though titan has a small mass , it is able to retain an atmosphere because it

Answers

Answer 1

Titan is able to retain its atmosphere because it is very cold. The average temperature on Titan is -180 degrees Celsius, which is cold enough to liquefy methane.

The methane in Titan's atmosphere is very dense, which helps to keep the atmosphere from escaping.

Titan is also very far from the Sun, which means that it is not bombarded with the same amount of solar radiation as Earth. This solar radiation can cause the atmosphere of a planet to expand and escape.

Finally, Titan has a very thick atmosphere, which helps to keep the atmosphere from escaping. The atmosphere of Titan is about 100 times thicker than the atmosphere of Earth.

All of these factors contribute to Titan's ability to retain its atmosphere.

To know more about Titan, refer here:

https://brainly.com/question/13046830#

#SPJ11


Related Questions

if the plane is frictionless, what is the speed vcm (a) , of the center of mass of the sphere at the bottom of the incline?

Answers

If the plane is frictionless, the sphere will continue to roll down the incline without any resistance. This means that the force of gravity acting on the sphere will be the only force causing it to move.

The speed of the center of mass (vcm) of the sphere at the bottom of the incline can be calculated using the conservation of energy principle. At the top of the incline, the sphere has potential energy which is converted to kinetic energy as it rolls down.

Assuming that the incline is at an angle theta and the height of the incline is h, the potential energy of the sphere at the top is mgh (where m is the mass of the sphere and g is the acceleration due to gravity). The kinetic energy of the sphere at the bottom of the incline is (1/2)mvcm^2 (where vcm is the speed of the center of mass).

Using the conservation of energy principle, we can equate these two energies:

mgh = (1/2)mvcm^2

Solving for vcm, we get:

vcm = sqrt(2gh)

Therefore, the speed of the center of mass of the sphere at the bottom of the incline is proportional to the square root of the height of the incline and is independent of the mass of the sphere.

To Learn more about frictionless Click this!

brainly.com/question/31248649

#SPJ11

The speed vₓₘ (a) of the center of mass of the sphere at the bottom of the incline, assuming a frictionless plane, is given by vₓₘ (a) = √(2gh), where g is the acceleration due to gravity and h is the height of the incline.

Determine the center of mass?

When a sphere rolls without slipping down an incline, its center of mass follows a trajectory determined by the height of the incline. In this scenario, since the plane is frictionless, there is no force opposing the motion of the sphere. Therefore, the sphere's potential energy is converted entirely into kinetic energy.

The potential energy gained by the sphere when it rolls down the incline is given by mgh, where m is the mass of the sphere, g is the acceleration due to gravity, and h is the height of the incline. The kinetic energy gained by the sphere is equal to the potential energy lost, so we have ½mvₓₘ² = mgh.

Simplifying the equation, we find vₓₘ (a) = √(2gh), which represents the speed of the center of mass of the sphere at the bottom of the incline.

Therefore, The velocity vₓₘ (a) of the center of mass of the sphere at the bottom of the incline, in the absence of friction, can be calculated using the formula vₓₘ (a) = √(2gh), where g represents gravity's acceleration and h is the incline's height.

To know more about gravity, refer here:

https://brainly.com/question/31321801#

#SPJ4

A grandfather clock uses a physical pendulum to keep time. The pendulum consists of a uniform thin rod of mass M and length L that is pivoted freely about one end, with a solid sphere of the same mass, M, and a radius of L/2 centered about the free end of the rod.
(a) Obtain an expression for the moment of inertia of the pendulum about its pivot point as a function of M and L. (Use any variable or symbol stated above along with the following as necessary: g.)
I =
(b) Obtain an expression for the period of the pendulum for small oscillations. (Use any variable or symbol stated above along with the following as necessary: g.)
T =
(c) Determine the length L that gives a period of T = 3.9 s.

Answers

a) The expression for moment of inertia of the pendulum =T = 2π√(I/mg),

b) The pendulum for small oscillations T = 3.9 s and the value of g = 9.8 m/s²2.

c) The length will be L = √((60gT²2)/(7(4π)²2)).

A. The moment of inertia of the pendulum:

The moment of inertia, denoted by I, of the pendulum about its pivot point can be calculated by considering the individual contributions from the rod and the sphere.

B.expression for the period of the pendulum for small oscillations:

The moment of inertia of a solid sphere about an axis passing through its centre and perpendicular to its surface is given by (2/5)MR²2, where M is the mass of the sphere and R is its radius. In this case, the sphere is attached to the end of the rod, so its moment of inertia needs to be translated to the pivot point. We can use the parallel axis theorem, which states that the moment of inertia about an axis parallel to and a distance d away from an axis through the center of mass is given by I = I_cm + Md²2, where I_cm is the moment of inertia about the center of mass. In this case, the distance d is L/2, and the moment of inertia about the pivot point becomes (2/5)MR²2 + M(L/2)²2.

Therefore, the total moment of inertia of the pendulum about its pivot point is the sum of the contributions from the rod and the sphere:

I = (1/3)ML²2 + (2/5)MR²2 + M(L/2)²2.

Substituting R = L/2, we have:

I = (1/3)ML²2 + (2/5)M(L/2)²2 + M(L/2)²2.

Simplifying further:

I = (1/3)ML²2 + (1/5)ML²2 + (1/4)ML²2.

Combining the terms:

I = (7/60)ML²2.

Therefore, the moment of inertia of the pendulum about its pivot point is (7/60)ML²2.

The period of the pendulum for small oscillations can be determined using the formula:

T = 2π√(I/mg),

C. The length L that gives a period:

where T is the period, I is the moment of inertia about the pivot point, m is the mass of the pendulum (which is M in this case), and g is the acceleration due to gravity.

Substituting the expression for I obtained in

T = 2π√(((7/60)ML²2)/Mg).

Simplifying further:

T = 2π√((7L²2)/(60g)).

Therefore, the period of the pendulum for small oscillations is given by T = 2π√((7L²2)/(60g)).

To determine the length L that gives a period of T = 3.9 s, we can rearrange the formula obtained in part (b):

T = 2π√((7L²2)/(60g)).

Squaring both sides and isolating L:

(T/2π)²2 = (7L²2)/(60g).

Simplifying further:

L²2 = (60gT²2)/(7(4π)²2).

Taking the square root of both sides:

L = √((60gT²2)/(7(4π)²2)).

Substituting T = 3.9 s and the value of g, which is approximately 9.8 m/s²2 , the length L.

3.The moment of inertia of a uniform thin rod about its pivot point can be expressed as (1/3)ML²2, where M is the mass of the rod and L is its length.

To know more about oscillations here

https://brainly.com/question/15780863

#SPJ4

the reason saturn lost very little of its original atmosphere is due to its:

Answers

The reason Saturn lost very little of its original atmosphere is due to its strong gravitational pull. Saturn is a gas giant with a mass over 95 times that of Earth, which creates a strong gravitational force that is able to hold onto its atmosphere.

Additionally, Saturn's magnetic field helps to protect its atmosphere from the solar wind, which is a stream of charged particles that can strip away an atmosphere over time. Unlike some other planets, Saturn does not have a significant internal heat source that drives atmospheric escape, which also contributes to its ability to retain its atmosphere.

Overall, the combination of its massive size, strong gravity, and protective magnetic field have allowed Saturn to maintain its original atmosphere for billions of years.

Learn more about Saturn here:

https://brainly.com/question/12181523

#SPJ11

imagine you are an astronomer outside our solar system, how long would you have to observe the sun in order to deetect four dips in the suns brightness due to earth?

Answers

The time required to detect four dips in the sun's brightness caused by Earth passing in front of it would depend on several factors, such as the distance between our solar system and the observer, the sensitivity of the observer's instruments, and the timing of the observations.  


The further away the observer is, the longer it would take for them to observe the Earth passing in front of the sun. For instance, if the observer were located in the nearest star system to ours, Proxima Centauri, which is approximately 4.2 light-years away, it would take about 8.4 years for the observer to detect four dips in brightness caused by Earth passing in front of the sun. This is because it would take that long for the light emitted by the sun to reach Proxima Centauri, making it possible for the observer to detect the changes in brightness caused by the Earth's transit.

Additionally, the sensitivity of the observer's instruments would also impact the time required to detect these dips in brightness. The more sensitive the instruments, the easier it would be to detect small changes in the sun's brightness caused by the Earth's transit. However, if the instruments are not sensitive enough, it could take longer to detect the dips in brightness, even if the observer is relatively close to our solar system.


To know more about solar visit :-

https://brainly.com/question/28681519

#SPJ11


what is the proper order of storm intensity in terms of increasing wind speed?

Answers

The proper order of storm intensity in terms of increasing wind speed is tropical depression, tropical storm, category 1 hurricane, category 2 hurricane, category 3 hurricane, category 4 hurricane, and category 5 hurricane.

A tropical depression is a storm system with maximum sustained winds of up to 38 mph. When the sustained winds increase to 39 to 73 mph, it becomes a tropical storm. A category 1 hurricane has maximum sustained winds of 74 to 95 mph, while a category 2 hurricane has sustained winds of 96 to 110 mph. A category 3 hurricane has sustained winds of 111 to 129 mph, a category 4 hurricane has winds of 130 to 156 mph, and a category 5 hurricane has sustained winds of 157 mph or higher.

It's important to note that wind speed isn't the only factor that determines a storm's intensity. Other factors include storm surge, rainfall, and the size of the storm. However, wind speed is a key component in determining a storm's category and potential impact.

To know more about hurricane visit:

https://brainly.com/question/14836473

#SPJ11

a 55.0-kg lead ball is dropped from the leaning tower of pisa. the tower is 55.0 m high. how far does the ball fall in the first 3.00 s of its flight?

Answers

The distance that the lead ball falls in the first 3.00 seconds of its flight can be calculated using the equation d = 1/2gt^2, where d is the distance, g is the acceleration due to gravity (9.81 m/s^2), and t is the time.
               First, we need to calculate the velocity of the lead ball when it hits the ground after falling from the tower. We can use the equation v^2 = 2gh, where v is the velocity, g is the acceleration due to gravity, and h is the height of the tower. Plugging in the values, we get v = sqrt(2gh) = sqrt(2 x 9.81 m/s^2 x 55.0 m) = 35.2 m/s.

Next, we can calculate the distance that the ball falls in the first 3.00 seconds using the equation d = 1/2gt^2. Plugging in the values, we get d = 1/2 x 9.81 m/s^2 x (3.00 s)^2 = 44.1 m. Therefore, the lead ball falls 44.1 meters in the first 3.00 seconds of its flight

In summary, the lead ball dropped from the leaning tower of Pisa falls 44.1 meters in the first 3.00 seconds of its flight. This can be calculated using the equations v^2 = 2gh and d = 1/2gt^2.

To know more about distance click this link-

brainly.com/question/31713805

#SPJ11

how do animal use upthrust in their daily life​

Answers

Animals use upthrust or buoyancy in a variety of ways in their daily lives. Upthrust is the force that is exerted in a fluid such as water or air when a body is inmmersed in it.

Upthrust explained

Animals use upthrust or buoyancy in a variety of ways in their daily lives. Upthrust is the force that is exerted in a fluid such as water or air when a body is inmmersed in it.

Some animals such as fish use upthrust to move and maintain their position in water. Fish have swim bladder which help them to maintain buoyancy.

Some birds such as pelicans use upthrust to dive and swim in water. They have air sacs filled with air which help to reduce buoyancy and also help their buoyancy.

Insects use upthrust to move in the air.

Overall, animals use upthrust to move and maintain their position.

Learn more about upthrust below.

https://brainly.com/question/23931817

#SPJ1

If energy is transferred to a substance as heat, will the temperature of the substance always increase?

Answers

Not necessarily. The temperature of a substance is a measure of the average kinetic energy of its molecules. When energy is transferred to a substance as heat, the kinetic energy of the molecules increases, which can cause the temperature of the substance to increase.

However, there are some cases where the temperature of a substance may not increase even if energy is transferred to it as heat.

One example is when a substance undergoes a phase change, such as melting or boiling. During a phase change, the energy transferred as heat is used to break the intermolecular forces holding the substance together, rather than increasing the kinetic energy of the molecules.

As a result, the temperature of the substance remains constant during the phase change until it is complete. For example, when ice is heated at its melting point, the temperature remains constant at 0°C until all the ice has melted. Similarly, when water is heated at its boiling point, the temperature remains constant at 100°C until all the water has boiled off.

Another example is when a substance undergoes a chemical reaction. In some cases, the energy transferred as heat can be used to drive an endothermic chemical reaction, which absorbs heat energy from its surroundings. In this case, the temperature of the substance may not increase even though energy is being transferred to it as heat.

Therefore, while heat transfer can cause an increase in temperature of a substance, it is not always the case and depends on the specific circumstances.

Learn more about substance here:

https://brainly.com/question/13320535

#SPJ11

which of the following conditions does not lead to the breakdown of plastic water bottles?

Answers

However, there is one condition that does not lead to the breakdown of plastic water bottles, and that is being buried in landfills.

Plastic water bottles are made of polyethylene terephthalate (PET) and are widely used globally for their convenience and durability. However, environmental concerns have been raised due to the non-biodegradable nature of plastic bottles, which can take hundreds of years to decompose.
Plastic bottles can break down under certain conditions, including exposure to sunlight, high temperatures, and acidic or alkaline environments. Exposure to sunlight can cause photodegradation, leading to the breakdown of the plastic's molecular structure and causing it to become brittle and crumble. High temperatures can accelerate the breakdown process, and acidic or alkaline environments can cause hydrolysis, leading to the breakdown of the plastic's chemical bonds.
In landfills, plastic bottles are typically buried deep beneath the surface, where they are shielded from sunlight and exposure to high temperatures. As a result, plastic bottles in landfills may take hundreds of years to decompose, leading to the accumulation of plastic waste in the environment.
Therefore, it is important to recycle plastic bottles to reduce the amount of waste in landfills and prevent environmental pollution. Recycling plastic bottles can help to conserve natural resources, reduce greenhouse gas emissions, and support the circular economy.

To know more about plastic visit:

https://brainly.com/question/28941393

#SPJ11

F. A concave lens has a focal length of -20 cm. Completely describe the image formed when a 10
di, hi, erect or inverted, magnified or reduced, real or virtual)
cm tall object is: (calculate/specify:
a. 40 cm
b. 70 cm

Answers

a. The magnification is 0.33.  Thus, the image height is 3.3 cm.

b. The magnification is calculated as 0.22, resulting in an image height of 2.2 cm.

How to solve

a. When a 10 cm tall object is placed 40 cm in front of a concave lens with a focal length of -20 cm, the image formed is virtual, erec t, and reduced.

By using the lens formula (1/f = 1/do + 1/di), we can calculate the image distance (di) as -13.3 cm.

Using the lens formula:

1/f = 1/do + 1/di

1/di = -0.075 cm⁻¹

Solving for di, we get:

di = 1 / -0.075 cm⁻¹ = -13.3 cm

M = -di/do = -(-13.3 cm) / (40 cm) = 0.3325

Now, we can find hi:

hi = M * h o = 0.3325 * 10 cm = 3.325 cm

Thus, the image height is 3.3 cm.

b. For a 10 cm object placed 70 cm in front of the concave lens, the image is also virtual, er e ct, and reduced.

Using the lens formula, we find di to be -15.6 cm.

The magnification is calculated as 0.22, resulting in an image height of 2.2 cm.

Read more about image height here:

https://brainly.com/question/10501143

#SPJ1

what is the wavelength of a wave that has a frequency of 1 hz and travels at 300,000 km/s?

Answers

The wavelength of the wave is 300,000,000 meters.

The wavelength of a wave can be calculated using the formula:

wavelength = speed / frequency

In this case, the frequency is given as 1 Hz, and the speed is given as 300,000 km/s.

Converting the speed to meters per second (m/s) by multiplying it by 1000, we get 300,000,000 m/s.

Now we can substitute these values into the formula:

wavelength = 300,000,000 m/s / 1 Hz

Simplifying, we find:

wavelength = 300,000,000 m

Therefore, the wavelength of the wave is 300,000,000 meters.

To know more about wavelength , refer here :

https://brainly.com/question/31143857#

#SPJ11

Which of following statements about the image formed by a single converging lens are true? (There could be more than one correct choice.)
A.The image is always upright. B.The image is always real. C.The image is always virtual. D.The image is always inverted. E.None of the above choices are correct.

Answers

Of the statements given about the image formed by a single converging lens, only D is true.

The image formed by a converging lens is always inverted, meaning that if the object being viewed is right-side up, the image will be upside down.

This is a result of the way light rays are refracted as they pass through the lens.

Statements A, B, and C are all false. The orientation of the image depends on the location of the object relative to the lens, and whether the image is real or virtual depends on the location of the lens and the object.

Real images are formed when light rays actually converge at a point, while virtual images are formed when light rays appear to converge at a point.

The properties of the image formed by a converging lens can be determined using the thin lens equation and the magnification equation.

To know more about converging refer here

brainly.com/question/16401483#

#SPJ11

which process takes more heat: constant volume at temperature increase or constant pressure at the same temperature increase. everything else is held the same

Answers

The answer to this question depends on the specific conditions and properties of the system in question. However, in general, the process that takes more heat is constant pressure at the same temperature increase.

This is because at constant pressure, the volume of the system can change, which means that more heat is needed to increase the temperature of the system by the same amount compared to a system at constant volume.
To understand why this is the case, we can look at the ideal gas law, which states that pressure, volume, and temperature are related by the equation PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the ideal gas constant, and T is temperature. If we hold the number of moles and the gas constant constant, we can see that if the pressure is constant and the temperature increases, the volume of the gas will also increase. This means that more heat is needed to increase the temperature of the gas by the same amount compared to a system at constant volume, where the volume remains constant and the pressure increases with temperature.
In conclusion, at constant pressure, the volume of the system can change, which means that more heat is needed to increase the temperature of the system by the same amount compared to a system at constant volume. Therefore, the process that takes more heat is constant pressure at the same temperature increase.

To know more about pressure visit:
https://brainly.com/question/30673967
#SPJ11

If you lose your grip on a rapidly spinning merry-go-round and fall off, in which direction will you fly?

Answers

If you lose your grip on a rapidly spinning merry-go-round and fall off, you will fly off in a tangent direction to the circular path you were following before falling off.

This is due to the conservation of angular momentum. As you were spinning with the merry-go-round, you had an angular momentum that was directed along the axis of rotation of the merry-go-round. When you fell off, you lost contact with the merry-go-round, which means that you also lost its angular momentum. However, angular momentum must be conserved, so your body will continue to move with the same magnitude of angular momentum in the absence of external forces.'

Since there is no force to change your direction, your angular momentum vector will remain in the same direction, and your body will move in a straight line tangent to the circular path you were following before falling off.

Learn more about spinning here:

https://brainly.com/question/3203455

#SPJ11

when two bodies of different masses collide, the impulses they exert on each other are

Answers

When two bodies of different masses collide, the impulses they exert on each other are determined by the force of the collision and the time it takes for the collision to occur. Impulse is a measure of the change in momentum of an object and is equal to the force multiplied by the time of the collision.

In a collision between two bodies of different masses, the impulse experienced by each body is equal in magnitude but opposite in direction. This means that the force experienced by the lighter body will be greater than the force experienced by the heavier body due to its smaller mass.

The duration of the collision also plays a role in determining the impulse. A longer collision time means a smaller force and a shorter collision time means a larger force. The impulses experienced by both bodies will cause them to move in opposite directions with velocities determined by their masses and the forces exerted on them during the collision.

to know more about collision. click  this link

brainly.com/question/13138178?

#SPJ11

Especially when solving problems containing numerical information,
a. it is safe to assume that all of the information will be needed to solve the problem.
b. it is a good idea to start by trying to figure out how to use the numerical information.
c. you should start by figuring out which information is relevant to the problem.
d. insight will typically produce the fastest, most accurate solution to the problem.

Answers

c. You should start by figuring out which information is relevant to the problem.

It is important to first understand the problem and identify the relevant information before attempting to solve it. Some information provided in a problem may not be necessary for finding the solution, and including it may actually make the problem more complicated. By identifying the key pieces of information needed to solve the problem, one can focus their efforts and avoid unnecessary calculations or steps.

To know more about information click this link -

brainly.com/question/30350623

#SPJ11

a red metal sphere has a charge of 2 coulombs. a blue metal sphere has a charge of -8 coulombs. if the two spheres are brought into contact with each other and then separated, what is the final charge on the two metal spheres?

Answers

After being brought into contact with each other and then separated, the red metal sphere and blue metal sphere will have a final charge of -3 coulombs each

When the red metal sphere with a charge of 2 coulombs is brought into contact with the blue metal sphere with a charge of -8 coulombs, the charges on both spheres will try to balance each other out. This means that the charge will distribute equally between the two spheres.
To calculate the final charge on the two metal spheres, we need to add the initial charges together and divide by two, since the charge is being evenly distributed.
The initial charges on the spheres are 2 coulombs and -8 coulombs, so the total initial charge is -6 coulombs. Dividing this by two gives us a final charge of -3 coulombs on each sphere.
So, after being brought into contact with each other and then separated, the red metal sphere and blue metal sphere will have a final charge of -3 coulombs each. It's important to note that the total charge is conserved in this process, meaning that the total charge of the two spheres before and after the contact remains the same.

To know more about final charge visit:
https://brainly.com/question/30514270
#SPJ11

a) what does it mean to say that the greenhouse effect is like a one-way valve? b) is the greenhouse effect more pronounced for florists' greenhouses or for Earth's surfaces?

Answers

The greenhouse effect is a natural process that occurs on Earth where certain gases in the atmosphere trap heat and keep the planet's surface warm enough to support life.

These gases, such as carbon dioxide and water vapor, act like a blanket around the Earth, preventing the heat from escaping into space. This is like a one-way valve because it allows the sun's energy to come into the Earth's atmosphere, but it doesn't allow all of it to leave.
To answer the second part of your question, it's important to note that the greenhouse effect is more pronounced for Earth's surfaces than for florists' greenhouses. While both situations involve a similar concept of trapping heat, florists' greenhouses are usually designed to regulate the temperature and humidity inside the structure. This means that there is more control over the amount of heat that is retained, whereas on Earth, the greenhouse effect is constantly at work and its effects are much more widespread. Additionally, the Earth's greenhouse effect is influenced by a variety of factors, including human activities such as the burning of fossil fuels and deforestation, which have intensified the effect and contributed to global warming.

To know more about greenhouse effect visit:
https://brainly.com/question/31595505
#SPJ11

which solution will have a lower ph ( be more acidic) 0.1m hcl or 0.1m h2so4 ?

Answers

0.1M HCl will have a lower pH (be more acidic) than 0.1M H2SO4.

The pH of a solution is determined by the concentration of hydrogen ions (H+). In the case of hydrochloric acid (HCl) and sulfuric acid (H2SO4), both are strong acids that dissociate completely in water. However, sulfuric acid (H2SO4) dissociates into two H+ ions per molecule, while hydrochloric acid (HCl) dissociates into only one H+ ion per molecule.

Therefore, for the same concentration (0.1M), H2SO4 will produce twice as many H+ ions as HCl, resulting in a higher concentration of H+ ions and a lower pH. Hence, 0.1M HCl will have a lower pH and be more acidic than 0.1M H2SO4.

To know more about acidic,  refer here:

https://brainly.com/question/29796621#

#SPJ11

an fm radio station broadcasts with a power of 10 kw at a frequency of 101 mhz. a) how many photons does the antenna emit each second?

Answers

The FM radio station emits 1.51 x 10^19 photons per second. To determine the number of photons emitted by the antenna of the FM radio station each second, we need to use the equation that relates energy, frequency, and the number of photons.

The equation is E = hf, where E is energy, h is Planck's constant, and f is frequency.

We can rearrange the equation to solve for the number of photons: N = E/hf.

We know that the power of the FM radio station is 10 kW, which means it emits 10,000 joules of energy per second. We also know that the frequency is 101 MHz, or 101 x 10^6 Hz. Planck's constant is 6.626 x 10^-34 joule-seconds.

Plugging in these values, we get:

N = (10,000 J/s)/(6.626 x 10^-34 J·s x 101 x 10^6 Hz)
N = 1.51 x 10^19 photons/s

Therefore, the FM radio station emits 1.51 x 10^19 photons per second.


To know about photons:

https://brainly.com/question/29413875

#SPJ11

g a simple harmonic oscillator is set into motion with a frequency f by displacing the system an amount x0 and releasing it from rest. if initial displacement is doubled to 2(x0), what is the new frequency?

Answers

A simple harmonic oscillator is set into motion with a frequency f by displacing the system an amount x0 and releasing it from rest. If the initial displacement is doubled to 2(x0), the new frequency will be f/2.

According to the principle of simple harmonic motion, the time period of an oscillation is directly proportional to the square root of the length of the string and inversely proportional to the square root of the tension and linear density of the string. The frequency of oscillation is the reciprocal of the time period. Therefore, if the initial displacement is doubled to 2(x0), the new amplitude will be 2(x0).

When the amplitude of the oscillation is increased, the time period of the oscillation remains the same since the physical parameters of the system do not change. However, the frequency of oscillation changes because it is inversely proportional to the time period. As a result, the new frequency will be f/2.

You can learn more about the frequency at: brainly.com/question/29739263

#SPJ11

based on current evidence, which of the following is the most likely candidate to make up the majority of dark matter? based on current evidence, which of the following is the most likely candidate to make up the majority of dark matter? black holes brown dwarfs faint red stars weakly interacting massive particles (wimps) jupiter-size objects

Answers

Based on current evidence, the most likely candidate to make up the majority of dark matter is weakly interacting massive particles (WIMPs).

WIMPs are hypothetical particles that are predicted by various theories, including supersymmetry, which is an extension of the Standard Model of particle physics.

WIMPs are thought to interact very weakly with normal matter and possess sufficient mass to explain the gravitational effects observed in the universe. Although WIMPs have not yet been directly detected, they are a leading candidate for dark matter based on their theoretical properties and their potential to explain various astrophysical observations.

Other candidates, such as black holes, brown dwarfs, faint red stars, and jupiter-size objects, have been considered but do not currently have as much supporting evidence as WIMPs.

To know more about dark matter here

https://brainly.com/question/29848071

#SPJ4

A 25g bullet is fired into a 2.0 kg block of wood initially at rest. The block and imbedded bullet then start moving at 4.0 m/s. Using the conservation of momentum, find the initial velocity of the bullet.

Answers

Answer:

[tex]\vec v_{0_{b}}=324 \ m/s[/tex]

Conceptual:

Using the idea of momentum conservation to answer this question.

What is momentum?

Momentum is a quantity an object has as it is in motion and is the product of that objects mass and velocity. Momentum is a conservable quantity as long as there are no external forces acting on the system. Momentum is measured in (kg·m²)/s and it is a vector quantity. We can calculate momentum using the following formula.

[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Formula for Momentum:}}\\\\ \vec P=m \vec v\end{array}\right}[/tex]

Step-by-step:

Given:

[tex]m_b=25 \ g \rightarrow 0.025 \ kg\\m_w= 2.0\ kg\\\vec v_{f_{bw}}=4.0 \ m/s[/tex]

Find:

[tex]\vec v_{o_{b}}= \ ?? \ m/s[/tex]

In order to tackle this problem we need to analyze the objects before the collision and after the collision.

The initial momentum of the system:

[tex]\underline{ \vec P_0}\\\\\vec P_{0_{b}}=m_b \vec v_{0_{b}} \rightarrow (0.025)\vec v_{0_{b}}\\\\\vec P_{0_{w}}=m_w \vec v_{0_{w}} \rightarrow (2)(0)\\+ \rule{100}{0.5pt}\\\boxed{\vec P_0= (0.025)\vec v_{0_{b}}}[/tex]

The final momentum of the system:

At this point the bullet is embedded in the wood so we can treat them as one object.

[tex]\underline{\vec P_f}\\\\\vec P_{f_{bw}}=(m_b+m_w) \vec v_{f_{bw}} \rightarrow (.025+2)(4) =8.1\\\\\therefore\boxed{\vec P_{f}=8.1}[/tex]

Momentum is conserved. Thus, the initial momentum of the system must equal the final momentum of the system.

[tex]\vec P_{0}=\vec P_{f}\\\\\Longrightarrow 0.025 \vec v_{0_{b}}=8.1\\\\\Longrightarrow \vec v_{0_{b}}=\frac{8.1}{.025}\\ \\\therefore \boxed{\boxed{\vec v_{0_{b}}=324 \ m/s}}[/tex]

Thus, the bullet's initial velocity was found.

ap world unit 9 what were some causes of the acceleration of innovation? what were some effects of the acceleration of innovation?

Answers

The effects of this acceleration were transformative, leading to the emergence of new economic, social, and cultural systems.


The acceleration of innovation during the AP World Unit 9 was a result of various factors. The first cause was the increased communication and exchange of ideas between different regions and cultures. The Silk Road and Indian Ocean trade routes facilitated the exchange of goods, ideas, and technologies. This led to the spread of knowledge and ideas and enabled people to learn from one another. Additionally, the expansion of empires and the growth of trade networks created a demand for new technologies and goods.
The second cause of the acceleration of innovation was the increased availability of resources. The discovery of new lands and the exploitation of natural resources such as gold, silver, and other minerals provided the resources necessary to fuel innovation. The development of new technologies such as the printing press and the compass also contributed to the acceleration of innovation.
The acceleration of innovation had various effects on societies. One significant effect was the transformation of the global economy. The increased production of goods and the growth of trade networks led to the emergence of new economic systems and the rise of capitalism. Additionally, the expansion of empires and the growth of trade networks led to the spread of cultures and religions.
The acceleration of innovation also had an impact on social structures. The development of new technologies such as the printing press and the compass led to the growth of literacy and the spread of knowledge. This enabled people to question traditional beliefs and systems, leading to the emergence of new ideas and philosophies. The acceleration of innovation also led to the growth of urbanization and the rise of new social classes.
In conclusion, the acceleration of innovation during AP World Unit 9 was driven by various factors such as increased communication, resource availability, and the development of new technologies. The effects of this acceleration were transformative, leading to the emergence of new economic, social, and cultural systems.

To know more about acceleration visit :

https://brainly.com/question/30762941

#SPJ11

Which of the following forces does not have a direct effect on horizontal wind motions?
pressure gradient force
frictional force
gravitational force
Coriolis force

Answers

The gravitational force does not have a direct effect on horizontal wind motions.

The pressure gradient force, frictional force, and Coriolis force are the three primary forces that influence horizontal wind motions.

The pressure gradient force arises due to differences in air pressure between two locations. It causes air to move from areas of higher pressure to areas of lower pressure, resulting in the development of wind.

The frictional force is exerted by the Earth's surface and acts to slow down the wind near the surface. It influences the wind speed and direction close to the ground.

The Coriolis force, on the other hand, is a result of the Earth's rotation and the tendency of objects to move in curved paths in a rotating reference frame. It acts perpendicular to the wind direction and influences the wind's path, causing deflection to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.

While gravity plays a crucial role in maintaining the Earth's atmosphere and other vertical processes, it does not directly impact horizontal wind motions.

Know more about horizontal wind here https://brainly.com/question/31414922#

#SPJ11

The primary coil of a transformer has N1= 250 turns, and its secondary coil has N2 = 1500 turns. If the input voltage across the primary coil is\Delta v= (170 V) sin wt, what rms voltage is developed across the secondary coil?

Answers

Answer:

The rms voltage developed across the secondary coil is 935 V.

This is calculated using the following formula:

V_s = V_p \frac{N_s}{N_p}

where V

s

 is the rms voltage across the secondary coil, V

p

 is the rms voltage across the primary coil, N

s

 is the number of turns in the secondary coil, and N

p

 is the number of turns in the primary coil.

In this case, V

p

=170 V, N

s

=1500 turns, and N

p

=250 turns. Plugging these values into the equation, we get:

V_s = 170 \text{ V} \frac{1500 \text{ turns}}{250 \text{ turns}} = 935 \text{ V}

Therefore, the rms voltage developed across the secondary coil is 935 V.

Explanation:

The rms voltage developed across the secondary coil is 1700 V.

To find the rms voltage developed across the secondary coil of a transformer, we can use the transformer equation:

V2/V1 = N2/N1

where V2 is the voltage across the secondary coil, V1 is the voltage across the primary coil, N2 is the number of turns in the secondary coil, and N1 is the number of turns in the primary coil.

Given:

V1 = 170 V (rms)

N1 = 250 turns

N2 = 1500 turns

Substituting the values into the transformer equation:

V2/170 = 1500/250

V2 = (1500/250) * 170

V2 = 10 * 170

V2 = 1700 V (rms)

Try to know more about voltage :

https://brainly.com/question/32002804

#SPJ2

how much pressure is needed to compress the volume of an iron block by 0.18 % ? express your answer in n/m2 .

Answers

To calculate the pressure needed to compress the volume of an iron block by 0.18%, we need to consider the bulk modulus of the material. Bulk modulus (K) is a measure of a substance's resistance to compressibility and is defined as the ratio of the applied pressure to the fractional volume change. The formula to find the pressure is:

Pressure (P) = Bulk Modulus (K) * (ΔV / V)

where ΔV is the change in volume, and V is the original volume.

For iron, the bulk modulus is approximately 170 GPa (170 x 10^9 N/m²). A volume decrease of 0.18% is represented as a fraction: 0.0018.

Using the formula, we have:

P = 170 x 10^9 N/m² * 0.0018

P ≈ 306 x 10^9 N/m²

The pressure needed to compress the volume of an iron block by 0.18% is approximately 306 GPa, or 306 x 10^9 N/m².

To know more about pressure please visit....

brainly.com/question/30807095

#SPJ11

Which of the following describes an action-reaction pair?

A.
You push down on your shoe, and Earth's gravity pulls down on the shoe.

B.
You push on a car, and the car pushes back on you.

C.
The Moon pulls on Earth, and Earth pulls on the Sun.

D.
A book pushes down on a table, and the table pushes down on the Earth.

Answers

Answer:

The correct answer is B.

1. explain how your observations of the water and washer demonstrate newton’s law of inertia.

Answers

Newton's law of inertia, also known as the first law of motion, states that an object at rest will remain at rest, and an object in motion will continue moving at a constant velocity unless acted upon by an external force.

It describes the concept of inertia, which is the tendency of an object to resist changes in its motion.

In the context of your question regarding water and a washer, we can apply Newton's law of inertia as follows:

Object at rest: If we have a container filled with water and a washer placed on top of the water's surface, the water is initially at rest.

According to Newton's law of inertia, the water will remain at rest unless an external force is applied to it.

Object in motion: If we introduce a force to disturb the water, such as by shaking or tilting the container, the water will begin to move.

Once in motion, the water will continue to move in a straight line at a constant velocity unless acted upon by another force.

Washer on the water's surface: When a washer is placed on the water's surface, it will initially remain stationary due to the water's inertia. The washer resists changes in its motion and follows Newton's law of inertia.

If we suddenly stop shaking or tilting the container, the water's motion will gradually come to a stop due to the effects of friction and the container's shape.

The washer on the water's surface will also stay at rest unless acted upon by an external force.

These observations demonstrate Newton's law of inertia, as they illustrate the tendency of objects, whether at rest or in motion, to maintain their state of motion until acted upon by an external force.

The inertia exhibited by the water and washer aligns with the principles described by Newton's first law of motion.

To know more about Newton's law of inertia refer here

brainly.com/question/15280051#

#SPJ11

metal sphere 1 has a positive charge of 9.00 nc . metal sphere 2, which is twice the diameter of sphere 1, is initially uncharged. the spheres are then connected together by a long, thin metal wire. what are the final charges on each sphere?

Answers

The final charge on sphere 1 is still 9.00 nC, and the final charge on sphere 2 is 36.0 nC.

Since the spheres are connected with a wire, they will have the same electric potential. This means that the charges on both spheres will be redistributed until they are equal.

First, we need to find the final potential of both spheres, which is the same:

V = kq1/r1 = kq2/r2

where k is the Coulomb constant (9x10^9 Nm^2/C^2), q1 is the charge on sphere 1 (9.00 nC), r1 is the radius of sphere 1 (since the diameter is not given, we assume it to be 1), q2 is the charge on sphere 2, and r2 is the radius of sphere 2 (which is twice the radius of sphere 1).

Simplifying the equation, we get:

q2 = (r2/r1)q1 = 4q1

Thus, the final charge on sphere 1 is still 9.00 nC, and the sphere charge on sphere 2 is 36.0 nC.

Learn more about sphere here:

https://brainly.com/question/15044609

#SPJ11

Other Questions
the portion of the renal tubule through which filtrate initially flows is known as the (intro) the amount of life on the ocean floor depends primarily on _________. goddard inc. planned to use $155 of material per unit but actually used $147 of material per unit, and planned to make 1,110 units but actually made 1,000 units. the sales-volume variance for materials is: Identify the role of professional bodies for IT. a patient is treated with a mtx at an infusion of 25 mg/h over 36 hours. what will besteady state concentration of if cl Variable costs are the costs incurred for treating each patient. Normally it consists of supplies such as gloves, needles, syringes, gowns, or other items used in the practice. Different methods exist to assign variable costs. For the Capstone Project, the hospital system will cover variable costs by assigning (or taking) 10% of total reimbursement of each patient visit What is a financial institution that does business over theInternet. A nurse is conducting a primary survey of a client who has sustained life-threatening injuries due to a MVA. Identify the sequence of actions the nurse should take.1) Perform GCS assessment2) Establish IV access3) Open the airway using jaw-thrust maneuver4) determine effectiveness of ventilator efforts5) remove clothing for a thorough assessment under accrual accounting, the event that triggers revenue recognition for the sale of goods is the: For each action, consider the change in pressures and ignore any change in temperature. Does the density of the object increase, decrease, or remain the same?A balloon full of helium rises 1000 feet.a) density of helium decreasesb) density of helium stays the samec) density of helium increases All of the following lead to drug-induced thrombocytopenic purpura. Which occurs first?A) Antibodies and complement react with platelets.B) Antibodies against haptens are formed.C) Drug binds to platelets.D) Platelets are destroyed.E) Purpura occurs on the skin Beliefs about self that organize and guide the processing of self-relevant information is if the correlation between two personality traits is .07, the correlation is considered a Which has more energy? An object with many molecules or an object with a few? Why? Wilson's descriptions of the various types of police include all of the following except which?a. legalisticb. servicec. watchmand. caretaker the repugnance against americanization has led some critics of us cultural influences to call it: the lateral geniculate, medial geniculate, and ventral posterior nuclei are all nuclei of the due to both agnew and nixon leaving office before their terms ended, gerald ford and nelson rockefeller together served as the only persons holding the office of president and vice president (respectively) for whom no one had actually voted. group of answer choices true false is a radar image of lava flows from the volcano ammavaru. why are parts of the image bright in color? wentworth's five and dime store has a cost of equity of 12.5 percent. the company has an aftertax cost of debt of 4.6 percent, and the tax rate is 21 percent. if the company's debt-equity ratio is .85, what is the weighted average cost of capital?