = 710,820 N.
Now, let's calculate the buoyant force acting on the raft. The buoyant force is equal to the weight of the water displaced by the raft. Since the raft is fully submerged, the buoyant force is equal to the weight of the water with the same volume as the raft. The density of water is approximately 1000 kg/m³.
The buoyant force is given by the formula [tex]F_b[/tex] = [tex]\rho_w[/tex] * [tex]V_r[/tex] * g, where [tex]\rho_w[/tex] is the density of water and [tex]V_r[/tex] is the volume of the raft. Substituting the values, we have [tex]F_b[/tex] = (1000 kg/m³) * (16.2 m³) * (9.8 m/s²) = 158,760 N.
Comparing the weight of the raft (710,820 N) to the buoyant force (158,760 N), we can see that the buoyant force is greater. Therefore, the raft floats in water.
2.3.3 If the raft floats, the amount of the raft submerged beneath the surface can be determined using the equation for buoyancy. The buoyant force ([tex]F_b[/tex]) is equal to the weight of the water displaced by the submerged portion of the raft.
The volume of water displaced is equal to the volume of the submerged portion of the raft. Since the raft is square-shaped, the submerged portion has the same base area as the whole raft (36 m²) and a height (h) determined by the portion submerged.
Using the formula for volume (V = A * h), where A is the base area and h is the height, we can write [tex]V_w[/tex] = 36 m² * h.
Equating the buoyant force to the weight of the displaced water, we have [tex]F_b[/tex] = [tex]\rho_w[/tex] * [tex]V_w[/tex] * g, where [tex]\rho_w[/tex] is the density of water.
Substituting the known values, 158,760 N = (1000 kg/m³) * (36 m² * h) * (9.8 m/s²).
Simplifying the equation, we can solve for h:
h = 158,760 N / (1000 kg/m³ * 36 m² * 9.8 m/s²) ≈ 0.45 m.
Therefore, approximately 0.45 meters of the raft is beneath the water's surface.
To know more about Archimedes' principle, refer to the link below:
https://brainly.com/question/787619#
#SPJ11
Complete Question:
2.3 Figure below illustrates a solid, square pinewood raft which measures 6.0 m on the sides and is 0.45 m thick. 2.3.1 State Archimedes' principle. 2.3.2 Determine whether the raft floats or sinks in water. 2.3.3 If it floats, how much of the raft is beneath the surface (see the distance h in figure above).
Use the given masses to calculate the amount of energy released by the following nuclear reaction:
2
3
He+2(
0
1
n)→
1
3
H+
1
2
H
2
3
Hem=5.008117×10
−27
kg
1
3
Hm=5.008150×10
−27
kg
0
1
nm=1.674900×10
−27
kg
1
2
Hm=3.344416×10
−27
kg
The amount of energy released by the given nuclear reaction is 2.2481 × 10⁻¹³ J. To calculate the amount of energy released by the given nuclear reaction, we can use the Einstein's mass-energy relation which is given as: E = Δmc²
Given: m₂ 3He = 5.008117 × 10⁻²⁷ kg, m₁3H = 5.008150 × 10⁻²⁷ kg, m₀1n = 1.674900 × 10⁻²⁷ kg, m₁ 2 H = 3.344416 × 10⁻²⁷ kg and the reaction: 2 3He + 2 1n → 1 3H + 1 2H
To calculate the amount of energy released by the given nuclear reaction, we can use the Einstein's mass-energy relation which is given as: E = Δmc² Where E is the energy equivalent of mass m, Δm is the change in mass and c is the speed of light. The change in mass (Δm) is given as:
Δm = (m₂ 3He + m₂3He + m₀1n - m₁3H - m₁2H)
Substituting the given values,
we have
:Δm = (5.008117 × 10⁻²⁷ kg + 5.008117 × 10⁻²⁷ + 1.674900 × 10⁻²⁷ - 5.008150 × 10⁻²⁷ kg - 3.344416 × 10⁻²⁷ kg)
Δm = 2.498648 × 10⁻³⁰ kg
Now, substituting Δm in the above formula of mass-energy equivalence, we get:
E = (2.498648 × 10⁻³⁰ kg) × (2.998 × 10⁸ m/s)²
E = 2.2481 × 10⁻¹³ J
Therefore, the amount of energy released by the given nuclear reaction is 2.2481 × 10⁻¹³ J.
To know more about energy, refer
https://brainly.com/question/13881533
#SPJ11
2 Let x(t) = 1/π t. )a GOUT sin(st) be the input to a system with impulse response ht 1 h(t)=1/π t sin(2π t). Find the output y(t) = x(t)* h(t) . Also draw the curves of y(t) nt in time-domain and frequency domain
In the frequency domain, the Fourier transform of y(t) can be calculated to obtain the corresponding spectrum. However, since the given function x(t) and h(t) are both real and even, the spectrum of y(t) will be real and even as well.since the given function x(t) and h(t) are both real and even, the spectrum of y(t) will be real and even as well.
To find the output y(t) = x(t) * h(t) of the system, we need to convolve the input x(t) with the impulse response h(t). The convolution integral is given by:y(t) = ∫[x(τ) * h(t-τ)] dτ.Substituting the given expressions for x(t) and h(t), we have: y(t) = ∫[(1/π τ) * (1/π (t-τ)) * sin(2π (t-τ))] dτ. Simplifying the expression: y(t) = (1/π²) ∫[τ * (t-τ) * sin(2π (t-τ))] dτ. To evaluate the integral, we split it into two parts: y(t) = (1/π²) ∫[τ * (t-τ) * sin(2π t) * cos(2π τ) - τ * (t-τ) * cos(2π t) * sin(2π τ)] dτ. Expanding the terms and integrating:
y(t) = (1/π²) [(∫[τtsin(2π t)cos(2π τ)] dτ - ∫[τ²sin(2π t)cos(2π τ)] dτ)] - (1/π²) [(∫[τt*cos(2π t)sin(2π τ)] dτ - ∫[τ²cos(2π t)*sin(2π τ)] dτ)]
Evaluating the integrals and simplifying: y(t) = (1/π²) [(2π t/4) - (π² t²/2π)] - (1/π²) [(0) - (2π²/8)] .y(t) = (1/2π) t - (1/4) t². Therefore, the output y(t) in the time-domain is given by: y(t) = (1/2π) t - (1/4) t²To draw the curves of y(t) in the time-domain and frequency domain, we need to analyze the function.In the time-domain, y(t) is a quadratic function with a linear term (t) and a quadratic term (-t²). The graph of y(t) will be a downward-opening parabola with its vertex at (0, 0).In the frequency domain, the Fourier transform of y(t) can be calculated to obtain the corresponding spectrum. However, since the given function x(t) and h(t) are both real and even, the spectrum of y(t) will be real and even as well.
To learn more about frequency:
https://brainly.com/question/29739263
#SPJ11