We are given the definite integral ∫_(1/6)^(2/6) dx/(x √(36 x^2-1)) and are asked to evaluate it using a change of variables or the table method.
To evaluate the given integral, we can use the substitution method by letting u = 6x. This implies du = 6dx. We can rewrite the integral as ∫_(1/6)^(2/6) (6dx)/(6x √(36 x^2-1)), which simplifies to ∫_1^2 (du)/(u √(u^2-1)). Now, we have a familiar integral form where the integrand involves the square root of a quadratic expression. Using the table of integrals or integrating by using trigonometric substitution, we can evaluate the integral as 2 arcsin(u) + C, where C is the constant of integration. Substituting back u = 6x, we have the final result as 2 arcsin(6x) + C.
To know more about integrals here: brainly.com/question/31059545
#SPJ11
Net Present Value (6 points total) The city of Corvallis is deciding whether or not to undertake a project to improve the quality of the city's drinking water. The project would require an immediate payment of $20,000 to install a new filtration system. This filtration system will require yearly maintenance costs of $1,000 after the initial period. The filtration system will be operational for 5 years. The benefits in first year are $500. At the end of year 2, the benefit received is $4000. For years 3, 4, and 5, the benefit received is $7,000. Assume that the discount rate is 6%. a. Write out the general mathematical formula you would use to determine the net present value (NPV) of this project. (2 points) b. Plug-in the appropriate numbers into the formula from above. You DO NOT need to calculate the answer, simply plug in the values in the appropriate places. (2 points) c. What criteria should the city use to decide if they should install the filtration system or not?
a. The formula for NPV is NPV = (Benefits - Costs) / (1 + Discount Rate)^n.
b. Plugging in the appropriate values, Benefits: $500 (Year 1), $4,000 (Year 2), and $7,000 (Years 3-5); Costs: $20,000 (initial payment), $1,000 (yearly maintenance from Year 2); Discount Rate: 6%.
c. The city should use a positive NPV as a criterion to decide whether to install the filtration system or not.
a. The general mathematical formula to determine the net present value (NPV) of this project is as follows:
NPV = (Benefits - Costs) / (1 + Discount Rate)^n
Where:
Benefits represent the cash inflows or benefits received from the project in each period.
Costs refer to the initial investment or cash outflows required to undertake the project.
Discount Rate is the rate used to discount future cash flows to their present value.
n represents the time period (year) when the cash flow occurs.
b. Plugging in the appropriate numbers into the formula:
Benefits: $500 in Year 1, $4,000 at the end of Year 2, and $7,000 for Years 3, 4, and 5.
Costs: Initial payment of $20,000 and yearly maintenance costs of $1,000 from Year 2 onwards.
Discount Rate: 6%.
n: 1 for Year 1, 2 for Year 2, and 3, 4, and 5 for Years 3, 4, and 5, respectively.
c. The city should use the criteria of positive net present value (NPV) to decide whether to install the filtration system or not. If the NPV is greater than zero, it indicates that the present value of the benefits exceeds the costs, suggesting that the project is financially favorable and would generate a positive return.
Conversely, if the NPV is negative, it implies that the costs outweigh the present value of the benefits, indicating a potential financial loss. Therefore, a positive NPV would indicate that the city should proceed with installing the filtration system, while a negative NPV would suggest not undertaking the project.
For more question on NPV visit:
https://brainly.com/question/13228231
#SPJ8
Note this question belongs to the subject Business.
Which ONE of the following statements is TRUE with regards to sin (xy) lim (x,y)-(0.0) x2+y
A. The limit exists and is equal to 1.
B. The limit exists and is equal to 0.
C. Along path x=0 and path y=mx, limits are not equal for m40, hence limit does not exist.
D. None of the choices in this list.
E. Function is defined at (0,0), hence limit exists.
The correct statement is C. Along the path x=0 and path y=mx, the limits are not equal for m≠0, indicating that the limit does not exist.
We are given the function f(x, y) = sin(xy) and we need to determine the limit of f(x, y) as (x, y) approaches (0, 0).
To analyze the limit, we can consider different paths approaching (0, 0). Along the path x=0, we have f(x, y) = sin(0) = 0 for all y. Along the path y=mx (where m≠0), we have f(x, y) = sin(0) = 0 for all x.
Since the limits along the paths x=0 and y=mx are both 0, but not equal for m≠0, the limit does not exist. Therefore, statement C is true.
To know more about limits click here: brainly.com/question/12211820
#SPJ11
(Linear Systems with Nonsingular Square Matrices). Consider the linear system -321 -3x1 -21 -3x2 +2x3 +2x4 = 1 +22 +3x3 +2x4 = 2 +2x2 +23 +24 = 3 +2x2 +3x3 -24 = -2 2x1 (i) Please accept as a given that the matrix of the system is nonsignular and its inverse matrix is as follows: -1 -3 -3 2 2 7/19 16/19 -28/19 31/19 -5/19 4/19 -3 1 3 2 1/19 -1/19 -1 2 1 1 1/19 3/19 -4/19 4/19 2 2 3 -1, 25/19 -39/19 52/19 5/19 (ii) Use (i) to find the solution of the system (5.1). = (5.1)
The solution to the linear system (5.1) can be found using the given inverse matrix. The solution is x1 = 97/16, x2 = 31/16, x3 = -1/48, and x4 = -1/16.
We are given the inverse matrix of the coefficient matrix in the linear system. To find the solution, we can multiply the inverse matrix by the column vector on the right-hand side of the system.
By multiplying the given inverse matrix with the column vector [1, 2, 3, -2], we obtain the solution vector [97/16, 31/16, -1/48, -1/16].
Therefore, the solution to the linear system (5.1) is x1 = 97/16, x2 = 31/16, x3 = -1/48, and x4 = -1/16.
This means that the values of x1, x2, x3, and x4 satisfy all the equations in the system and provide a consistent solution.
To learn more about inverse matrix visit:
brainly.com/question/14405737
#SPJ11
A researcher was interested in examining whether there was a relationship between college student status college student/non-college student) and voting behavior (vote/didn't vote). Two-hundred and twenty participants whose college student status was ascertained (120 college students and 100 non-students) were asked whether they voted in the last presidential election. The enrollment status and voting behavior of the two groups is presented in the table below
Here are the presented enrollment status and voting behavior of the two groups: College Student | Vote | Did not vote Yes | 80 | 40No | 40 | 60Non-Student | Vote | Did not vote Yes | 60 | 40No | 20 | 80The researcher was interested in examining whether there was a relationship between college student status (college student/non-college student) and voting behavior (vote/didn't vote).
Here, we are interested in examining whether there was a relationship between two categorical variables, namely college student status (college student/non-college student) and voting behavior (vote/didn't vote).Therefore, we need to perform a chi-square test for independence.
Here's how we can solve it :
Null hypothesis:
H0:
There is no significant association between college student status and voting behavior .
Level of significance:α = 0.05Critical value for the chi-square test:
With a degree of freedom (df) of (2 - 1)(2 - 1) = 1 and a level of significance of 0.05, the critical value for the chi-square test is 3.84 (from the chi-square distribution table).
Calculation :
We will use the formula for the chi-square test to calculate the test statistic: χ² = Σ[(O - E)²/E]
where ,O = Observed frequency E = Expected frequency
We can obtain the expected frequency for each cell by the following formula :
Expected frequency = (total of row × total of column) / grand total
So, the expected frequency for the first cell of the first row is:
(120 + 100) × (80 + 40) / 220= 76.36
College Student | Vote | Did not vote |
Total Yes | 76.36 | 43.64 | 120No | 43.64 | 76.36 | 100
Total | 120 | 120 | 240 Non-Student | Vote | Did not vote |
Total Yes | 57.27 | 42.73 | 100No | 22.73 | 17.27 | 40Total | 80 | 60 | 140
We can now substitute these values into the chi-square formula:
χ² = [(80 - 57.27)² / 57.27] + [(40 - 22.73)² / 22.73] + [(60 - 42.73)² / 42.73] + [(100 - 76.36)² / 76.36] + [(120 - 76.36)² / 76.36] + [(100 - 43.64)² / 43.64] + [(100 - 57.27)² / 57.27] + [(40 - 22.73)² / 22.73] + [(120 - 43.64)² / 43.64] + [(100 - 76.36)² / 76.36] + [(80 - 57.27)² / 57.27] + [(60 - 42.73)² / 42.73]= 16.82
To know more about enrollment visit :
brainly.com/question/21557093
#SPJ11
What is the alternate exterior angle of ∠7?
The alternate exterior angle of ∠7 is ∠2
How to determine the alternate exterior angle of ∠7?From the question, we have the following parameters that can be used in our computation:
The parallel lines and the transversal
By definition, alternate exterior angles are a pair of angles that are outside the two parallel lines but on either side of the transversal
using the above as a guide, we have the following:
The alternate exterior angle of ∠7 is the angle 2
Read more about angles at
https://brainly.com/question/25716982
#SPJ1
Find the minimum point of the following objective function
(x₁,x₂,x₃,x₄)=x₁x₃+x₂x₄+11x₃+28x₄+8→min
over the following constraint set
x₁+ 3x₂−19x₃−16x₄= 27
− 2x₁− 5x₂+32x₃+26x₄= −46
The minimum point of the objective function is (x₁, x₂, x₃, x₄) = (-5, 3, 2, -4).
To find the minimum point, we can use the method of Lagrange multipliers. Let's define the Lagrangian function L as:
L(x₁, x₂, x₃, x₄, λ₁, λ₂) = x₁x₃ + x₂x₄ + 11x₃ + 28x₄ + 8 - λ₁(x₁ + 3x₂ - 19x₃ - 16x₄ - 27) - λ₂(-2x₁ - 5x₂ + 32x₃ + 26x₄ + 46)
We want to minimize L with respect to x₁, x₂, x₃, and x₄, and satisfy the given constraints. Taking the partial derivatives of L with respect to x₁, x₂, x₃, and x₄, and setting them equal to zero, we get the following system of equations:
∂L/∂x₁ = x₃ - λ₁ - 2λ₂ = 0 ...(1)
∂L/∂x₂ = x₄ + 3λ₁ - 5λ₂ = 0 ...(2)
∂L/∂x₃ = x₁ + 11 - 19λ₁ + 32λ₂ = 0 ...(3)
∂L/∂x₄ = x₂ + 28 - 16λ₁ + 26λ₂ = 0 ...(4)
We also need to satisfy the constraint equations:
x₁ + 3x₂ - 19x₃ - 16x₄ = 27 ...(5)
-2x₁ - 5x₂ + 32x₃ + 26x₄ = -46 ...(6)
Solving this system of equations, we find that x₁ = -5, x₂ = 3, x₃ = 2, x₄ = -4.
Therefore, the minimum point of the objective function is (x₁, x₂, x₃, x₄) = (-5, 3, 2, -4).
To know more about Lagrange multipliers, refer here:
https://brainly.com/question/30776684#
#SPJ11
Use the following data set to answer parts a-c 21, 14.5, 15.3, 30, 17.6 Find the sample a) mean b) Find the median c) Find the sample standard deviation (s)
(a)The sample mean of the data set is 19.68
(b) The median of the data set is 17.6.
(c) The standard deviation of the data set is 6.3.
What is the sample mean of the date set?(a)The sample mean of the data set is calculated as follows;
The given data set;
[21, 14.5, 15.3, 30, 17.6]
Mean = (21 + 14.5 + 15.3 + 30 + 17.6) / 5
Mean = 98.4 / 5
Mean = 19.68
(b) The median of the data set is determined by arranging the data from the least to highest.
median = [14.5, 15.3, 17.6, 21, 30] = 17.6
(c) The standard deviation of the data set is calculated as follows;
∑(x - mean)² = (14.5 - 19.68)² + (15.3 - 19.68)² + (17.6 - 19.68)² + (21 - 19.68)² + (30 - 19.68)²
∑(x - mean)² = 158.588
n - 1 = 5 - 1 = 4
S.D = √ (∑(x - mean)² / (n-1) )
S.D = √ (158.588 / 4 )
S.D = 6.3
Learn more about standard deviation here: https://brainly.com/question/447169
#SPJ4
15. DETAILS LARPCALC10CR 1.5.072. Determine whether the function is even, odd, or neither. Then describe the symmetry. g(x) = x³-9x even odd O neither Symmetry: O origin symmetry no symmetry Oxy symm
The function g(x) = x³ - 9x is an odd function. It does not exhibit any symmetry.
The given function, g(x) = x³ - 9x, can be analyzed to determine its nature of symmetry. An even function is defined as f(x) = f(-x) for all x in the domain of the function. On the other hand, an odd function is characterized by f(x) = -f(-x) for all x in the domain.
To determine if g(x) is even or odd, we substitute -x in place of x in the function and simplify:
g(-x) = (-x)³ - 9(-x)
= -x³ + 9x
Comparing g(x) = x³ - 9x with g(-x) = -x³ + 9x, we can observe that g(-x) is the negation of g(x). Therefore, the function g(x) is odd.
Furthermore, symmetry refers to a pattern or property that remains unchanged under certain transformations. In the case of g(x) = x³ - 9x, there is no specific symmetry present. Neither origin symmetry (also known as point symmetry or rotational symmetry) nor xy symmetry (also known as reflection symmetry) is exhibited by the function.
An even function is symmetric with respect to the y-axis, meaning it remains unchanged if reflected about the y-axis. Odd functions, on the other hand, exhibit symmetry about the origin, where the function remains unchanged if rotated by 180 degrees about the origin. In this case, g(x) = x³ - 9x satisfies the condition for an odd function since g(-x) = -g(x).
However, when we consider symmetry beyond even or odd, we find that g(x) does not exhibit any other specific symmetry. Origin symmetry, where the function remains unchanged when reflected through the origin, is not present. Similarly, xy symmetry, which refers to the property of remaining unchanged when reflected across the x-axis or y-axis, is also not observed.
Learn more about symmetry
brainly.com/question/1597409
#SPJ11
Question 2 2 pts The heights of mature Western sycamore trees (platanus racemosa, a native California plant) follow a normal distribution with average height 55 feet and standard deviation 15 feet. Answer using four place decimals. Find the probability a random sample of four mature Western sycamore trees has a mean height less than 62 feet. Find the probability a random sample of ten mature Western sycamore trees has a mean height greater than 62 feet.
To find the probability in each case, we need to calculate the sampling distribution of the sample means. Given that the heights of mature Western sycamore trees follow a normal distribution with an average height of 55 feet and a standard deviation of 15 feet, we can use the properties of the normal distribution.
Case 1: Sample size of 4 trees
To find the probability that a random sample of four mature Western sycamore trees has a mean height less than 62 feet, we can calculate the z-score for the sample mean and then find the corresponding probability using the standard normal distribution.
The formula to calculate the z-score for a sample mean is:
z = (x - μ) / (σ / sqrt(n))
where x is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size.
Plugging in the values:
x = 62 (sample mean)
μ = 55 (population mean)
σ = 15 (population standard deviation)
n = 4 (sample size)
z = (62 - 55) / (15 / sqrt(4))
z = 7 / 7.5
z ≈ 0.9333
Using a standard normal distribution table or a calculator, we can find the probability associated with the z-score of 0.9333, which corresponds to the area to the left of this z-score.
The probability that a random sample of four mature Western sycamore trees has a mean height less than 62 feet is approximately 0.8230.
Case 2: Sample size of 10 trees
To find the probability that a random sample of ten mature Western sycamore trees has a mean height greater than 62 feet, we can again calculate the z-score for the sample mean and find the corresponding probability using the standard normal distribution.
Using the same formula as before:
z = (x - μ) / (σ / sqrt(n))
Plugging in the values:
x = 62 (sample mean)
μ = 55 (population mean)
σ = 15 (population standard deviation)
n = 10 (sample size)
z = (62 - 55) / (15 / sqrt(10))
z = 7 / 4.7434
z ≈ 1.4749
Using a standard normal distribution table or a calculator, we can find the probability associated with the z-score of 1.4749, which corresponds to the area to the right of this z-score.
The probability that a random sample of ten mature Western sycamore trees has a mean height greater than 62 feet is approximately 0.0708.
Learn more about the probability of a random sample at https://brainly.com/question/5030509
#SPJ11
Question 27 wie Qy Real GDP Refer to the diagram, in which Qf is the full-employment output. If the economy's present aggregate demand curve with at ABS, what fiscal policy would be most appropriate? Why? For the toolbar press ALT+F10 (PC) or ALT+FN+F10 (Mac) Price Level AD AD₁ g. AD₂
In the diagram, there is a horizontal line labeled "AD" representing the economy's present aggregate demand curve. The line intersects the full-employment output (Qf) at point ABS. Given this scenario, the most appropriate fiscal policy would be contractionary fiscal policy to decrease aggregate demand.
When the economy's present aggregate demand curve intersects the full-employment output below the level of full-employment output, as shown in the diagram, it indicates an inflationary gap. This means that the economy is operating above its potential output level, leading to upward pressure on prices.
To address this situation and reduce aggregate demand, contractionary fiscal policy is appropriate. Contractionary fiscal policy involves reducing government spending and/or increasing taxes to decrease aggregate demand in the economy. By doing so, the government aims to dampen inflationary pressures and bring the economy closer to the full-employment output level.
Contractionary fiscal policy can be implemented by reducing government expenditures on public projects, welfare programs, or infrastructure development. Alternatively, the government can increase taxes to reduce disposable income and lower consumer spending. These measures help to decrease aggregate demand, which in turn helps to reduce inflationary pressures and bring the economy back to a sustainable level of output.
In summary, when the economy's present aggregate demand curve intersects the full-employment output below the potential output level, contractionary fiscal policy is the most appropriate response. It helps to address inflationary pressures by reducing aggregate demand through measures such as decreasing government spending or increasing taxes.
Learn more about horizontal line here:
https://brainly.com/question/30206752
#SPJ11
A company makes electronic gadgets. Two out of every 75 gadgets are faulty, but the company doesn't know which ones are faulty until a buyer complains. Suppose the company makes a $7 profit on the sale of any working gadget but suffers a loss of $35 for every faulty gadget because they have to repair the unit.
a) Complete the probability distribution for a company's profit in the table below. Write the probabilities as a fraction and do not reduce your fractions.
b) What is the company's expected gain or loss?
a) To complete the probability distribution for the company's profit, we need to calculate the profit for each possible outcome.
Outcome: Working gadget (profit of $7)
Probability: 73/75 (since 2 out of 75 gadgets are faulty)
Outcome: Faulty gadget (loss of $35)
Probability: 2/75 (since 2 out of 75 gadgets are faulty)
Putting these values into the table:
Profit Probability
$7 73/75
$35 2/75
b) To calculate the company's expected gain or loss, we multiply each profit by its corresponding probability and sum them up:
Expected gain or loss = (Profit * Probability) + (Profit * Probability)
[tex]= ($7 * 73/75) + (-$35 * 2/75)[/tex]
Calculating the expression:
[tex]($7 * 73/75) + (-$35 * 2/75) ≈ $6.8667 - $0.9333 ≈ $5.9334[/tex]
Therefore, the company's expected gain or loss is approximately $5.93.
In summary, the probability distribution for the company's profit shows the probabilities of earning a profit of $7 for a working gadget and incurring a loss of $35 for a faulty gadget.
The expected gain or loss, calculated by multiplying each profit by its corresponding probability and summing them up, is approximately a loss of $5.93. This means that, on average, the company can expect to lose about $5.93 per gadget sold.
To know more about Probability visit-
brainly.com/question/15562286
#SPJ11
The University of Chicago's General Social Survey (GSS) is the nation's most important social science sample survey. The GSS asked a random sample of 1874 adults in 2012 their age and where they placed themselves on the political spectrum from extremely liberal to extremely conservative. The categories are combined into a single category liberal and a single category conservative. We know that the total sum of squares is 592, 910 and the between-group sum of squares is 7,319. Complete the ANOVA table and run an appropriate test to analyze the relationship between age and political views with significance level a = 0.05.
Critical value of F at α = 0.05: This depends on the degrees of freedom. You can refer to a statistical table or use software to find the critical value.
To analyze the relationship between age and political views using the provided information, we can complete an ANOVA (Analysis of Variance) table and perform a hypothesis test. The ANOVA table will help us assess the significance of the relationship. Here's how we can proceed:
Set up the hypotheses:
Null hypothesis (H₀): There is no significant relationship between age and political views.
Alternative hypothesis (H₁): There is a significant relationship between age and political views.
Calculate the degrees of freedom:
Degrees of freedom between groups (df₁): Number of political view categories minus 1.
Degrees of freedom within groups (df₂): Total sample size minus the number of political view categories.
Calculate the mean squares:
Mean square between groups (MS₁): Between-group sum of squares divided by df₁.
Mean square within groups (MS₂): Residual sum of squares divided by df₂.
Calculate the F-statistic:
F = MS₁ / MS₂
Determine the critical value of F at a significance level of 0.05. This value depends on the degrees of freedom.
Compare the calculated F-statistic to the critical value:
If the calculated F-statistic is greater than the critical value, reject the null hypothesis and conclude that there is a significant relationship between age and political views.
If the calculated F-statistic is less than or equal to the critical value, fail to reject the null hypothesis and conclude that there is no significant relationship between age and political views.
Now, let's complete the ANOVA table and perform the hypothesis test using the given information:
Total sum of squares (SST) = 592,910
Between-group sum of squares (SS₁) = 7,319
Total sample size (n) = 1874
Degrees of freedom:
df₁ = Number of political view categories - 1
df₂ = n - Number of political view categories
Mean squares:
MS₁ = SS₁ / df₁
MS₂ = (SST - SS₁) / df₂
F-statistic:
F = MS₁ / MS₂
Critical value of F at α = 0.05: This depends on the degrees of freedom. You can refer to a statistical table or use software to find the critical value.
To know more about ANOVA table, visit:
https://brainly.com/question/16577651
#SPJ11
the function f has a taylor series about x=2 that converges to f(x) for all x in the interval of convergence. the nth derivative of f at x=2 is given by f^n(2)=(n 1)!/3^n for n>1, and f(2)=1.
We can write:
[tex]f^(n)(2)/n! = 1 - Rn(2) - > 1[/tex]as n -> ∞.
This means that the nth derivative of f at x = 2 is given by
[tex]f^(n)(2) = (n 1)!/3^n[/tex] for n > 1, and f(2) = 1.
The given function f has a Taylor series about x = 2 that converges to f(x) for all x in the interval of convergence. We need to find the nth derivative of f at x = 2. Also, f(2) = 1.
Given nth derivative of f at x = 2 is:
[tex]f^n(2) = (n 1)!/3^n[/tex] for n > 1, and f(2) = 1.
The formula for the Taylor series is:
[tex]f(x) = f(a) + f'(a)(x - a)/1! + f''(a)(x - a)2/2! + ... + f^(n)(a)(x - a)^n/n! + Rn(x)[/tex]
Here, x = 2 and a = 2, so we can write:
[tex]f(2) = f(2) + f'(2)(2 - 2)/1! + f''(2)(2 - 2)2/2! + ... + f^(n)(2)(2 - 2)^n/n! + Rn(2)1 = f(2) + f'(2)0 + f''(2)0 + ... + f^(n)(2)0/n! + Rn(2)f^(n)(2)/n! = 1 - Rn(2)[/tex]
Since Rn(x) is the remainder term, we can say that it is equal to the difference between the function f(x) and its nth degree Taylor polynomial.
In other words, it is the error term.
So, we can write: f(x) - Pn(x) = Rn(x)
where Pn(x) is the nth degree Taylor polynomial of f(x) at x = 2. Since the Taylor series of f(x) converges to f(x) for all x in the interval of convergence, we can say that
[tex]Rn(x) - > 0 as n - > ∞.[/tex]
Therefore, we can write:
[tex]f^(n)(2)/n! = 1 - Rn(2) - > 1as n - > ∞.[/tex]
This means that the nth derivative of f at x = 2 is given by [tex]f^(n)(2) = (n 1)!/3^n[/tex]for n > 1, and f(2) = 1.
To know more about derivative visit:
https://brainly.com/question/29144258
#SPJ11
Find csc xif sin x = 2√5/5
Use the Reciprocal and Quotient Identities
Find Cos α if tan α = √2/2 and sin α = - √3/3
We are required to find the value of csc(x) for sin(x) = 2√5/5.
We can begin by using the Pythagorean identity which states that:
sin^{2}x+cos^{2}x = 1
Squaring the given value of sin(x), we get:
(sinx)^2 = (\frac{2√5}{5})^2 = \frac{20}{25} = \frac{4}{5}
Solving for cos(x), we get:
cosx = \pm \sqrt{1 - (sinx)^2}
cosx = \pm \sqrt{1 - \frac{4}{5}} = \pm \frac{\sqrt{5}}{5}
We know that csc(x) is the reciprocal of sin(x), so we have:
cscx = \frac{1}{sinx}
cscx = \frac{1}{\frac{2√5}{5}} = \frac{5}{2√5}
cscx = \frac{\sqrt{5}}{2}
The value of csc(x) for sin(x) = 2√5/5 is csc(x) = sqrt(5)/2.
The other part of the question was to find cosα given that tanα = √2/2 and sinα = - √3/3.
Using the quotient identity, we have:
tan\alpha = \frac{sin\alpha}{cos\alpha}
Substituting the given values and solving for cosα, we get:
cos\alpha = \frac{sin\alpha}{tan\alpha} = \frac{-\sqrt{3}/3}{\sqrt{2}/2} = -\sqrt{\frac{3}{2}}
Therefore, cosα = -sqrt(3/2).
To know more about reciprocal visit:
brainly.com/question/27642948
#SPJ11
The marginal average cost of producing x digital sports watches is given by the function C'(x), where C(x) is the average cost in dollars. C'(x) = - 1, 600/x^2, C(100) = 25 Find the average cost function and the cost function. What are the fixed costs? The average cost function is C(x) =
The marginal average cost of producing x digital sports watches is given by the function [tex]C'(x)[/tex], where [tex]C(x)[/tex] is the average cost in dollars.[tex]C'(x) = - 1[/tex], [tex]600/x^2[/tex], [tex]C(100) = 25[/tex]. The average cost function is [tex]C(x) = 1600/x + 25[/tex]. The cost function is [tex]C(x) = 1600ln(x) + 25x - 1600[/tex].
It is known that the marginal cost is the derivative of the cost function, i.e., [tex]C'(x)[/tex]. Integrating the derivative of [tex]C(x)[/tex] provides the cost function that we require. Integrating [tex]C'(x)[/tex] results in [tex]C(x) = - 1600/x + k[/tex], where k is the constant of integration. [tex]C(100) = 25[/tex] implies that[tex]- 1600/100 + k = 25[/tex].
Hence, [tex]k = 1600/4 + 25 = 425[/tex]. The cost function [tex]C(x) = 1600/x + 425[/tex].
The average cost is given by [tex]C(x)/x[/tex], which is [tex]1600/x^2 + 425/x[/tex].
Thus, the average cost function is [tex]C(x) = 1600/x + 25[/tex], as [tex]425 = 1600/40 + 25[/tex].
The fixed cost is given by the value of [tex]C(1)[/tex], which is [tex]1600 + 425 = 2025[/tex].
Learn more about marginal cost here:
https://brainly.com/question/32126253
#SPJ11
A distribution center for a chain of electronics supply stores fills and ships orders to retail outlets. A random sample of orders is selected as they are received and the dollar amount of the order (in thousands of dollars) is recorded, and then the time (in hours) required to fill the order and have it ready for shipping is determined. A scatterplot showing the times as the response variable and the dollar amounts (in thousands of dollars) as the predictor shows a linear trend. The least squares regression line is determined to be: y = 0.76 +1.8x. A plot of the residuals versus the dollar amounts showed no pattern, and the following values were reported: Correlation r=0.92; ² 0.846 Standard deviation of the residuals - 0.48 Which of the following statements is an appropriate interpretation and use of the regression line provided? A. If the dollar amount of an order from one store is $1000 more than the dollar amount of an order from another store, the larger order would be predicted to require 1.8 more hours to prepare than smaller order. B. The units on the slope b₁ = 1.8 are: hours per thousands of dollars. C. The predicted time to prepare an order for shipping that has an absolute dollar amount of $2500 would be 5.26 hours. D. Not all of the residuals computed for the fitted values would be equal to zero. A B OC OD All of (A)-(D) are appropriate. O
The appropriate interpretation and use of the regression line provided is:
A. If the dollar amount of an order from one store is $1000 more than the dollar amount of an order from another store, the larger order would be predicted to require 1.8 more hours to prepare than the smaller order.
The slope of the regression line (1.8) represents the change in the response variable (time required to fill the order) for a one-unit increase in the predictor variable (dollar amount of the order). Therefore, for every increase of $1000 in the dollar amount, the predicted time to prepare the order would increase by 1.8 hours. Option A is the appropriate interpretation and use of the regression line.
Learn more about regression line here: brainly.com/question/29644851
#SPJ11
Assume that adults have IQ scores that are normally distributed with a mean of 103.3 and a standard deviation of 21.3. Find the probability that a randomly selected adult has an IQ greater than 144.0. (Hint: Draw a graph.) ... The probability that a randomly selected adult from this group has an IQ greater than 144.0 is (Round to four decimal places as needed.)
To find the probability that a randomly selected adult has an IQ greater than 144.0, we need to calculate the area under the normal distribution curve to the right of 144.0.
First, we standardize the value of 144.0 using the formula z = (x - μ) / σ, where x is the value, μ is the mean, and σ is the standard deviation. Plugging in the values, we get z = (144.0 - 103.3) / 21.3 = 1.91. Next, we look up the area to the right of 1.91 in the standard normal distribution table or use a calculator. The area to the right of 1.91 is 0.0287. Therefore, the probability that a randomly selected adult has an IQ greater than 144.0 is approximately 0.0287 or 2.87% (rounded to four decimal places). The probability that a randomly selected adult has an IQ greater than 144.0 is 0.0287 or 2.87%.
Learn more about probability here : brainly.com/question/31828911
#SPJ11
How do i prove the solution is correct?? To the equations above
The slope intercept form is shown below.
To write the equation of a line in slope-intercept form, we use the equation:
y = mx + b
where:
y represents the dependent variable (usually the vertical axis)
x represents the independent variable (usually the horizontal axis)
m represents the slope of the line
b represents the y-intercept, which is the point where the line intersects the y-axis
Example:
Let's say we have a line with a slope of 2 and a y-intercept of -3. The equation of this line in slope-intercept form would be:
y = 2x - 3
This equation tells us that for any given value of x, we can find the corresponding value of y by multiplying x by 2 and then subtracting 3.
System of Equations:
Consider the following system of equations:
Equation 1: y = 3x + 2
Equation 2: y = -2x + 5
Solving the equation we get
-2x+ 5 = 3x+ 2
-5x = -3
x= 3/5
and, y= 9/5 + 2 = 19/2.
Learn more about Slope intercept form here:
https://brainly.com/question/29146348
#SPJ1
Participants were randomized to drink five or six cups of either tea or coffee every day for two weeks (both drinks have caffeine but only tea has L- theanine). After two weeks, blood samples were exposed to an antigen, and the production of interferon-gamma (immune system response) was measured.
If the tea drinkers have significantly higher levels of interferon-gamma, can we conclude that drinking tea rather than coffee caused an increase in this aspect of the immune response?
O Yes
O No
No, we cannot conclude that drinking tea rather than coffee caused an increase in interferon-gamma levels solely based on the information provided.
The study described a randomized trial where participants were assigned to drink either tea or coffee with varying amounts of cups per day for two weeks. Interferon-gamma production, a marker of immune system response, was measured after the intervention. The study design seems to control for the confounding effects of caffeine since both tea and coffee contain it.
However, there are other variables that may influence the immune response, such as individual variations, diet, lifestyle, and other factors not accounted for in the study description. Additionally, the presence of L-theanine in tea, which is absent in coffee, may have potential effects on immune response. However, the study design does not isolate the effects of L-theanine alone.
To learn more about variables click here: brainly.com/question/15740935
#SPJ11
The following table presents the manufacturer's suggested retail price (in S1000s) for 2013 base models and styles of BMW automobiles. 50.1 704 55.2 56.7 74.9 55.7 55.2 64.2 39.3 80.6 36.9 108.4 47.8 90.5 47.5 73.6 38.6 47.4 30.8 86.2 60.1 89.2 59.8 68.8 65,0 86,8 140.7 82.4 62.7 53.4 Send data to cel (a) Construct a frequency distribution using a class width of 10, and using 30.0 as the lower class limit for the first class Price (51000) Frequency Part 2 of 2 (b) Construct a frequency histogram from the frequency distribution in part (a). x 16+ 154 14+ 13+ 12+ 114 10+ 8 Frequency 3 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Price(in thousands of dollars)
(a) Class intervals and frequency distribution table using a class width of 10Class Interval
Frequency histogram using the frequency distribution table constructed in part (a) [tex]\frac{\text{ }}{\text{ }}[/tex]Thus,
The frequency distribution table is created using a class width of 10, and using 30.0 as the lower class limit for the first class.
A frequency histogram is drawn using the frequency distribution table constructed.
The summary is that the given data is converted into a frequency distribution table and a histogram for better understanding.
Learn more about histogram click here:
https://brainly.com/question/2962546
#SPJ11
According to a report done by S & J Power, the mean lifetime of the light bulbs it manufactures is 50 months. A researcher for a consumer advocate group tests this by selecting 60 bulbs at random. For the bulbs in the sample, the mean lifetime is 49 months. It is known that the population standard deviation of the lifetimes is 3 months. Can we conclude, at the 0.10 level of significance, that the population mean lifetime, , of light bulbs made by this manufacturer differs from 49 months?
Perform a two-tailed test. Then complete the parts below. Carry your intermediate computations to three or more decimal places, and round your responses as specified below.
(a) State the null hypothesis and the alternative hypothesis . (b) Determine the type of test statistic to use. (c) Find the value of the test statistic. (Round to three or more decimal places.) (d) Find the two critical values. (Round to three or more decimal places.) (e) Can we conclude that the population mean lifetime of light bulbs made by this manufacturer differs from 49 months?
(a) The null hypothesis (H₀) states that the population mean lifetime of light bulbs made by this manufacturer is 49 months.
The alternative hypothesis (H₁) states that the population mean lifetime differs from 49 months. H₀: µ = 49 months. H₁: µ ≠ 49 months. (b) Since we know the population standard deviation and have a sample size of 60, we can use the t-test statistic for a single sample. (c) The test statistic can be calculated using the formula: t = (Xbar - µ) / (σ / √n). where Xbar is the sample mean, µ is the population mean, σ is the population standard deviation, and n is the sample size. Plugging in the given values:Xbar = 49 months. µ = 50 months. σ = 3 months. n = 60. t = (49 - 50) / (3 / √60) ≈ -1.290
(d) To find the critical values, we need to determine the t-values that correspond to the 0.10 level of significance and the degrees of freedom (df) which is (n - 1). With df = 59, the critical values for a two-tailed test at the 0.10 level of significance are approximately t = ±1.645. (e) To determine whether we can conclude that the population mean lifetime differs from 49 months, we compare the calculated test statistic (-1.290) with the critical values (-1.645 and 1.645). Since the test statistic falls within the range between the critical values, we fail to reject the null hypothesis. There is not enough evidence to conclude that the population mean lifetime of light bulbs made by this manufacturer differs from 49 months at the 0.10 level of significance.
To learn more about null hypothesis click here: brainly.com/question/30821298
#SPJ11
A positive (+) correlation is when ____
A negative (-) correlation is when ____
a. X decreases, y decreases; X increases, y decreases: b. X decreases, Y increases; X decreases. Y decreases. c. X increases. Y increases: X decreases. Y decreases. d. X decreases, Y increases: Xincreases. Y decreases.
A positive (+) correlation is when option c) X increases, Y increases. A negative (-) correlation is when option a) X decreases, Y decreases.
In a positive correlation, as X increases, Y also increases. This means that there is a consistent and direct relationship between the two variables. For example, if we consider X as the amount of studying done by students and Y as their test scores, a positive correlation would indicate that as students increase their studying efforts (X), their test scores (Y) also increase.
In a negative correlation, as X decreases, Y also decreases. This indicates an inverse relationship between the two variables. For instance, if we consider X as the amount of hours spent watching TV and Y as the level of physical activity, a negative correlation would suggest that as TV viewing time decreases (X), the level of physical activity (Y) also decreases.
To know more about correlation,
https://brainly.com/question/19259833
#SPJ11
Let K = 2 Q(a) with irr(a, Q) = x³ + 2x² +1. Compute the inverse of a +1 (written in the form ao + a₁ + a₂a², with ao, a₁, a2 € Q). (Hint: multiply a + 1 by ao + a₁α + a₂a² and equate coefficients in the vector space basis.)
The inverse of a + 1 is ao + a₁ + a₂a² = ao + a₁α + (a² + (a₁/2)α + ao(1/2))(x³ + 2x² +1)
Let K = 2 Q(a) with irr(a, Q) = x³ + 2x² +1.
Compute the inverse of a +1 (written in the form ao + a₁ + a₂a², with ao, a₁, a2 € Q). (Hint: multiply a + 1 by ao + a₁α + a₂a² and equate coefficients in the vector space basis.)
The inverse of a +1 can be computed as follows:
Given that K = 2 Q(a), a + 1 can be written as (a + 1) = a + 1(1)This implies that a + 1 belongs to the field extension 2 Q
(a).Now we consider the product of (a + 1) with the given expression
ao + a₁α + a₂a²:a + 1 * ao + a₁α + a₂a²
= ao + (a + ao)a₁α + (a² + a₁a + aoa₂)a²
Using the equation x³ + 2x² +1 = 0, we can write x³ = -2x² - 1
The above equation can be substituted in the expression a³ to obtain a³ = -2a² - 1
Now we equate coefficients in the vector space basis:
a₀ = ao - a₂a²a₁ = a₁α + a₀ = a₁α + aoa₂a₂ = a² + a₁a + aoa₂ = (-1/2) a³ + a₁a + aoa₂
Substituting a³ = -2a² - 1,a₂ = (-1/2) a³ + a₁a + aoa₂ = (-1/2) (-2a² - 1) + a₁a + aoa₂= a² + (a₁/2)a + aoa₂ - (1/2)
Now the inverse of a + 1 can be written in the form:
ao + a₁ + a₂a²= ao + a₁α + a₂a²+ a₂α² = ao + a₁α + (a² + (a₁/2)α + ao(1/2))α² = ao + a₁α + (a² + (a₁/2)α + ao(1/2))(x³ + 2x² +1)
The inverse of a + 1 is ao + a₁ + a₂a² = ao + a₁α + (a² + (a₁/2)α + ao(1/2))(x³ + 2x² +1)
To know more about coefficients visit:
https://brainly.com/question/1594145
#SPJ11
write a function that models the distance d from a point on the line y = 5 x - 6 to the point (0,0) (as a function of x).
Therefore, the function that models the distance (d) from a point on the line y = 5x - 6 to the point (0,0) as a function of x is: d(x) = sqrt(26x^2 - 60x + 36).
The function that models the distance (d) from a point on the line y = 5x - 6 to the point (0,0) can be calculated using the distance formula.
The distance formula between two points (x1, y1) and (x2, y2) is given by:
d = sqrt((x2 - x1)^2 + (y2 - y1)^2)
In this case, we want to find the distance from a point on the line y = 5x - 6 to the point (0,0), so (x2, y2) = (0,0).
Let's consider a point on the line y = 5x - 6 as (x, y) where y = 5x - 6.
Substituting these values into the distance formula, we have:
d = sqrt((0 - x)^2 + (0 - (5x - 6))^2)
= sqrt(x^2 + (5x - 6)^2)
= sqrt(x^2 + (25x^2 - 60x + 36))
= sqrt(26x^2 - 60x + 36)
To know more about function,
https://brainly.com/question/25257263
#SPJ11
if f(x) = exg(x), where g(0) = 3 and g'(0) = 1, find f '(0).
Using the Product Rule ,we find that the value of f '(0) is 4
Given the function f(x) = exg(x), where g(0) = 3 and g'(0) = 1. We need to find f'(0).
Formula used:
Product Rule of Differentiation;
(uv)' = u'v + uv'To find f'(0), we will differentiate f(x) using the Product Rule and then substitute x=0 to find the answer.
We know that, f(x) = exg(x)
And, g(0) = 3 and g'(0) = 1
Using Product Rule of Differentiation, (uv)' = u'v + uv', we can write,f(x) = exg(x) => f'(x) = (ex)'g(x) + ex(g(x))' => f'(x) = exg'(x) + exg(x) .......[1]
Now, at x=0, we have, f(0) = e0.g(0) = 1.3 = 3
Also, g(0) = 3 and g'(0) = 1
Using [1], we can write, f'(0) = e0g'(0) + e0g(0) = e0.1 + e0.3 = e0(1 + 3) = 4
Therefore, f'(0) = 4.
Learn more about functions at: https://brainly.com/question/30686401
#SPJ11
7. For the function y=-2x³-6x², use the second derivative tests to: (a) determine the intervals which are concave up or concave down. (b) determine the points of inflection. (c) sketch the graph with the above information indicated on the graph.
Using the second derivative tests, we can determine the intervals of concavity for the function y = -2x³ - 6x² and find the points of inflection. We can then sketch the graph with this information.
To determine the intervals of concavity, we need to find the second derivative of the function. Let's start by finding the first derivative of y = -2x³ - 6x².
The first derivative is dy/dx = -6x² - 12x. To find the second derivative, we differentiate the first derivative with respect to x.
Taking the derivative of the first derivative, we get d²y/dx² = -12x - 12.
To find the intervals of concavity, we need to determine where the second derivative is positive (concave up) or negative (concave down).
Setting -12x - 12 equal to zero and solving for x, we find x = -1.
By choosing test points within intervals on either side of x = -1, we can determine the concavity of the function. For example, if we plug in x = -2 into the second derivative, we get a positive value, indicating concave up. Similarly, if we plug in x = 0, we get a negative value, indicating concave down.
Next, to find the points of inflection, we set the second derivative equal to zero and solve for x.
-12x - 12 = 0
-12x = 12
x = -1
So, x = -1 is a potential point of inflection. To confirm if it is a point of inflection, we can check the concavity of the function around this point.
Finally, armed with the intervals of concavity and the points of inflection, we can sketch the graph of y = -2x³ - 6x², indicating the concave up and concave down intervals and the point of inflection at x = -1.
Learn more about derivative here: https://brainly.com/question/29144258
#SPJ11
Part 1 of 5 O Points: 0 of 1 Save The number of successes and the sample size for a simple random sample from a population are given below. x=4, n=200, Hy: p=0.01.H. p>0.01. a=0.05 a. Determine the sample proportion. b. Decide whether using the one-proportion 2-test is appropriate c. If appropriate, use the one-proportion z-lest to perform the specified hypothesis test. Click here to view a table of areas under the standard normal curve for negative values of Click here to view..fable of areas under the standard normal curve for positive values of CALDE a. The sample proportion is (Type an integer or a decimal. Do not round.)
a. The sample proportion is 0.02.
b. Using the one-proportion z-test is appropriate.
c. Yes, we can use the one-proportion z-test to perform the specified hypothesis test.
a. To determine the sample proportion, we divide the number of successes (x) by the sample size (n). In this case, x = 4 and n = 200. Therefore, the sample proportion is calculated as 4/200 = 0.02.
b. In order to decide whether to use the one-proportion z-test, we need to verify if the conditions for its application are met.
The one-proportion z-test is appropriate when the sampling distribution of the sample proportion can be approximated by a normal distribution, which occurs when both np and n(1-p) are greater than or equal to 10.
Here, np = 200 * 0.01 = 2 and n(1-p) = 200 * (1-0.01) = 198. Since both np and n(1-p) are greater than 10, we can conclude that the conditions for the one-proportion z-test are met.
c. Given that the conditions for the one-proportion z-test are satisfied, we can proceed with performing the hypothesis test.
In this case, the null hypothesis (H0) is that the population proportion (p) is equal to 0.01, and the alternative hypothesis (Ha) is that p is greater than 0.01.
We can use the one-proportion z-test to test this hypothesis by calculating the test statistic, which is given by (sample proportion - hypothesized proportion) / standard error.
The standard error is computed as the square root of (hypothesized proportion * (1 - hypothesized proportion) / sample size).
Once the test statistic is calculated, we can compare it to the critical value corresponding to the chosen significance level (a=0.05) to make a decision.
Learn more about sample proportion
brainly.com/question/11461187
#SPJ11
Activity I Activity I Golf Club Design The increased availability of light materials with high strength has revolution- ized the design and manufacture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can result in much longer tee shots, especially for players of modest skills. This is due partly to the "spring-like effect" that the thin face imparts to the ball. Firing a golf ball at the head of the club and measuring the ratio of the ball's outgoing velocity to the incoming velocity can quantify this spring-like effect. The ratio of veloci- ties is called the coefficient of restitution of the club. An experiment was performed in which 15 drivers produced by a particular club maker were selected at random and their coefficients of restitution measured. In the experiment, the golf balls were fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely controlled. It is of interest to determine whether there is evidence (with α = 0.05) to support a claim that the mean coefficient of restitution exceeds 0.82. The observations follow:
0.8411 0.8191 0.8182 0.8125 0.8750 0.8580 0.8532 0.8483 0.8276 0.7983 0.8042 0.8730 0.8282 0.8359 0.8660
The experiment aimed to measure the coefficients of restitution of 15 randomly selected drivers produced by a specific club maker to determine if there is evidence to support a claim that the mean coefficient of restitution exceeds 0.82. The coefficients of restitution obtained ranged from 0.7983 to 0.8750.
The coefficients of restitution (COR) of 15 drivers produced by a particular club maker were measured to investigate if there is evidence to suggest that the mean COR exceeds 0.82. The COR is a measure of the spring-like effect that the thin face of the club imparts to the ball, resulting in longer tee shots. To conduct the experiment, golf balls were fired from an air cannon, allowing precise control over the incoming velocity and spin rate.
The observed coefficients of restitution for the 15 drivers were as follows: 0.8411, 0.8191, 0.8182, 0.8125, 0.8750, 0.8580, 0.8532, 0.8483, 0.8276, 0.7983, 0.8042, 0.8730, 0.8282, 0.8359, and 0.8660. These values provide the basis for analyzing whether the mean COR is greater than 0.82.
To determine if there is evidence to support the claim that the mean COR exceeds 0.82, a statistical test can be performed. Given the sample data and a significance level (α) of 0.05, a one-sample t-test can be conducted. The null hypothesis (H₀) assumes that the mean COR is equal to or less than 0.82, while the alternative hypothesis (H₁) suggests that the mean COR is greater than 0.82.
Performing the appropriate calculations using the sample data, if the resulting p-value is less than the significance level (α = 0.05), we can reject the null hypothesis and conclude that there is evidence to support the claim that the mean COR exceeds 0.82. However, if the p-value is greater than α, we fail to reject the null hypothesis and do not have sufficient evidence to conclude that the mean COR is greater than 0.82.
To learn more about coefficients click here: brainly.com/question/31972343
#SPJ11
р-р Find the value of the test statistic z using z = pg The claim is that the proportion of peas with yellow pods is equal to 0.25 (or 25%). The sample statistics from one experiment include 550 peas with 109 of them having yellow pods. CE ZE (Round to two decimal places as needed.)
The value of the test statistic z using z = pg is -3.21 (rounded to two decimal places as needed).
The required solution is -3.21.
Given below is the required solution of the provided question:
The claim is that the proportion of peas with yellow pods is equal to 0.25 (or 25%).
The sample statistics from one experiment include 550 peas with 109 of them having yellow pods.
Therefore, the sample proportion is: p = 109/550
= 0.1982
For a two-tailed test, the level of significance is 0.05/2 = 0.025.
The critical values of z for the two-tailed test is ±1.96.
Test statistic[tex]z = (p - P) / \sqrt(P(1 - P) / n)[/tex]
Here, n = 550,
P = 0.25
and p = 0.1982
So, z = [tex](0.1982 - 0.25) / \sqrt(0.25 x 0.75 / 550)[/tex]
= -3.2143 (approx.)
Hence, the value of the test statistic z using z = pg is -3.21 (rounded to two decimal places as needed).
Therefore, the required solution is -3.21.
to know more about proportion visit :
https://brainly.com/question/31548894
#SPJ11
"
-80 + 64 lim 1+8 22 – 150 + 56
The given expression is to be evaluated as follows:$$\lim_{x\to 1}\frac{-80+64}{x-1}+\frac{22-150+56}{x-1}$$We observe that both the numerators contain like terms. Therefore, we can combine the like terms as follows:
$$\lim_{x\to 1}\frac{-16}{x-1}+\frac{-72}{x-1}$$$$\lim_{x\to 1}\frac{-16-72}{x-1}$$$$\lim_{x\to 1}\frac{-88}{x-1}$$Now, as $x$ approaches $1$, the denominator $x-1$ approaches $0$. We can not divide by zero. Thus, the limit does not exist. So, the answer is D. In more than 100 words, we can say that the given expression is the limit expression. In this expression, we have to find the value of x by substituting the given value in the expression. After that, we can solve this expression by using the given formula of a limit.
We observe that both the numerators contain like terms. Therefore, we can combine the like terms as given in the answer section. So, the given expression becomes $(-16/x-1) - (72/x-1)$. Then, we take the limit as x approaches 1. The denominator x - 1 approaches 0, and we can not divide by zero. Hence, the limit does not exist.
To know more about expression visit :
https://brainly.com/question/28170201
#SPJ11