two students sit on a see-saw. archie is a hulking football player with a mass of 120 kg. clementine is a dainty cheerleader with a mass of 40 kg. the see-saw is 3.5 m in total length with the fulcrum at the center. if clementine sits at the end on one side, where must archie sit relative to the center to keep the see-saw balanced

Answers

Answer 1

Answer:

Archie must sit 0.58 m relative to the center to keep the see-saw balanced

Explanation:

Given the data in the question;

Mass of Archie [tex]m_{a}[/tex] = 120 kg

Mass of clementine [tex]m_{c}[/tex] = 40 kg

total length of see-saw L = 3.5 m

as illustrated on the image below, Fulcrum is at the center,

suppose Archie sits at a distance x  from center then for balancing, we will have;

[tex]m_{a}[/tex] × x = [tex]m_{c}[/tex] × ( one end = 3.5/2 = 1.75)

so we substitute

120kg × x = 40kg × 1.75m

x12okg = 70 kg.m

x = 70 kg.m / 120 kg

x = 0.58 m

Therefore, Archie must sit 0.58 m relative to the center to keep the see-saw balanced

Two Students Sit On A See-saw. Archie Is A Hulking Football Player With A Mass Of 120 Kg. Clementine

Related Questions

Two balls are thrown against a wall with the same velocity. The first ball is made of rubber and bounces straight back with some non-zero speed. The second ball is made of clay and sticks to the wall after impact. If we assume the collision time was the same for each ball, which ball experienced a greater average acceleration during the collision with the wall? A. the average acceleration was the sameB. the clay ball C. there is not enough information D. the rubber ball

Answers

Answer:

A. the average acceleration was the same

Explanation:

Acceleration is calculated by finding the difference of the initial velocity from the final velocity (on impact, usually 0) and then dividing by the amount of time that took place. If we assume that both balls were thrown at the same initial force, and ended up hitting the wall at the same time then we can say that the average acceleration was the same. If the initial velocity was not the same then we would need the initial velocity of each ball in order to calculate the acceleration of each object and determine which had a greater acceleration.

In July 2015, Oregon State University, the National Oceanic and Atmospheric Administration, and the Coast Guard cooperated to send a hydrophone into Challenger Deep, the deepest part of the Mariana Trench. The titanium shelled recording device withstood the pressure 10,994 meters (nearly 7 miles!) under the ocean's surface. The hydrophone recorded 23 days of audio from the deepest part of the ocean floor. If the spherical hydrophone has a radius of 10 cm, what is the total force exerted on the titanium shell by the ocean water

Answers

Answer:

Explanation:

Pressure due to water column as deep as 10994 meters can be given by the following expression

Pressure = h d g , where h is depth of water , d is density of water and g is acceleration due to gravity .

Pressure = 10994 x 10³ x 9.8

= 10.77 x 10⁷ N / m²

Pressure will act on curved surface of the spherical shell , the effective surface area will be π R² where R is radius of the surface .

Effective surface = 3.14 x 0.1²

= .0314 m²

Total force = pressure due to water column x effective surface

= 10.77 x 10⁷  x .0314 N.

= 33.82 x 10⁵ N .

The driver of a 3000 lb. car, coasting down a hill, sees a red light at the bottom, and must stop. His speed when he applies the brakes is 60 mph, and he is 100 feet (vertically) above the bottom of the hill. (a)How much energy as heat must be dissipated by the brakes if we neglect wind resistance and other frictional effects

Answers

Answer:

Explanation:

60 mph = 60 x 1760 x 3 / (60 x 60) ft /s

speed of car , v = 88 ft /s

kinetic energy of car = 1/2 m v²

= .5 x 3000 x 88²

= 11616 x 10³ poundal - foot

Potential energy = mgh

= 3000 x 32 x 100

=  9600 x 10³ poundal - foot

Total energy = potential energy + kinetic energy

= ( 11616 + 9600 )x 10³

= 21216 x 10³ poundal - foot .

This energy is dissipated as heat when brakes are applied on the car to stop the car .

A box of bananas weighing 51.0 N rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.46 and the coefficient of kinetic friction is 0.23. Part A If no horizontal force is applied to the box and the box is at rest, how large is the frictional force exerted on the box by the surface

Answers

static friction force = The coefficient of static friction * normal force

static friction force = 0.46 * 51 = 23.46 N

kinetic friction force = The coefficient of kinetic friction * normal force

kinetic friction force = 0.23 * 51 = 11.73 N

the applied force acting on the object must be more than 23.5 N if the object was stationary to move it and must be more than 11.7 N during the movement to keep the object moving

how can you rewrite the force formula (f=ma) to solve the acceleration?​

Answers

a=0.5 Nkg=0.5 kg⋅m/s2kg=0.5 m/s2

The force formula can be rewritten  to solve the acceleration as:

acceleration = force/mass.

What is acceleration?

Acceleration is rate of change of velocity with time. Due to having both direction and magnitude, it is a vector quantity. Si unit of acceleration is meter/second² (m/s²).

What is force?

The definition of force in physics is: The push or pull on a massed object changes its velocity. An external force is an agent that has the power to alter the resting or moving condition of a body. It has a direction and a magnitude.

From Newton's 2nd law of motion, we can write that:

Force = mass × acceleration

acceleration = force/mass.

Hence, the force formula can be rewritten  to solve the acceleration as:

acceleration = force/mass.

Learn more about acceleration here:

brainly.com/question/12550364

#SPJ2

) A 73-mH solenoid inductor is wound on a form that is 0.80 m long and 0.10 m in diameter. A coil having a resistance of is tightly wound around the solenoid at its center. The mutual inductance of the coil and solenoid is At a given instant, the current in the solenoid is and is decreasing at the rate of At the given instant, what is the induced current in the coil

Answers

Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil

Answer:

6.169 μA

Explanation:

Formula for induced EMF is given by the equation;

EMF = M(di/dt). We are given;

di/dt = 2.5 A/s

M = 19μH = 19 × 10^(-6) H

Thus;

EMF = 19 × 10^(-6) × 2.5.

EMF = 47.5 × 10^(-6) V

Formula for current is;

i = EMF/R. R is resistance given as 7.7 ohms.

Thus; i = 47.5 × 10^(-6)/7.7

i = 6.169 μA

Which formula is used to find an objects acceleration

Answers

Answer:

a=∆v/∆t

Explanation:

The definition of Acceleration is the change in velocity in a given time. So this means you first calculate ∆v (Change in velocity), and you calculate ∆t which is the time taken to apply that change in velocity. Then you find a= ∆v/∆t. This gives us the equation of Acceleration.

Answer:

C. a=∆v/∆t

Explanation:

A major source of water pollution comes from that washes chemicals and other pollutants from improperty managed land.

Answers

The answer to this would be B

A pendulum has a period of 5.14s and a length of 0.25m. What is the acceleration
due to gravity? *

Answers

Answer:

Acceleration due to gravity, g = 2.68m/s²

Explanation:

Given the following data;

Period = 5.14s

Length = 0.25m

To find acceleration due to gravity, g;

[tex] Period, T = 2 \pi \sqrt {lg} [/tex]

Substituting into the equation, we have;

[tex] 5.14 = 2*3.142 \sqrt {0.25g} [/tex]

[tex] 5.14 = 6.284 \sqrt {0.25g} [/tex]

[tex] \frac {5.14}{6.284} = \sqrt {0.25g} [/tex]

[tex] 0.8180 = \sqrt {0.25g} [/tex]

Taking the square of both sides

[tex] 0.8180^{2} = 0.25g [/tex]

[tex] 0.6691 = 0.25*g[/tex]

[tex] g = \frac {0.6691}{0.25} [/tex]

Acceleration due to gravity, g = 2.68m/s²

Tasks
Task 2 - Compare and contrast the use of D'Alembert's principle with
the principle of conservation of energy to solve an
engineering problem
A motor vehicle having a mass of 800 kg is at rest on an incline of 1 in 8 when the
brakes are released. The vehicle travels 30 m down the incline against a constant
frictional resistance to motion of 100 N where it reaches the bottom of the slope.
a) Using the principle of conservation of energy, calculate the velocity of the
vehicle at the bottom of the incline.
b) Using an alternative method that does not involve a consideration of energy,
cacluate the velocity of the vehicle at the bottom of the incline.
c) Discuss the merits of the two methods you have used for parts a) and b) of
this question. Justify the use of an energy method for these types of
problems.​

Answers

Answer:

NE DIYON INGILIZ MISIN SEN

An electron moves from point i to point f, in the direction of a uniform electric field. During this motion:Group of answer choicesthe work done by the field is positive and the potential energy of the electron-field system increasesthe work done by the field is negative and the potential energy of the electron-field system increasesthe work done by the field is positive and the potential energy of the electron-field system decreasesthe work done by the field is negative and the potential energy of the electron-field system decreasesthe work done by the field is positive and the potential energy of the electron-field system does not change

Answers

Answer:

the work done by the field is positive and the potential energy of the electron field system decreases

Explanation:

This exercise asks to find the work and the potential energy of an electron in an electric field.

Work is defined by

         W = F .d = F d cos θ

         

the electric force is

          F_e = q E

         W = q E d cos θ

         

since the charge of the electron is negative the force is in the opposite direction to the electric field

          W = - e E d

we select the direction to the right is positive, point i is to the left of point f,

therefore the work moving from point i to point F has two possibilities

* The electric field lines go from i to f point , so that point i is on the side of the positive charges, so the electron approaches them, This movement is opposite to that indicated

* the field line reaches point i, this implies that the charges are negative, so the electrioc field is then negativeand the electron charge is negative too.  The electron moves away from this point, this is in accordance with the indicated movement

 

In the latter case the electric field lines go from f to i point, therefore the Work is positive

Now let's examine the potential energy

            ΔU = - q E .d

so we see that this definition is related to work,

            ΔU = -W

Therefore, as the work is positive, the power energy must decrease

When reviewing the different answers, the correct ones are:

the work done by the field is positive and the potential energy of the electron field system decreases

The work done by the electron while moving from point [tex]i[/tex] to point [tex]f[/tex] in the direction of uniform electric field is negative and the potential energy of the electron increases.

An electron moves from point i to point f, in the direction of a uniform electric field, then  the potential energy of the electron can be calculated s given below.

[tex]\Delta V=-qEd[/tex]

Where [tex]\Delta V[/tex] is the potential energy, [tex]E[/tex] is the electric field, [tex]q[/tex] is the charge and [tex]d[/tex] is the displacement of the electron.

The work done by the electron in the uniform electric field can be calculated as,

[tex]W = F\times d \times cos\theta[/tex]

Where [tex]W[/tex]is the work done by electron, [tex]F[/tex] is the electric force, [tex]d[/tex] is the displacement of the electron and  for uniform electric field, the value of [tex]\theta[/tex] is zero.

Hence  [tex]W=F\times d\times 1\\W=F \times d[/tex]

Electric force  [tex]F = q E[/tex]

By substituting the value of electric force on the above formula,

[tex]W = qEd[/tex]

Hence, the relation between the work done the electron in an uniform electric field and potential energy of the electron can be given below.

[tex]W = -\Delta V[/tex]

The work done by the electron is negative and the potential energy of the electron increases.

For more information, follow the link given below.

https://brainly.com/question/8666051

An electric charge at rest produce

Answers

Answer:

Charge at rest only produces electric field. Moving charge produces both electric field and magnetic field.

plz follow me

A heat pump is used to heat a building. The external temperature is lower than the internal temperature. The pump's coefficient of performance is 3.70, and the heat pump delivers 7.27 MJ as heat to the building each hour. If the heat pump is a Carnot engine working in reverse, at what rate must work be done to run it

Answers

Answer:

Heat pump needs 1.965 megajoules each hour to run.

Explanation:

The Coefficient of Performance ([tex]COP[/tex]), no unit, of a Carnot's heat pump is:

[tex]COP = \frac{Q_{H}}{W}[/tex] (1)

Where:

[tex]Q_{H}[/tex] - Heat received by the building, measured in megajoules.

[tex]W[/tex] - Work needed to run the heat pump, measured in megajoules.

If heat pump is a Carnot engine working in reverse, then the amount of work needed to run the heat pump is the least possible work. If we know that [tex]Q_{H} = 7.27\,MJ[/tex] and [tex]COP = 3.70[/tex], then the amount needed by the heat pump each hour is:

[tex]W = \frac{Q_{H}}{COP}[/tex]

[tex]W = \frac{7.27\,MJ}{3.70}[/tex]

[tex]W = 1.965\,MJ[/tex]

Heat pump needs 1.965 megajoules each hour to run.

If the coefficient of kinetic friction is 0.43 for a box sliding across your lab table and the
box weighs 7.4 N, what is the force of kinetic friction?

Answers

Answer:

3.2N

Explanation:

Given parameters:

Coefficient of kinetic friction  = 0.43

Weight of box  = 7.4N

Unknown:

Force of kinetic friction  = ?

Solution:

The force of kinetic friction is given as:

        Force of kinetic friction  = UN

U is the coefficient of friction

N is the weight

  Force of kinetic friction  = 0.43 x 7.4  = 3.2N

What must the charge (sign and magnitude) of a particle of mass 1.48 g be for it to remain stationary when placed in a downward-directed electric field of magnitude 640 N/C

Answers

Answer:

[tex]q=-2.26\times 10^{-5}\ C[/tex]

Explanation:

Given that,

The mass of a particle, m = 1.48 g = 0.00148 kg

The electric field, E = 640 N/C

We need to find the charge of the particle when placed in a downward-directed electric field.

The force of gravity is balanced by the electric force such that,

mg = qE

Where

q is the charge of the particle

[tex]q=\dfrac{mg}{E}\\\\q=\dfrac{0.00148\times 9.8}{640}\\\\q=2.26\times 10^{-5}\ C[/tex]

q must be negative, the force must be upward (opposite direction of the electric field).

Which object would have the greatest acceleration?

Answers

Answer:

D

Explanation:

A and C are balanced, B has a resultant force of 5N right, and D has a resultant force of 20N right.

Fusion probability is greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by accelerating the nuclei toward one another. Calculate the potential energy of two singly charged nuclei separated by 1.00 x 10-12 m by finding the voltage of one at that distance and multiplying by the charge of the other.

Answers

Answer:

the Potential Energy is 2.304 × 10⁻¹⁶ J

Explanation:  

Given the data in the data in the question;

The expression for the electric potential energy between the charges can be expressed as follows;

PE = qV ------equ 1

where q is the charge and V is the electric potential

Also the formula for electric potential due to point a point in a field is;

V = kq /  r -------equ 2

where k is the electrostatic constant and r is the distance form the charged particle

input equation 2 into 1

PE = q × kq /  r

PE = kq²/r ------- equ 3

so we substitute into equation 3; 1.00×10⁻¹² for r, 9.00×10⁹ for k( constant ) and 1.60×10⁻¹⁹ for q( charge )

PE = ((9.00×10⁹) (1.60×10⁻¹⁹)²) / 1.00×10⁻¹²

PE = 2.304 × 10⁻²⁸ / 1.00×10⁻¹²

PE = 2.304 × 10⁻¹⁶ J

Therefore, the Potential Energy is 2.304 × 10⁻¹⁶ J

Two kilograms of air is contained in a rigid wellinsulated tank with a volume of 0.6 m3 . The tank is fitted with a paddle wheel (stirrer) that transfers energy to the air at a constant rate of 10 W for 1h. If no changes in kinetic or potential energy occur, determine a) The specific volume at the final state, in m3 /kg. b) The energy transfer by work, in kJ. c) The change in specific internal energy of the air, in kJ/kg.

Answers

Answer:

[tex]0.3\ \text{m}^3/\text{kg}[/tex]

[tex]36\ \text{kJ}[/tex]

[tex]18\ \text{kJ/kg}[/tex]

Explanation:

V = Volume of air = [tex]0.6\ \text{m}^3[/tex]

P = Power = 10 W

t = Time = 1 hour

m = Mass of air = 2 kg

Specific volume is given by

[tex]v=\dfrac{V}{m}\\\Rightarrow v=\dfrac{0.6}{2}\\\Rightarrow v=0.3\ \text{m}^3/\text{kg}[/tex]

The specific volume at the final state is [tex]0.3\ \text{m}^3/\text{kg}[/tex]

Work done is given by

[tex]W=Pt\\\Rightarrow W=10\times 60\times 60\\\Rightarrow W=36000\ \text{J}=36\ \text{kJ}[/tex]

The energy transfer by work, is [tex]36\ \text{kJ}[/tex]

Change in specific internal energy is given by

[tex]\Delta u=\dfrac{Q}{m}+\dfrac{W}{m}\\\Rightarrow \Delta u=0+\dfrac{36}{2}\\\Rightarrow \Delta u=18\ \text{kJ/kg}[/tex]

The change in specific internal energy of the air is [tex]18\ \text{kJ/kg}[/tex]

What composes about 71% of Earth's outermost layer?
A
oceanic crust
B
asthenosphere
С
lithosphere
D
continental crust

Answers

Answer:

A. oceanic crust

Explanation:

I remember that the ocean is said to cover 71% of the Earth's surface. If you look at a globe, notice that most all the surface is blue like the ocean.

One other note: the surface is the Earth's outermost layer. Think of it this way: surface implies the top of something, something exposed to the outside.

Therefore, the answer is A. Hope this helps you understand the question more! Have a great day, 'kay?

A skydiver is using wind to land on a target that is 50 m away horizontally. The skydiver starts from a height of 70 m and is falling vertically at a constant velocity of 7.0 m/s downward with their parachute open (terminal velocity). A horizontal gust of wind helps push them towards the target. What must be their total speed if they want to just hit their target?

Answers

Answer:

Answer:

15.67 seconds

Explanation:

Using first equation of Motion

Final Velocity= Initial Velocity + (Acceleration * Time)  

v= u + at

v=3

u=50

a= - 4 (negative acceleration or deceleration)  

3= 50 +( -4 * t)

-47/-4 = t

Time = 15.67 seconds

We have that the speed  must be at the speed below if they want to just hit their target

From the Question we are told that

Distance [tex]d=50m[/tex]

Height [tex]h=70m[/tex]

Constant Velocity [tex]v= 7.0 m/s[/tex]

Generally the equation for the time  is mathematically given as

[tex]T=\frac{h}{v}\\\\T=\frac{70}{7}\\\\T=10s[/tex]

Therefore

The velocity required to make horizontal movement is

[tex]V=\frac{d}{T}\\\\V=\frac{50}{10}\\\\V=5m/s[/tex]

Given that

Velocity on the Vertical axis is

[tex]v_y=7m/s[/tex]

Velocity on the  horizontal axis is

[tex]v_x=5m/s[/tex]

Therefore resultant speed

[tex]v_r=\sqrt{v_x^2+V_y^2}\\\\v_r=\sqrt{(5)^2+(7)^2}[/tex]

[tex]v_r=8.6023m/s[/tex]

In conclusion

[tex]v_r=8.6023m/s[/tex] must be their total speed if they want to just hit their target

For more information on this visit

https://brainly.com/question/17127206

To have the highest magnification in a telescope, the focal length of the objective lens should be _________ and the focal length of the eyepiece lens should be ________. To have the highest magnification in a telescope, the focal length of the objective lens should be _________ and the focal length of the eyepiece lens should be ________. small; small small; large large; small large; large

Answers

Answer:

Large; small.

Explanation:

A telescope can be defined as an optical instrument or device which comprises of a curved mirror and lenses used for viewing distant objects i.e objects that are very far away such as stars and other planetary bodies. The first telescope was invented by Sir Isaac Newton.

To have the highest magnification in a telescope, the focal length of the objective lens should be large and the focal length of the eyepiece lens should be small.

This ultimately implies that, the eyepiece lens has a small focal length while the objective lens has a large focal length.

. Why is it harder to stop an elephant accelerating at 1m/s2 than a rabbit accelerating at 1m/s2
(10 Points)
the elephant has more mass
the rabbit is faster
the rabbit has more mass
the elephant is faster

Answers

Answer:

this is about momentum p=mv

A, the elephant has more mass

a long solid rod 4.5 cm in radius carries a uniform volume charge density. if the electric field strength at the surface of the rod (not near either end) is 16 kn/c, what is the volume charge density

Answers

Answer:

6.29 μC/m³

Explanation:

Volume charge density is the quantity of charge per unit volume.

The direction of the electric field was not specified, therefore the volume charge density (ρ) is given by:

2πRLE = ρπR²L/ε₀

ρ = 2Eε₀ / R

Where E = electric field strength = 16 kN/C = 16 * 10³ N/C, R = radius of rod = 4.5 cm = 0.045 m, ε₀ = relative permittivity of free space = 8.85 * 10⁻¹² C² / Nm²

Therefore:

ρ = 2(16 * 10³ N/C)(8.85 * 10⁻¹² C²/Nm²) / 0.045 m = 6.29 * 10⁻⁶ C/m³

ρ = 6.29 μC/m³

A car has a mass of 2000 kg and accelerates at 2 meters per second per second. What is the magnitude of the net force exerted on the car?

Answers

Hello!

[tex]\large\boxed{4000 N}[/tex]

Use the following equation to solve for the net force (N):

∑F = m × a

Plug in the given mass (kg) and speed (m)

∑F = 2000 * 2

Simplify:

∑F = 4000 N

It takes 52,000 Joules to heat a cup of coffee to boiling from room temperature. How long a piece of 20 cm wide Aluminum foil would it take to make a capacitorlarge enoughto hold this amount of energy if one were to use plastic garbage bag with a 2.6 x 10-5m thickness that breaks down at 610 volts as a dielectric

Answers

Answer:

L = 1.11 x [tex]10^{6}[/tex] m, is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.

Explanation:

Solution:

Data Given:

Heat Energy = 52000 J

Dielectric Constant of the plastic Bag = 3.7 = K

Thickness = 2.6 x [tex]10^{5}[/tex] m =d

V = 610 volts

A = width x Length

width = 20 cm = 20 x [tex]10^{-2}[/tex] m

Length = ?

So,

we know that,

U = 1/2 C Δ[tex]v^{2}[/tex]

U = 52000 J

C = ?

V = 610 volts'

So,

U = 1/2 C Δ[tex]v^{2}[/tex]  

52000 J = (0.5) x (C) x ([tex]610^{2}[/tex])

C = 0.28 F

And we also know that,

C = [tex]\frac{K*E*A}{d}[/tex]

E = 8.85 x [tex]10 ^{-12}[/tex]

K = 3.7

A = 0.20 x L

d = 2.6 x [tex]10^{5}[/tex] m

Plugging in the values into the formula, we get:

0.28 = [tex]\frac{3.7 * 8.85 .10^{-12} * (0.20 . L) }{2.6 . 10^{5} }[/tex]

Solving for L, we get:

L = 1.11 x [tex]10^{6}[/tex] m,

is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.  

HELP ASAP PLS

A balloon with a positive charge will stick to a wall that has a negative charge.
What force causes this?
A. Gravity
B. Electric force
C. Magnetic force
D. Air gesistance

Answers

Answer : B. electric Force

The reason that the balloon will stick to the wall is because the negative charges in the balloon will make the electrons in the wall move to the other side of their atoms (like charges repel) and this leaves the surface of the wall positively charged.


If I’m wrong I’m sorry :(

The superheroine Xanaxa, who has a mass of 65.1 kg , is pursuing the 78.7 kg archvillain Lexlax. She leaps from the ground to the top of a 153 m high building then dives off it and comes to rest at the bottom of a 17.5 m deep excavation where she finds Lexlax and neutralizes him. Does all this bring about a net gain or a net loss of gravitational potential energy

Answers

Answer:

There is net loss of gravitational energy .

Explanation:

When Xanaxa is on the ground , her potential energy is assumed to be zero . When she leaps to a height of 153 m , she gains gravitational energy . When she dives and reaches the surface , she loses potential energy and on reaching the ground her potential energy becomes zero . When she further goes down inside ground to a depth of 17.5 m , she loses potential energy further . Her potential energy becomes less than zero or negative .

Ultimately her potential energy changes from zero to negative in the whole process . So there is net loss of potential energy .

Given a volume of 1000. Cm^3 of an ideal gas at 300 k, what volume would iy occupy at a temperature of 600 k

Answers

Answer:2000 cm³

Here, pressure remains constant.

So, b the gas law

V/V' = T/ T'

1000 / V' = 300 / 600

V' = 2000 cm³

Explanation:also pls mark brainliest

Substance X is in a chamber (Chamber 1) containing 10L of fluid. The concentration of substance X in this chamber is 100mmol/L. A solid division separates this chamber from another chamber (Chamber 2) containing 5L of fluid. You remove this division leaving only a membrane separating the two chambers. This membrane is permeable to Substance X and nothing else. Which of the following statements are true?There are several answers to this question, but only one is giving me issues. One of the correct answers is: "The concentration of Substance X in Chamber 2 will never exceed 66mmol/L." I do not understand how they got this as I did a ratio and came up with 50 mmol/L instead. Could someone please point out how it is 66?

Answers

Answer:

Explanation:

concentration of substance X in chamber 1 = 100 mmol/L

total volume of chamber 1 = 10 L

total mass of substance X in chamber 1 = 100 x 10 mmol = 1000 mmol .

When the two chamber is joined , total volume of both the chamber

= 10 L + 5 L = 15 L .

In the volume of 15 litre , substance x is uniformly distributed because it is permeable .

concentration of substance X = mass of X / total volume = 1000 mmol / 15

= 66.67 mmol / L

Hence ,

"The concentration of Substance X in Chamber 2 will never exceed 66mmol/L."

Which is a valid velocity reading for an object?
45 m/s
45 m/s north
O 0 m/s south
O 0 m/s

Answers

Answer:45 m/s north

Explanation:

Other Questions
Question 1 (1 point)George Washington was at a disadvantage because the Constitution did not provideabinformation about the Supreme Court.a framework for the new government.information about Congress.details about how the President should govern.A Find the volume of the oblique rectangular prism with length 9 cm, width 2 cm, and height 4 cm. Which of the following BEST expresses Ponyboy's point of view abouthow the Greasers compare to the Socs?NEED HELP LIKE NOW PLZ Which graph above shows an objects acceleration? Why did you choose that graph(explain why) 2.There are 12 girls and 38 boys in the 4thGrade at an Elementary School. Of thesestudents, 9 girls and 3 boys are in the artclub. What percentage of the fourth gradersat this Elementary School are in the art club? Which political issue does country music promote? URGENT PLZ HURRY :) WILL BE APPRECIATED What countries or nations did not take part in colonization and why? It started to rain. The coach cancelled soccer practice.Which is the best way to combine these sentences?A Due to the rain which was the reason the coach cancelled soccer practice.B The coach after the rain started, cancelled soccer practice.C After the rain started, the coach cancelled soccer practice.D The soccer practice was cancelled by the coach which was caused by the rain. Pls help Ill brainlest for the right answer What is the most specific name of the quadrilateral shown below?quadrilateralparallelogramrectanglesquare Will mark brainliest if someone answers this Why might different types of fossils be found in rock layers that come before and after a rock layer that contains no fossils? WILL GIVE BRAINLIEST Which of the following sentences is an example concerns smerne might have at lunchtime?I would be to have brocoll stead of fres,I wonder if my chicken is ooked all the wayI have never ordered smething I did not ke,of ordered a salad with the dressing on the site Given y = 2(x-3) and a domain of (-3,-2 and 5). Find the range. A cone has a radius of 24 cm and a volume of 1920 cm3. What is the volume of a similar cone with a radius of 18 cm? ________was an international terrorist group formed by Osama bin Laden, with the purpose of opposing non-Islamicgovernments with force and violence.-Al Qaeda-Shiltes-Taliban-Jihad Rewrite the sum as a product of two factors: 2x + (5 + x) + 5 * 2. * (you have to add sensory detail to the sentence and then right what the sound, smell, and sights are in the new sentence.)1. Boring Sentence: English class is fun. Sensory details added: ______________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________ Sights: ______________________________Sounds: _____________________________ Smells: ______________________________ What were the causes and consequences of United States westward expansion?