Using the analemma, the latitude with subsolar points ( vertical rays of the sun ) on the following dates is:
1. January 10 = 23.5 degrees south.
2. June 21 = 23.5 degrees north.
3. March 6 = 0 degrees.
4. December 21 = 23.5 degrees south latitude.
1. January 10: The subsolar point is near the Tropic of Capricorn, which is located at approximately 23.5 degrees south latitude. So, the latitude with the subsolar point on January 10 would be around 23.5 degrees south.
2. June 21: The subsolar point is near the Tropic of Cancer, which is located at approximately 23.5 degrees north latitude. So, the latitude with the subsolar point on June 21 would be around 23.5 degrees north.
3. March 6: On this date, the subsolar point is shifting towards the northern hemisphere from the equator. The exact latitude depends on the tilt of the Earth's axis and the position of the Sun. On average, the subsolar point on March 6 is approximately at the equator (0 degrees latitude).
4. December 21: On this date, the subsolar point is shifting towards the southern hemisphere from the equator. The exact latitude depends on the tilt of the Earth's axis and the position of the Sun. On average, the subsolar point on December 21 is approximately at the Tropic of Capricorn (23.5 degrees south latitude).
To know more about subsolar points here
https://brainly.com/question/30889621
#SPJ4
(ii) The total length of the ruler is 80 cm. The 50 g mass is hung from the 8 cm mark on the ruler. Calculate the mass of the ruler. Show all your working.
use the diagram.
The mass of the ruler is 0.01 kg.
How to solve for the mass of the ruler80 cm/2 = 40 cm.
Now, we can set up the equation:
50 g × 8 cm = M × 40 cm
To solve for M, we need to convert the units to the same system. Let's convert the mass of the 50 g to kilograms (kg) and the length from centimeters (cm) to meters (m):
50 g = 0.05 kg (1 g = 0.001 kg)
8 cm = 0.08 m (1 m = 100 cm)
40 cm = 0.40 m (1 m = 100 cm)
Substituting the values into the equation:
0.05 kg × 0.08 m = M × 0.40 m
0.004 kg·m = 0.40 M
Now, solve for M:
M = 0.004 kg·m / 0.40 m
M = 0.01 kg
Therefore, the mass of the ruler is 0.01 kg.
Read mroe on mass here https://brainly.com/question/86444
#SPJ1
A synodic month is 29.53 days. That's just the average. Lunar months vary in length from about 29.2 to nearly 29.9 days. The length of the lunar month varies because of the earth’s and moon’s orbits being elliptical, mainly, and also because the plane of the moon's orbit around earth is not the same plane as the plane of the earth’s orbit around the sun.
Take that average, 29.53 days. That's how how much time goes by from new moon to new moon, or, if you prefer, full moon to full moon.
The moon always keeps its same face toward earth.
The term synodic means it relates to a conjunction or alignment in the sky. In this case, it is the alignment between earth, moon, and sun that creates either a new moon or a full moon.
The moon, because it is going around the earth, rises 49 minutes later each day. (In other words, the earth must rotate for another 49 minutes to get the moon back above the horizon, because during the day that has gone by since the last moon rise, the moon has moved that many minutes farther along its orbit, as seen from earth.) The 49-minute number is an average and it's rounded off a bit.
If you add up how much later the moon rises each day, over the course of a whole synodic month, the total = ??? hours.
(Fill in the blank with the correct whole number of hours, rounded off to a whole number, with no decimal point after the number.)
Synodic months are 29.53 days. That's average. Lunar months last 29.2–29.9 days. The moon's orbit around earth is not the same plane as the earth's circle around the sun, hence the lunar month's length changes. The moon rises approximately 24 hours later each day over the course of a synodic month.
To calculate the total number of hours by which the moon rises later each day over the course of a synodic month, we need to multiply the average delay of 49 minutes by the number of days in a synodic month.
The number of days in a synodic month is approximately 29.53.
Therefore, the total delay in hours can be calculated as follows:
Total delay = 49 minutes × 29.53 days
Converting minutes to hours (1 hour = 60 minutes):
Total delay = (49/60) hours × 29.53 days
Total delay = 24.276 hours
Rounding off to the nearest whole number, the total delay is approximately 24 hours.
So, the moon rises approximately 24 hours later each day over the course of a synodic month.
To know more about orbit
https://brainly.com/question/30573534
#SPJ4
A lossless TEM wave propagating in free space is given by the expression; H(y.t)= 30 sin( 2m10³t+ my) a, A/m. The expression of the associated electric field Ezt) is: Select one: O a Ely,t)= 4568 sin( 2m10³t+ny) a V/m Ob. Ezt) 22504 cos(2n10t+mz) a, V/m Oc. E(y,t)= 8482 sin( 2m10ºt + my) a V/m Od. Ezt)-15 sin( 2m10ft +mz) a, KV/m O... none of these Of. Ezt)=4568 cos(n10t+0.66mz) a, V/m
A lossless TEM wave propagating in free space is given by the expression; H(y.t)= 30 sin( 2m10³t+ my) a, A/m. the correct expression for the associated electric field E(z, t) is: E(z, t) = 11310 sin(2π10^3t + my) a, V/m
To determine the expression for the associated electric field E(z, t), we can use the relationship between the magnetic field (H) and electric field (E) in a TEM wave:
E(z, t) = Z * H(z, t)
Where Z is the impedance of free space, given by Z = sqrt(μ/ε) ≈ 377 Ω.
Given the magnetic field expression:
H(y, t) = 30 sin(2π10^3t + my) a, A/m
We can substitute this expression into the equation for the electric field:
E(z, t) = Z * H(y, t)
E(z, t) = 377 * 30 sin(2π10^3t + my) a, V/m
Simplifying further, we have:
E(z, t) = 11310 sin(2π10^3t + my) a, V/m
Therefore, the correct expression for the associated electric field E(z, t) is:
E(z, t) = 11310 sin(2π10^3t + my) a, V/m
None of the provided options match this expression.
To know more about propagating refer here:
https://brainly.com/question/13266121#
#SPJ11
A 69 kV 3-phase power distribution line is suspended from grounded steel towers via insulators with a BIL of 350 kV and protected by a circuit breaker. The neutral of the transmission line is solidly grounded at the transformer, just ahead of the circuit breaker, but the tower has a resistance of 30 2 to ground. (i) Calculate the peak voltage across each insulator under normal conditions. [10%] (ii) Suppose that, during an electrical storm, one of the towers is hit by a bolt of lightning of 20 kA, lasting a few microseconds. Describe the sequence of events during the strike, and its immediate aftermath. [20%] (iii) Strikes of this magnitude are fairly common. What could be used to replace the circuit breaker to ensure the power outage is minimised? [5%] (iv) Give two applications of high voltage d.c. power links in power distribution networks.
As grids operating at different frequencies or with significant phase differences. HVDC converters can convert the AC power from one grid to DC and then convert it back to AC at the desired frequency and phase for interconnection.
(i) To calculate the peak voltage across each insulator under normal conditions, we need to consider the voltage distribution in the 3-phase power distribution line.
The line voltage is given as 69 kV, which is the phase-to-phase voltage (Vph). The phase-to-neutral voltage (Vpn) can be calculated using the formula Vpn = Vph / √3.
Vpn = 69 kV / √3 ≈ 39.8 kV
Since the line is solidly grounded at the transformer, the neutral voltage is at ground potential. Therefore, the peak voltage across each insulator is equal to Vpn, which is approximately 39.8 kV.
(ii) During the lightning strike, the high current of 20 kA will flow through the tower and the grounding resistance.
This high current can cause a significant voltage drop across the grounding resistance, resulting in a potential rise on the tower with respect to ground. The tower and surrounding area may experience a voltage surge due to the lightning strike.
The immediate aftermath of the lightning strike can include the activation of protective measures, such as the circuit breaker tripping to interrupt the fault current flow.
The lightning strike can also cause damage to the tower or insulators, requiring inspection and potential repairs before restoring power.
(iii) To minimize power outages during lightning strikes, one option is to replace the circuit breaker with a lightning arrester or surge arrester. A surge arrester is designed to divert the excessive voltage caused by lightning strikes to ground, protecting
the equipment downstream from damage. Surge arresters have a high energy absorption capacity and fast response time, making them effective in limiting voltage surges.
(iv) Two applications of high voltage DC power links in power distribution networks are:
Long-distance transmission: High voltage DC (HVDC) transmission is often used for long-distance transmission of power. HVDC systems have lower losses compared to AC transmission over long distances.
HVDC links can efficiently transmit power over hundreds of kilometers, reducing the need for multiple intermediate substations.
Interconnection of asynchronous grids: HVDC links can be used to connect asynchronous grids, such as grids operating at different frequencies or with significant phase differences.
HVDC converters can convert the AC power from one grid to DC and then convert it back to AC at the desired frequency and phase for interconnection. This allows for better control and stability in interconnected power systems.
To know more about converters refer here;
https://brainly.com/question/15743041#
#SPJ11
Give brief information about a high voltage equipment using plasma state of the matter. Give detailed explanation about its high voltage generation circuit and draw equivalent circuit digaram of the circuit in the device.
High voltage equipment utilizing plasma state of matter typically involves a power supply circuit for generating and sustaining the plasma.
High voltage equipment utilizing the plasma state of matter is commonly found in devices such as plasma displays, plasma lamps, and plasma reactors. These devices rely on the creation and manipulation of plasma, which is a partially ionized gas consisting of positively and negatively charged particles.
In terms of high voltage generation circuitry, a common component is the power supply, which converts the input voltage to a much higher voltage suitable for generating and sustaining plasma. The power supply typically consists of a high-frequency oscillator, transformer, rectifier, and filtering components.
The high-frequency oscillator generates an alternating current (AC) signal at a high frequency. This AC signal is then fed into a transformer, which steps up the voltage to the desired level. The stepped-up voltage is then rectified using diodes to convert it into direct current (DC). The filtered DC voltage is then used to provide the necessary power to ignite and sustain the plasma.
Drawing an equivalent circuit diagram for a specific high voltage plasma device would require detailed information about its internal components and configuration. Since there are various types of high voltage plasma equipment, each with its own unique circuitry, it would be helpful to specify a particular device or provide more specific details to provide an accurate circuit diagram.
To know more about voltage refer here
https://brainly.com/question/32002804#
#SPJ11
An apple is falling from a tree. Disregarding air resistance, which diagram shows the free-body diagram of the force or forces acting on the apple?
A free body diagram with two vectors of same length but pointing in opposite directions. The force upward is labeled F Subscript N Baseline. The force downward is labeled F Subscript g Baseline.
A free body diagram with one force vector pointing downward labeled F Subscript g Baseline.
A free body diagram with one force vector pointing right labeled F Subscript g Baseline.
A free body diagram with two force vectors, the first pointing downward labeled F Subscript g Baseline, the second pointing right labeled F Subscript p Baseline.
If an apple is falling from a tree, disregarding air resistance, the diagram that shows the free-body diagram of the force or forces acting on the apple would be: A free-body diagram with one force vector pointing downward labeled F Subscript g Baseline.
What diagram is the best?The best diagram that represents the scenario painted above would be the one pointing downward and the reason for this is that there are no extra forces acting on the body except the force of gravity that points downward.
So, the best option that describes the narrative above is the selected option.
Learn more about free fall here:
https://brainly.com/question/12167131
#SPJ1
Answer:
It's B (Fg pointing down only)
Explanation:
just trust bro
The steady state stability limit of the power system can be increased by. O Connecting capacitors in series with the line O Operating transmission lines at lower voltage levels Increasing the torque angle between generators Reducing the excitation of the machines
The line and reducing the excitation of machines are effective measures to increase the steady-state stability limit of a power system.
The steady-state stability limit of a power system refers to the maximum power transfer capability without losing stability.
Increasing the steady-state stability limit is desirable to enhance the system's reliability and performance. Among the options provided, the following choices can increase the steady-state stability limit:
Connecting capacitors in series with the line: Adding series capacitors to the transmission lines can improve the power transfer capability by compensating for the line's reactive power and voltage drop. This helps reduce line losses and improve voltage stability.
Reducing the excitation of the machines: By reducing the excitation levels of synchronous generators, the system's reactive power capability is increased. This allows for a better balance between active and reactive power and can enhance the system's stability limit.
On the other hand, the following choices do not directly increase the steady-state stability limit:
Operating transmission lines at lower voltage levels: Lowering the voltage levels of transmission lines may lead to increased line losses and voltage drop, which can limit the power transfer capability and potentially decrease the stability limit.
Increasing the torque angle between generators: Increasing the torque angle beyond a certain limit can lead to instability in the power system.
It can cause the generators to fall out of synchronism and potentially result in system-wide blackouts. Therefore, increasing the torque angle does not increase the steady-state stability limit.
In summary, connecting capacitors in series with the line and reducing the excitation of machines are effective measures to increase the steady-state stability limit of a power system.
To know more about excitation refer here:
https://brainly.com/question/28259864#
#SPJ11