what are the differences between infrasonic audible and ultrasonic waves

Answers

Answer 1


Sound waves are classified into three types, viz., Infrasonic, Audible, and Ultrasonic. These three types of waves differ from each other based on their frequency ranges and wavelengths.

Infrasonic waves have frequencies less than 20 Hz and wavelengths greater than 17 meters. Audible waves have frequencies between 20 Hz to 20,000 Hz and wavelengths between 17 meters to 1.7 cm. Ultrasonic waves have frequencies greater than 20,000 Hz and wavelengths less than 1.7 cm.

Infrasonic waves are generally produced by natural sources such as volcanic eruptions, earthquakes, thunderstorms, etc. They are also produced by large man-made sources such as explosions, jet engines, wind turbines, etc. The human ear cannot detect these waves, but they can cause physiological and psychological effects such as nausea, disorientation, anxiety, etc.

Audible waves are the sounds that humans can hear, produced by a variety of natural and man-made sources such as human voices, musical instruments, animals, etc. The frequency range of audible waves is subdivided into three ranges - low-pitched sounds (20 Hz to 250 Hz), mid-pitched sounds (250 Hz to 4000 Hz), and high-pitched sounds (4000 Hz to 20,000 Hz). Different musical instruments produce different types of sounds, depending on their frequencies.

Ultrasonic waves are commonly used in a wide range of applications such as medicine, industry, and defense. They are used in medical imaging (ultrasound), cleaning, welding, cutting, etc. Ultrasonic waves are also used in animal communication, particularly in the communication of bats, dolphins, and some other marine mammals. Humans cannot hear these waves, but animals can, which makes them highly useful in these applications.

The three types of sound waves, infrasonic, audible, and ultrasonic, differ from each other based on their frequency ranges and wavelengths. Infrasonic waves have frequencies less than 20 Hz and wavelengths greater than 17 meters. Audible waves have frequencies between 20 Hz to 20,000 Hz and wavelengths between 17 meters to 1.7 cm. Ultrasonic waves have frequencies greater than 20,000 Hz and wavelengths less than 1.7 cm.

Infrasonic waves are produced by natural sources such as volcanic eruptions, earthquakes, thunderstorms, etc., and large man-made sources such as explosions, jet engines, wind turbines, etc. The human ear cannot detect these waves, but they can cause physiological and psychological effects such as nausea, disorientation, anxiety, etc.

Audible waves are the sounds that humans can hear, produced by a variety of natural and man-made sources such as human voices, musical instruments, animals, etc. The frequency range of audible waves is subdivided into three ranges - low-pitched sounds (20 Hz to 250 Hz), mid-pitched sounds (250 Hz to 4000 Hz), and high-pitched sounds (4000 Hz to 20,000 Hz). Different musical instruments produce different types of sounds, depending on their frequencies.

Ultrasonic waves are commonly used in a wide range of applications such as medicine, industry, and defense. They are used in medical imaging (ultrasound), cleaning, welding, cutting, etc. Ultrasonic waves are also used in animal communication, particularly in the communication of bats, dolphins, and some other marine mammals. Humans cannot hear these waves, but animals can, which makes them highly useful in these applications.

The three types of sound waves differ from each other based on their frequency ranges and wavelengths. Infrasonic waves have frequencies less than 20 Hz and wavelengths greater than 17 meters, while audible waves have frequencies between 20 Hz to 20,000 Hz and wavelengths between 17 meters to 1.7 cm. Ultrasonic waves have frequencies greater than 20,000 Hz and wavelengths less than 1.7 cm. Each type of wave has its own unique characteristics and applications.

To know more about wavelengths :

brainly.com/question/31143857

#SPJ11


Related Questions

Which of the following factors does NOT influence wind speed and direction? a. Friction b. Pressure gradient c. Coriolis effect d. High to low pressure difference e. Radiation QUESTION 4 According to the book, how do pressure gradients usually develop? a. Differences in outgoing longwave radiation b. Winds blowing waves across the ocean c. Unequal heating of the atmosphere d. Winds blowing sand across the landscape e. Seismic waves produced by earthquakes QUESTION 5 Which of the following best describes how a sea breeze works? a. Wind blows from sea to land because warm land has low pressure and cooler sea has higher pressure b. Wind blows from land to sea because wind blows down from higher elevation c. Wind blows parallel to the coastline because of the Coriolis effect d. Wind blows from land to the sea because it is darker e. Wind blows from sea to land because there is more flat distance over which wind can blow in the ocean QUESTION 6 Based on the Coriolis effect, how are winds changed from flow driven by the pressure gradient in the northern hemisphere? a. Winds bend to the right b. Winds speed up c. Winds bend to the left d. Winds bend upward e. Winds slow down QUESTION 7 In which direction does the frictional force work? a. in the same direction as the pressure gradient, causing it to speed up b.to the left of the pressure gradient c. opposite the pressure gradient, slowing it down d.to the right of the pressure gradient e. opposite the motion of the wind, slowing it down

Answers

The factor that does NOT influence wind speed and direction is radiation. Hence, the correct option is (e). The factor that does NOT influence wind speed and direction is radiation.

The other four factors that influence wind speed and direction are friction, pressure gradient, Coriolis effect, and high-to-low pressure difference.

Pressure gradients usually develop due to unequal heating of the atmosphere. Hence, the correct option is (c). Pressure gradients usually develop due to unequal heating of the atmosphere.

Pressure gradients occur due to differences in air temperature, which cause pressure differences. Areas with warmer air will have lower pressure while those with cooler air will have higher pressure.

The wind blows from the sea to land because warm land has low pressure and cooler sea has higher pressure is the best description of how a sea breeze works. Hence, the correct option is (a).

A sea breeze is a type of local wind that blows from the sea towards the land. This occurs because during the day, the land heats up faster than the sea, causing the air above it to rise.

This creates a low-pressure area above the land. At the same time, the sea remains cooler, and the air above it is denser, creating a high-pressure area. The air flows from the high-pressure area (the sea) to the low-pressure area (the land), creating a sea breeze.

This breeze usually occurs in the afternoon when the temperature difference between the land and sea is greatest. It helps to cool down the land and bring moisture from the sea to the land.

The sea breeze is a result of differences in air temperature and pressure between the land and sea, with the wind flowing from high to low pressure, bringing moisture to the land and cooling it down.

Winds are bent to the right from the flow driven by the pressure gradient in the northern hemisphere, based on the Coriolis effect. Hence, the correct option is .

Based on the Coriolis effect, winds are bent to the right from the flow driven by the pressure gradient in the northern hemisphere. The Coriolis effect occurs due to the Earth's rotation, causing moving objects such as wind to deflect to the right in the northern hemisphere and to the left in the southern hemisphere.

The frictional force works opposite the motion of the wind, slowing it down. Hence, the correct option is (e). The frictional force works opposite the motion of the wind, slowing it down.

Friction occurs when the wind blows over the surface of the Earth, causing drag and slowing down the wind. The frictional force works opposite to the direction of the wind, with the greatest friction near the surface and decreases with height.

To learn more about Coriolis effect visit:

brainly.com/question/31284831

#SPJ11

the cross sectional area of the target getting hit is 2m^2 find the average force exerted on the target

Answers

To find the average force exerted on the target, more information is needed beyond just the cross-sectional area.

The average force exerted on the target depends on various factors such as the velocity, mass, and duration of the impact. Without these additional details, it is not possible to calculate the average force accurately.

The cross-sectional area alone does not provide sufficient information about the impact or the forces involved. It only describes the size of the target. To determine the force exerted, one needs to consider factors such as the speed of the object striking the target, the material properties of the target and the object, and the time over which the impact occurs.

For example, if the target is hit by a projectile with a known velocity, the force exerted on the target can be calculated using principles of momentum and energy conservation. However, without these specific details, it is not possible to provide an accurate calculation of the average force exerted on the target.

In summary, to determine the average force exerted on the target, additional information beyond just the cross-sectional area is necessary. Factors such as velocity, mass, and duration of impact are crucial in calculating the force accurately.

Learn more about Cross-sectional area.
brainly.com/question/13029309

#SPJ11

two adjacent energy levels of an electron in a harmonic potential well are known to be 2.0 ev and 2.8 ev. what is the spring constant of the potential well?

Answers

Evaluating this expression will give us the spring constant of the potential well.

k = 9.10938356 x 10^-31 kg * [(0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))]^2

To determine the spring constant of the potential well, we can use the formula for the energy levels of a harmonic oscillator: E = (n + 1/2) * h * f

where E is the energy level, n is the quantum number, h is Planck's constant (approximately 4.135 x 10^-15 eV s), and f is the frequency of the oscillator.

In a harmonic potential well, the energy difference between adjacent levels is given by:

ΔE = E2 - E1 = h * f

Given that the energy difference between the two adjacent levels is 2.8 eV - 2.0 eV = 0.8 eV, we can equate this to the formula above:

0.8 eV = h * f

Now we need to find the frequency (f) of the oscillator. The frequency can be related to the spring constant (k) through the equation:

f = (1/2π) * √(k/m)

where m is the mass of the electron. Since we're dealing with an electron in this case, the mass of the electron (m) is approximately 9.10938356 x 10^-31 kg.

Substituting the expression for f into the energy equation:

0.8 eV = h * (1/2π) * √(k/m)

We can convert the energy difference from electron volts (eV) to joules (J) by using the conversion factor 1 eV = 1.602176634 x 10^-19 J.

0.8 eV = (4.135 x 10^-15 eV s) * (1/2π) * √(k/9.10938356 x 10^-31 kg)

Simplifying the equation:

0.8 * 1.602176634 x 10^-19 J = 4.135 x 10^-15 eV s * (1/2π) * √(k/9.10938356 x 10^-31 kg)

Now we can solve for the spring constant (k):

√(k/9.10938356 x 10^-31 kg) = (0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))

Squaring both sides:

k/9.10938356 x 10^-31 kg = [(0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))]^2

Simplifying further and solving for k:

k = 9.10938356 x 10^-31 kg * [(0.8 * 1.602176634 x 10^-19 J) / (4.135 x 10^-15 eV s * (1/2π))]^2

Evaluating this expression will give us the spring constant of the potential well.

Learn more about Spring Constant here:

https://brainly.com/question/29975736

#SPJ11

Mose poner 01:0043 An automaker has introduced a new midsize model and wishes to estimate the mean EPA combined city and highway mileage, u, that would be obtained by all cars of this type. In order t

Answers

To estimate the mean EPA combined city and highway mileage (u) for the new midsize model, the automaker can employ a statistical sampling approach. They would need to collect data from a representative sample of the new midsize cars and measure their EPA combined mileage. It is important to ensure that the sample is randomly selected to avoid bias.

By calculating the mean mileage of the sample, the automaker can use it as an estimate of the population mean. However, it's important to keep in mind that the sample mean may not be exactly equal to the true population mean.

To increase the accuracy of the estimate, the automaker can aim for a larger sample size. A larger sample size tends to provide a more reliable estimate of the population mean. Statistical techniques like confidence intervals can be used to determine a range within which the true population mean is likely to lie.

It is also worth considering factors such as the variability of the mileage measurements and any potential covariates that may affect the mileage, such as engine type or driving conditions. Accounting for these factors can help improve the accuracy of the estimate.

Overall, by properly designing the sampling strategy, collecting a representative sample, and applying appropriate statistical techniques, the automaker can estimate the mean EPA combined mileage for the new midsize model with reasonable confidence.

Learn more about automaker  here

https://brainly.com/question/31758751

#SPJ11

mass attached to a vertical spring has position function given by s(t)=5sin(4t) where t is measured in seconds and s in inches. Find the velocity at time t=1. Find the acceleration at time t=1.

Answers

The content-loaded mass attached to a vertical spring has a position function given by s(t) = 5sin(4t), where t is measured in seconds and s in inches. We need to find the velocity at time t = 1 and the acceleration at time t = 1.

We can use the first and second derivatives of the position function to determine velocity and acceleration at a specific time.

Let's solve for velocity: We know that `s(t) = 5sin(4t)

`Taking the first derivative of s(t) to get the velocity function:

v(t) = `ds(t)/dt

` = `d/dt[5sin(4t)]`

= 20cos(4t)

Now, v(t) is the velocity function. At t = 1, we can find the velocity by plugging in t = 1 in v(t)

= 20cos(4t).v(1)

= 20cos(4(1))

= 20cos(4) Therefore, the velocity at time t = 1 is 20 cos(4).

Therefore, the acceleration at time t = 1 is -80sin(4). Hence, the velocity at time t = 1 is 20 cos(4), and the acceleration at time t = 1 is -80 sin(4).

To know more about acceleration, visit:

https://brainly.com/question/2303856

#SPJ11

why were giant planets close to their stars the first ones to be discovered? why has the same technique not been used yet to discover giant planets at the distance of saturn?

Answers

Giant planets close to their stars were the first ones to be discovered because they have a stronger gravitational pull, causing noticeable effects on the star's motion. The same technique has not been used to discover giant planets at the distance of Saturn because their gravitational influence on the star is much weaker, making it harder to detect.

The discovery of giant planets close to their stars was made possible through the radial velocity method, also known as the Doppler method. This technique involves observing the slight variations in a star's motion caused by the gravitational pull of an orbiting planet. When a massive planet orbits a star closely, the gravitational tug is stronger, resulting in a more significant wobble in the star's motion. These variations can be detected through precise measurements of the star's radial velocity, i.e., the speed at which it moves towards or away from us.

Giant planets close to their stars exert a more substantial gravitational influence, leading to detectable radial velocity variations. These discoveries were groundbreaking and provided valuable insights into the prevalence of massive planets in close proximity to their parent stars. However, applying the same technique to discover giant planets at the distance of Saturn poses several challenges.

Giant planets located at the distance of Saturn from their stars have a weaker gravitational pull, resulting in smaller radial velocity variations. Detecting such subtle changes becomes increasingly difficult as the distance between the planet and its star increases. The signal gets diluted amidst the noise of other stellar activities and instrumental limitations, making it challenging to distinguish the planet's gravitational influence from other factors.

Learn more about: gravitational influence

brainly.com/question/435328

#SPJ11

(a) calculate the absolute pressure at an ocean depth of 850 m. assume the density of sea water is 1020 kg/m3 and that the air above exerts a pressure of 101.3 kpa. pa (b) at this depth, what force must the frame around a circular submarine porthole having a diameter of 28.0 cm exert to counterbalance the force exerted by the water? n

Answers

(a) The absolute pressure at an ocean depth of 850 m can be calculated by adding the pressure due to the water column to the atmospheric pressure.

(b) To counterbalance the force exerted by the water at this depth on a circular submarine porthole, the frame must exert a force equal in magnitude and opposite in direction.

(a) The absolute pressure at a given depth in a fluid is the sum of the pressure due to the weight of the fluid above and the atmospheric pressure. In this case, the pressure due to the water column is determined by the density of seawater and the depth. Using the formula P = ρgh, where P is pressure, ρ is density, g is the acceleration due to gravity, and h is the depth, we can calculate the pressure due to the water column. Adding this to the atmospheric pressure of 101.3 kPa gives us the absolute pressure at the given depth of 850 m.

(b) The force exerted by the water on the submarine porthole is equal to the pressure at that depth multiplied by the area of the porthole. Using the formula F = PA, where F is force, P is pressure, and A is area, we can calculate the force exerted by the water on the porthole. To counterbalance this force, the frame around the porthole must exert an equal and opposite force.

By calculating the absolute pressure at the given ocean depth and determining the force exerted by the water on the porthole, we can understand the pressure conditions and the force requirements for the porthole frame.

Learn more about Pressure

brainly.com/question/29341536

#SPJ11

What are hypervisors, guest and host machines? Draw a diagram to illustrate your answer. (20 marks)

Answers

Hypervisors, guest machines, and host machines are important concepts in virtualization. A hypervisor is a software that allows multiple operating systems to run on a single hardware host machine.

Hypervisors are a type of virtualization software that allows multiple operating systems to run on a single hardware host machine. The host machine runs the hypervisor software, which creates virtual machines (VMs) that act as if they are independent machines running on their hardware.

The hypervisor acts as the main answer to maintain the operating systems and resource allocation.The guest machines, also known as virtual machines, are created by the hypervisor and are instances of a guest operating system that runs on the host machine.

Guest machines are isolated from each other, allowing different operating systems and applications to run without interfering with each other.

The host machine is the physical machine that runs the hypervisor software. It provides the necessary hardware resources, such as CPU, memory, and storage, to the guest machines.

The hypervisor manages the allocation of these resources to the guest machines based on their requirements.A diagram to illustrate this is as follows: [Insert diagram here]

Hypervisors, guest machines, and host machines are important concepts in virtualization. A hypervisor is a software that allows multiple operating systems to run on a single hardware host machine. The guest machines are virtual machines created by the hypervisor, which act as independent machines. The host machine is the physical machine that runs the hypervisor software and provides the necessary hardware resources to the guest machines. These concepts are important in understanding the virtualization technology and its benefits.

To know more about Hypervisors visit:

brainly.com/question/31257671

#SPJ11

In figure take into account the speed of the tank and show that the speed of fluid leaving the opening a the bottom is

v 1 = 2gh/(1−A 12 /A 22 )

​where h= y2 −y1 and A1 and A 2 are the areas of the opening and the top surfaces respectively. Assume A 1 <

Answers

The speed of the fluid leaving the opening at the bottom of the tank can be determined using the formula v1 = 2gh/(1 - A12/A22), where h = y2 - y1 and A1 and A2 are the areas of the opening and the top surfaces respectively.

The given formula for the speed of the fluid leaving the opening at the bottom of the tank is derived from the principles of fluid mechanics. Let's break down the equation and understand its components.

The term "2gh" represents the gravitational potential energy converted to kinetic energy. Here, "g" is the acceleration due to gravity, and "h" is the vertical distance between the two points of interest, namely y2 and y1.

The denominator term "1 - A12/A22" involves the ratios of the areas of the opening and the top surfaces of the tank. The ratio A12/A22 represents the fractional area of the opening compared to the top surface area. By subtracting this fraction from 1, we account for the decrease in speed caused by the reduced flow area.

In simpler terms, when the opening area is smaller (A1 < A2), the fluid leaving the tank will experience an increase in speed due to the narrowing of the flow path. Conversely, if the opening area is larger, the speed will decrease.

The formula provides a quantitative relationship between the vertical distance, the areas involved, and the resulting speed of the fluid exiting the tank through the opening at the bottom.

Learn more about: fluid leaving

brainly.com/question/12243970

#SPJ11

Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Determine the ratio of the masses of the two ropes

Answers

The tension in the rope and the linear mass density of the rope influence the speed of a pulse on the rope. The mass per unit length of the rope is known as the linear mass density.

Let's assume that ropes 1 and 2 have linear mass densities of 1 and 2, respectively. Both ropes have the same amount of tension. The equation: gives the speed of a pulse on a rope. v = √(T/μ),

where is the linear mass density and T is the tension. This equation allows us to express the pulse rate on ropes 1 and 2 as: v1 = √(T/μ1), v2 = √(T/μ2).

Thus, The tension in the rope and the linear mass density of the rope influence the speed of a pulse on the rope. The mass per unit length of the rope is known as the linear mass density.

Learn more about Mass density, refer to the link:

https://brainly.com/question/6107689

#SPJ4

what is the main difference between free weights and a universal machine? a. universal machines build bigger muscles because they allow for more repetitions. b. universal machines are safer because the weights are not above the body. c. universal machines are for advanced weight lifters only. d. there is no difference.

Answers

The main difference between free weights and a universal machine is that free weights provide more functional and compound movements, while universal machines offer a more controlled and guided exercise experience.

What is the main benefit of free weights compared to universal machines?

The main difference between free weights and a universal machine is that free weights provide more functional and compound movements, while universal machines offer a more controlled and guided exercise experience.

They provide the freedom to perform a wide variety of exercises, targeting multiple muscle groups simultaneously. Free weights also allow for progressive overload by easily adjusting the weight lifted.

On the other hand, universal machines are designed with fixed paths and handles, providing stability and reducing the risk of injury for beginners. They often have built-in weight stacks or plates that allow for quick weight adjustments.

Universal machines can be beneficial for isolating specific muscle groups and are generally easier to learn and use, making them suitable for beginners or those who prefer a more controlled workout environment.

It's important to note that neither option is inherently better than the other, as both free weights and universal machines have their own advantages and disadvantages. The choice between the two depends on individual goals, preferences, and fitness levels.

Learn more about free weights

brainly.com/question/33449705

#SPJ11

The typical college freshman spends an average of =150 minutes per day, with a standard deviation of =50 minutes, on social media. The distribution of time on social media is known to be Normal. The third quartile is: 0.75minutes. 183.72 minutes. 0.25minutes. 116.27 minutes.
183.72 minutes.

Answers

The third quartile is 183.72 minutes. So, the answer is 183.72 minutes.

Given: The typical college freshman spends an average of =150 minutes per day, with a standard deviation of =50 minutes, on social media and the third quartile is 0.75.

Therefore, we can determine the answer as follows:

We know that the third quartile, denoted by Q3, is the value such that 75% of the data lies below it. So, z-score corresponding to the third quartile is given by:

z = invNorm(0.75)

Where, invNorm is the inverse Normal distribution function.

By definition, the inverse Normal distribution gives the z-score given the area under the Normal distribution curve. Here, we need to find the area corresponding to the upper tail of 0.25 (since 75% of the data lies below the third quartile). This can be calculated as follows:

Area to the left of Q3 = 1 - Area to the right of Q3= 1 - 0.25 = 0.75

Therefore, the z-score corresponding to this area is given by:

z = invNorm(0.75) = 0.6745

Now, the value of the third quartile can be obtained by using the z-score formula as follows:

z = (X - μ) / σ

where, X = value of the third quartile, μ = population mean = 150 (given), σ = population standard deviation = 50 (given)

Substituting the values, we get:

0.6745 = (X - 150) / 50

Solving for X, we get: X = 150 + 0.6745 * 50X = 183.72

Therefore, the third quartile is 183.72 minutes. So, the answer is 183.72 minutes.


Learn more about quartile visit:

brainly.com/question/29809572

#SPJ11

If a ball is thrown upwards at 10 meters/sec from a 10 meter high platform, how high off the ground does it go, when does it hit the ground, and how fast is it going when it hits the ground?

Answers

If a ball is thrown upwards at 10 meters/sec from a 10 meter high platform, the ball is going at a velocity of 10 meters per second when it hits the ground.

To determine the height the ball reaches, the time it takes to hit the ground, and the velocity at impact, we can use the laws of motion and apply them to the given scenario.

Given:

Initial velocity (u) = 10 meters/sec (upwards)

Initial height (h) = 10 meters

Acceleration due to gravity (g) = 9.8 meters/sec² (considering downward as positive)

First, we can find the time it takes for the ball to reach its maximum height (when it momentarily comes to rest) using the formula:

u = v + at,

where u is the initial velocity, v is the final velocity (0 m/s at the peak), a is the acceleration, and t is the time.

At the peak, v = 0 m/s, so we have:

0 = 10 - 9.8t.

Solving for t:

9.8t = 10,

t = 10 / 9.8 ≈ 1.02 seconds.

Now, we can determine the maximum height ([tex]H_{max[/tex]) reached by the ball using the formula:

h = u * t - 0.5 * g * t²,

where h is the height, u is the initial velocity, t is the time, and g is the acceleration due to gravity.

Substituting the known values:

[tex]H_{max[/tex]= 10 * 1.02 - 0.5 * 9.8 * (1.02)²,

[tex]H_{max[/tex]≈ 10.2 - 0.5 * 9.8 * 1.0404,

[tex]H_{max[/tex]≈ 10.2 - 5.0602,

[tex]H_{max[/tex]≈ 5.1398 meters.

Therefore, the ball reaches a height of approximately 5.14 meters above the ground.

To find the time it takes for the ball to hit the ground, we can use the equation for vertical motion:

h = u * t + 0.5 * g * t²,

where h is the initial height, u is the initial velocity, t is the time, and g is the acceleration due to gravity.

Substituting the known values:

0 = 10 * t + 0.5 * 9.8 * t²,

0 = 10t + 4.9t².

This equation can be solved using quadratic formula or factoring. By factoring, we get:

t(10 + 4.9t) = 0.

This equation gives us two solutions: t = 0 (initial time) and t = -10/4.9 (negative time, not applicable in this context).

Therefore, the ball hits the ground at t = 0 seconds and t = -10/4.9 seconds. Since negative time is not meaningful in this context, the ball hits the ground at t = 0 seconds.

Finally, to find the velocity of the ball when it hits the ground, we can use the formula:

v = u + gt,

where v is the final velocity, u is the initial velocity, g is the acceleration due to gravity, and t is the time.

Substituting the known values:

v = 10 + 9.8 * 0,

v = 10 m/s.

Therefore, the ball is going at a velocity of 10 meters per second when it hits the ground.

Learn more about velocity here:

https://brainly.com/question/80295

#SPJ11

a tube, open on one end and closed on the other, has a length of 70 cm. assuming the speed of sound is 343 m/s, what is the fundamental frequency of this tube?

Answers

The fundamental frequency of the tube is 343 Hz. the fundamental frequency of a tube is the lowest resonant frequency at which the tube can vibrate.

For a tube open at one end and closed at the other, the fundamental frequency occurs when the length of the tube is equal to a quarter of the wavelength of the sound wave produced inside it.

Given the speed of sound as 343 m/s and the length of the tube as 70 cm (0.7 meters), we can use the formula for the fundamental frequency of a closed-open tube:

Fundamental frequency (f) = (Speed of sound) / (2 * Length of the tube)

Substituting the values:

f = 343 m/s / (2 * 0.7 m) = 343 / 1.4 ≈ 244.29 Hz

Thus, the fundamental frequency of the tube is approximately 244.29 Hz.

Learn more about: fundamental frequency

brainly.com/question/27441069

#SPJ11

To set up a good experiment to test whether hypothesis H is true or not, try to get evidence E such that:
Select one:
a.
The value of P(E | H) is higher than the value of P(E | ~H)
b.
The value of P(H) is higher than the value of P(~H)
c.
There is as big a difference between P(H) and P(E | H) as possible.
d.
There is as big a difference between P(E | H) and P(E | ~H) as possible

Answers

To set up a good experiment to test whether hypothesis H is true or not, try to get evidence E such that there is as big a difference between P(E | H) and P(E | ~H) as possible. This means the correct option is d.

For a good experiment to test whether hypothesis H is true or not, it is necessary to gather the right evidence. This evidence should be such that there is as big a difference between P(E | H) and P(E | ~H) as possible.

P(E | H) and P(E | ~H) are the conditional probabilities of evidence E given hypothesis H and evidence E given not-H respectively. The difference between these two probabilities measures how well evidence E supports hypothesis H versus not H.

For example, suppose we want to test the hypothesis H: All dogs bark. To get evidence that there is as big a difference between P(E | H) and P(E | ~H) as possible, we can test this hypothesis by taking two groups of dogs. One group is the dogs that bark (group A) and the other group is the dogs that don't bark (group B).

Then, we can get evidence E, which is the number of dogs in group A that bark and the number of dogs in group B that bark. Using this evidence, we can calculate the conditional probabilities of evidence E given hypothesis H (P(E | H)) and evidence E given not-H (P(E | ~H)).

Finally, we can calculate the difference between P(E | H) and P(E | ~H). If this difference is large, then the evidence supports hypothesis H more than not H.

To set up a good experiment to test whether hypothesis H is true or not, it is necessary to gather the right evidence. This evidence should be such that there is as big a difference between P(E | H) and P(E | ~H) as possible.

For example, suppose we want to test the hypothesis H: All dogs bark. To get evidence that there is as big a difference between P(E | H) and P(E | ~H) as possible, we can test this hypothesis by taking two groups of dogs. One group is the dogs that bark (group A) and the other group is the dogs that don't bark (group B).

Then, we can get evidence E, which is the number of dogs in group A that bark and the number of dogs in group B that bark. Using this evidence, we can calculate the conditional probabilities of evidence E given hypothesis H (P(E | H)) and evidence E given not-H (P(E | ~H)).

Finally, we can calculate the difference between P(E | H) and P(E | ~H). If this difference is large, then the evidence supports hypothesis H more than not H.

Hence, it is important to get evidence that has a significant difference between P(E | H) and P(E | ~H) to set up a good experiment to test whether hypothesis H is true or not.

It is necessary to gather the right evidence to set up a good experiment to test whether hypothesis H is true or not.

Evidence E should be such that there is as big a difference between P(E | H) and P(E | ~H) as possible. The difference between these two probabilities measures how well evidence E supports hypothesis H versus not H. Therefore, option d is the correct answer.

To learn more about conditional probabilities visit:

brainly.com/question/11899923

#SPJ11

as a part of her studies, jolyn gathered data on the length of time between dentist visits for a sample of 23 individuals. she works through the testing procedure:

Answers

Jolyn conducted a study on the length of time between dentist visits for a sample of 23 individuals.

Jolyn's data collection on the length of time between dentist visits for a sample of 23 individuals indicates her intention to analyze and investigate patterns or trends in dental appointment intervals. This type of data can provide valuable insights into individuals' oral health practices and the frequency of dental care.

The testing procedure mentioned suggests that Jolyn intends to conduct statistical analysis on the collected data. This procedure typically involves applying appropriate statistical tests to examine the data's distribution, identify any significant patterns or differences, and draw valid conclusions based on the results. By following a systematic testing procedure, Jolyn aims to ensure the accuracy and reliability of her findings.

It is important to note that the specific details of the testing procedure are not provided, but it may involve various statistical techniques such as descriptive statistics, hypothesis testing, or regression analysis, depending on the research questions and objectives. By analyzing the data and conducting the appropriate statistical tests, Jolyn can gain insights into the average time between dentist visits, the variability in appointment intervals, and any potential relationships between different factors and dental care frequency.

Learn more about  dentist

brainly.com/question/31683930

#SPJ11

a cannonball is launched horizontally from a tower. if the cannonball has a velocity of 60 m/s on leaving the barrel, where will the cannonball be 1 second later? (no air resistance)

Answers

The equation used to find the position of a projectile at any time during its flight is x = V0xt.

This equation will help us find the location of the cannonball one second after it is fired.

Here, we need to find the horizontal distance the cannonball has traveled after one second. Let's put the values of the velocity (V0) and time (t) in the equation of x = V0xt.

Hence, x = 60 x 1. Thus, the cannonball will have traveled 60 meters horizontally after one second of being fired from the cannon tower.

Therefore, we can conclude that the cannonball will land 60 meters away from the cannon tower after one second of being fired if there is no air resistance.

When a cannonball is fired horizontally from a tower, the horizontal distance the cannonball will travel before landing can be calculated using the following equation:

x = V0xt, where x is the horizontal distance the cannonball will travel, V0 is the velocity of the cannonball, and t is the time it will take for the cannonball to reach its landing point.In the given problem, we need to find the location of the cannonball one second after it is fired.

The problem states that the velocity of the cannonball when it leaves the barrel is 60 m/s, and air resistance is not present. Let's put the values of the velocity (V0) and time (t) in the equation of x = V0xt.

Hence, x = 60 x 1. Thus, the cannonball will have traveled 60 meters horizontally after one second of being fired from the cannon tower.

Therefore, we can conclude that the cannonball will land 60 meters away from the cannon tower after one second of being fired if there is no air resistance.

To know more about projectile  :

brainly.com/question/28043302

#SPJ11

Which of the following expresses a principle, which was initially stated by Galileo and was later incorporated into Newton's laws of motion?

An object's acceleration is inversely proportional to its mass.

For every action there is an equal but opposite reaction.

The natural condition for a moving object is to remain in motion.

The natural condition for a moving object is to come to rest.

Answers

Galileo's principle, later incorporated into Newton's laws of motion, can be summarized as: "The natural condition for a moving object is to come to rest" or "The natural condition for a moving object is to remain in motion."

One of Galileo's fundamental contributions to physics was the principle of inertia, which later became an integral part of Newton's laws of motion. The principle states that an object in motion will continue to move at a constant velocity unless acted upon by an external force. This concept challenges the common belief during Galileo's time that objects required a force to keep them in motion. In other words, the natural tendency of a moving object is to maintain its state of motion or rest, which implies that an external force is necessary to alter its motion or bring it to rest. Newton expanded upon this principle by formulating his first law of motion, also known as the law of inertia, which states that an object's acceleration is inversely proportional to its mass. This law affirms that the greater an object's mass, the more force is required to change its state of motion or bring it to rest. Therefore, the principle initially stated by Galileo can be expressed as "The natural condition for a moving object is to come to rest" or "The natural condition for a moving object is to remain in motion."

Learn more about Galileo principles:

https://brainly.com/question/1121513

#SPJ11

if a circular object seen in your high-power field (diameter 0.5 mm) occupies about 1/5 of the diameter of the field, the object's diameter is about ________.

Answers

The object's diameter is about 0.5 mm.

Given: A circular object seen in your high-power field (diameter 0.5 mm) occupies about 1/5 of the diameter of the field.

To find: The object's diameter.

Formula used:

Diameter = (width of field) x (diameter of object seen in field) / (width of object seen in field)

Since the diameter of the field is 0.5 mm and the object seen in the field occupies about 1/5 of the diameter of the field, then the width of the object seen in the field is 0.5/5= 0.1 mm.

The diameter of the object can then be calculated using the formula above:

Diameter = (0.5 mm) x (diameter of object seen in field) / (0.1 mm)

Given that the object seen in the field occupies about 1/5 of the diameter of the field:

1/5 = diameter of object seen in field/0.5 mm

Rearranging the above equation to get the diameter of the object seen in the field:

diameter of object seen in field = (1/5) x (0.5 mm) = 0.1 mm

Substituting the value obtained for diameter of object seen in field into the formula above:

Diameter = (0.5 mm) x (0.1 mm) / (0.1 mm)= 0.5 x 1= 0.5 mm

Therefore, the object's diameter is about 0.5 mm.

Learn more about diameter visit:

brainly.com/question/32968193

#SPJ11

which of the following is not a wave classification? which of the following is not a wave classification? transverse. longitudinal. reflective. all of these are a wave classification. none of these are a wave classification.

Answers

Transverse and longitudinal waves are two common classifications of waves. The wave classification that is not listed among the options is "reflective".

In a transverse wave, the oscillations of the medium are perpendicular to the direction in which the wave travels. Examples of transverse waves include light waves and water waves. On the other hand, in a longitudinal wave, the oscillations of the medium are parallel to the direction in which the wave travels. Sound waves are a common example of longitudinal waves.

The term "reflective" does not correspond to a wave classification. Reflection is a phenomenon that occurs when a wave encounters a boundary and bounces back. It is not a distinct classification of waves. Therefore, the correct answer is "reflective" as it is not a wave classification.

You can learn more about waves at: brainly.com/question/29334933

#SPJ11

is λa, or is it not possible to tell?

Answers

The ratio of the wavelength of light in water, λw, to its wavelength in air, λa, is given by the equation λw/λa = nw/na, where nw and na are the refractive indices of water and air, respectively.

When light passes from air into water, its speed and direction change due to the difference in refractive indices between the two media. The refractive index of a medium is a measure of how much the speed of light is reduced when it passes through that medium, compared to its speed in a vacuum. The refractive index of air is very close to 1, while the refractive index of water is about 1.33.

Because the speed of light is different in air and water, its wavelength also changes when it passes from one medium to the other. The ratio of the wavelengths in the two media is given by the ratio of their refractive indices. This means that the wavelength of light in water is shorter than its wavelength in air, since the refractive index of water is greater than the refractive index of air.

To know more about wavelength  visit:

brainly.com/question/31322456

#SPJ4

The complete question will be

consider light passing from air into water. show answer no attempt what is the ratio of its wavelength in water, λw, to its wavelength in air, λa?

A periodic composite signal with a bandwidth of 2000 Hz is composed of two sine waves. The first one has a frequency of 100 Hz with maximum amplitude of 20 V; the second one has maximum amplitude of 5 V. Draw the frequency domain graph.

Answers

The frequency domain graph of the periodic composite signal consists of two peaks, one at 100 Hz with an amplitude of 20 V and another at an unknown frequency with an amplitude of 5 V.

In the frequency domain, the composite signal can be represented by a graph showing the amplitude of each frequency component present in the signal. In this case, the signal is composed of two sine waves. The first sine wave has a frequency of 100 Hz and a maximum amplitude of 20 V. This means that in the frequency domain graph, there will be a peak at 100 Hz with an amplitude of 20 V.

The second sine wave's frequency is not given, but we know that it has a maximum amplitude of 5 V. Therefore, there will be another peak in the frequency domain graph at an unknown frequency with an amplitude of 5 V.

Since the bandwidth of the composite signal is 2000 Hz, the frequency domain graph will span a range of frequencies from 0 Hz to 2000 Hz. Apart from the two peaks mentioned above, there will be no other significant frequency components in the graph.

To summarize, the frequency domain graph of the periodic composite signal will have two peaks—one at 100 Hz with an amplitude of 20 V, and another at an unknown frequency with an amplitude of 5 V.

Learn more about periodic composite

brainly.com/question/33440456

#SPJ11

How has this camp provided cadets with a greater understanding of opportunities within the STEM field and how to get there?
Note: Think about information you learned about the different job opportunities within the STEM field and a plan on how to achieve those career goals.

Answers

The camp has provided cadets with a greater understanding of opportunities within the STEM field and how to get there in several ways:

1. Exposure to different STEM career paths: The camp has likely exposed cadets to a variety of STEM career paths. Through workshops, presentations, and possibly guest speakers, cadets would have learned about different job opportunities within the STEM field. This exposure helps them understand the range of possibilities available to them and allows them to explore various interests within STEM.

2. Hands-on activities and projects: The camp may have included hands-on activities and projects related to STEM fields. These activities give cadets the opportunity to apply their knowledge, develop practical skills, and gain a deeper understanding of the real-world applications of STEM concepts. By engaging in these activities, cadets can see the direct link between their academic learning and potential career paths in STEM.

3. Mentoring and networking: The camp may have provided opportunities for cadets to interact with professionals working in STEM fields. This could include mentorship programs or networking events where cadets can ask questions, seek guidance, and gain insights from professionals who have already established themselves in their respective careers. By connecting with these mentors and professionals, cadets can learn about the paths they took to get to where they are and receive valuable advice on how to achieve their own career goals in the STEM field.

4. Career planning and goal-setting: The camp likely included sessions on career planning and goal-setting. Cadets may have been introduced to resources and tools to help them develop a plan for their educational and career journeys. This could involve identifying the educational requirements, internships or research opportunities, and additional skills or certifications needed to pursue specific STEM careers. By setting clear goals and understanding the steps necessary to achieve them, cadets are better equipped to navigate their way through the STEM field.

Overall, this camp has provided cadets with a greater understanding of opportunities within the STEM field by exposing them to different career paths, providing hands-on experiences, facilitating mentorship and networking, and assisting in career planning and goal-setting. These opportunities help cadets explore their interests, gain practical skills, and develop a roadmap for their future STEM careers.

model a two-link manipulator with torque at the pivots. assume the links are massless and model a point mass at the end of each link. draw the workspace of the manipulator. take user input for a point within the workspace (the user will click within the workspace) design a pd or pid controller to control the position of the end-effector of the arm to reach the point chosen by the user. tune the parameter such that critical damping is equal to 1 (for position control).

Answers

To control the position of the end-effector of a two-link manipulator with torque at the pivots, a PD or PID controller can be designed.

How can the workspace of the manipulator be drawn?

The workspace of a manipulator refers to the region in space that can be reached by the end-effector. In the case of a two-link manipulator, the workspace can be visualized by considering the joint limits and the lengths of the links.

The end-effector's position is determined by the joint angles of the manipulator. By varying the joint angles within their limits, the reachable positions of the end-effector can be determined.

The workspace typically forms a geometric shape, such as a circular or elliptical region, depending on the design parameters.

Learn more about manipulator

brainly.com/question/28701456

#SPJ11

an electromagnetic wave of wavelength 620 nm has an intensity of 1.0 w/m2 . the electric field amplitude is closest to:

Answers

Answer:

Electric Field Amplitude = √(2 * Intensity / (ε₀ * c)).Where: - Intensity is the given intensity of the wave (1.0 W/m²) - ε₀ is the permittivity of free space, which is a constant equal to 8.85 × 10⁻¹² F/m - c is the speed of light, which is a constant equal to 3.0 × 10⁸ m/s.Given that the wavelength of the wave is 620 nm (nanometers), we need to convert it to meters by dividing by 10⁹. Wavelength = 620 nm = 620 × 10⁻⁹ m.Now, let's substitute the values into the formula: Electric Field Amplitude = √(2 * 1.0 / (8.85 × 10⁻¹² * 3.0 × 10⁸)).Calculating the expression inside the square root: Electric Field Amplitude = √(2 * 1.0 / (2.655 × 10⁻³⁴)).Simplifying the expression inside the square root: Electric Field Amplitude = √(3.77 × 10³⁴).Taking the square root: Electric Field Amplitude ≈ 6.14 × 10¹⁷ V/m.Therefore, the electric field amplitude of the given electromagnetic wave with a wavelength of 620 nm and an intensity of 1.0 W/m² is approximately 6.14 × 10¹⁷ V/m.

About amplitude

The amplitude is the farthest deviation from the equilibrium point in vibration. In the international system, the amplitude is symbolized by (A) and has units (M). Amplitude can be used in both physics and music, but in music it is defined as the volume of an audio signal. Wave amplitude is measured from the centerline distance, with the results of these measurements being referred to in decibel units.

You can learn more about Amplitude at https://brainly.com/question/21632362

#SPJ11

which of the following are examples of a nearly (or completely) elastic collision? group of answer choices two falcons colliding an

Answers

Two falcons colliding is an example of a nearly (or completely) elastic collision.

A nearly elastic collision is a type of collision where the total kinetic energy of the system is conserved. In this case, when two falcons collide, their kinetic energy before the collision is transferred and redistributed among them, resulting in a change in their velocities. However, the total kinetic energy of the system remains constant, indicating an elastic collision.

In an elastic collision, the objects involved rebound off each other without any loss of kinetic energy to other forms, such as heat or deformation. This means that the colliding falcons will experience a change in their velocities and directions but will not lose any energy due to the collision. The conservation of kinetic energy allows the falcons to retain their original total energy.

During the collision, the falcons may briefly deform due to the impact, but their internal structures and overall energy remain intact. The collision is considered nearly elastic if there is minimal energy loss due to factors like air resistance or slight deformation of the falcons' bodies.

Learn more about: falcons colliding

brainly.com/question/17310275

#SPJ11

tick-tock heavy like a brinks truck looking like i'm tip-top shining like a wristwatch time will grab your wrist lock it down 'til the thing pop can you stick around for a minute 'til the ring stop? please, god

Answers

The lyrics you provided are from the song "Holy" by Justin Bieber featuring Chance the Rapper.

What are the lyrics of the song "Holy" by Justin Bieber featuring Chance the Rapper?

The lyrics you shared are from the song "Holy" by Justin Bieber featuring Chance the Rapper. The lines you mentioned are part of the chorus of the song. The lyrics convey a sense of urgency and a plea to hold onto a moment before it slips away.

The phrase "tick-tock heavy like a Brinks truck" refers to the passing of time and its weight, comparing it to a heavily loaded armored truck.

The lines "looking like I'm tip-top shining like a wristwatch" and "time will grab your wrist, lock it down 'til the thing pop" further emphasize the importance of time and its fleeting nature. The lyrics express a desire to make the most of the present moment.

Learn more about: lyrics

brainly.com/question/31569638

#SPJ11

An object placed 50cm away from an emerging lens of focal length 15cm produce a focus image on a screen calculate the distance between the object and screen ​

Answers

Answer:

Certainly! Using the lens formula:

1/f = 1/v - 1/u

where f is the focal length of the lens, v is the distance between the lens and the image, and u is the distance between the lens and the object.

We can rearrange the formula to solve for v:

1/v = 1/f + 1/u

Substituting the values given, we get:

1/15 = 1/v - 1/50

Solving for v, we get:

v = 30cm

Therefore, the distance between the object and the screen is:

u + v = 50cm + 30cm = 80cm

Explanation:

The distance between the object and screen can be calculated using the lens formula, which states that:

1/f = 1/u + 1/v

where f is the focal length of the lens, u is the object distance, and v is the image distance.

In this case, the object is placed 50 cm away from the lens, and the focal length of the lens is 15 cm. Let's assume that the image is formed at a distance of v cm from the lens.

Substituting the given values into the lens formula, we get:

1/15 = 1/50 + 1/v

Simplifying this equation, we get:

1/v = 1/15 - 1/50
1/v = (10 - 3) / 150
1/v = 7 / 150

Multiplying both sides by 150, we get:

v = 150 / 7

Therefore, the image is formed at a distance of approximately 21.43 cm from the lens.

The distance between the object and screen is simply the sum of the object distance and image distance:

d = u + v
d = 50 + 21.43
d = 71.43 cm

Therefore, the distance between the object and screen is approximately 71.43 cm.

before bioelectrical impedance analysis is performed, the subject should _____.

Answers

Before bioelectrical impedance analysis is performed, the subject should not consume food or liquid, especially alcohol, for 4-6 hours before the test.

The subject should also empty their bladder before the test to avoid measurement inaccuracies. The person being tested must also avoid exercising or smoking for 4-6 hours before the test. The test should be done while lying down in a supine position with limbs separated for 5-10 minutes to enable the electrical charges to distribute throughout the body.

Bioelectrical impedance analysis (BIA) is a non-invasive method of measuring the body's fat, water, and muscle composition. BIA can be done with a handheld device or with electrodes placed on the feet, hands, or other parts of the body. Before the test is performed, it is important to follow some guidelines to ensure accurate results.

1. The subject should avoid eating or drinking anything, especially alcohol, for 4-6 hours before the test. This is to prevent fluid changes in the body that could affect the accuracy of the measurements.

2. The subject should avoid exercising or smoking for 4-6 hours before the test. Exercise and smoking can cause changes in the body's fluid balance that could affect the accuracy of the results.

3. The subject should empty their bladder before the test to prevent measurement inaccuracies. A full bladder can affect the results of the test.

4. The subject should lie down in a supine position with their limbs separated for 5-10 minutes before the test. This allows the electrical charges to distribute throughout the body, which ensures accurate measurements.

To ensure accurate results, it is important to follow certain guidelines before bioelectrical impedance analysis is performed. The subject should avoid eating or drinking anything for 4-6 hours before the test, avoid exercising or smoking for 4-6 hours before the test, empty their bladder before the test, and lie down in a supine position with their limbs separated for 5-10 minutes before the test. Following these guidelines will help ensure that the results of the test are accurate and reliable.

To know more about smoking  :

brainly.com/question/32174071

#SPJ11

Which energy yield is likely to have come from a fission or fusion reaction?
A) 1.4×1011 kJ/mol
B) 1.0×102 kJ/mol
C) 1.2×103 kJ/mol
D) 2.5×102 kJ/mol

Answers

Energy yield refers to the amount of energy produced or obtained from a specific process or source. The energy yield of 1.4 × 11¹¹ kJ/mol is likely to have come from a fission or fusion reaction.

The energy yields mentioned in the options are quite high, indicating the likelihood of them being associated with nuclear reactions such as fission or fusion. However, to determine which one is more likely to come from a fission or fusion reaction, we need to consider the typical energy ranges associated with these processes.

Fission reactions typically release energy in the range of millions to billions of electron volts (MeV to GeV), which corresponds to a few hundred kilojoules per mole (kJ/mol) to millions of kilojoules per mole (kJ/mol). Fusion reactions, on the other hand, release energy in the range of millions to billions of kilojoules per mole (kJ/mol) or even higher.

Among the given options, option A) 1.4 × 11¹¹ kJ/mol has the lowest energy yield. This value is relatively low compared to the typical energy releases from fission or fusion reactions. While it is not possible to conclusively determine the specific reaction based on energy yield alone, option D) is less likely to be associated with a fission or fusion reaction due to its relatively low energy yield.

Learn more about Energy yield here:

https://brainly.com/question/33462688

#SPJ11

Other Questions
Ask user for an Integer input called ""limit"": * write a do-while loop to write odd numbers starting from limit down to 1 in the eclipse app compared to a dash lift, the dash roll offers which advantage? In cinematography, a sense of naturalness is more praiseworthy than clever camerawork.a.Trueb.False A writer decides that the best way to include information from a source is to or briefly explain the texts main points, focusing on the central idea and major supporting details Suppose a 40-year-old person deposits $8,000 per year in an Individual Retirement Account until age 65 . Find the total in the account with the following assumption of an interest rate. (Assume quarterly compounding, with payments of $2,000 made at the end of each quarter perlod.) Find the total amount of interest earned. 8% The total in the account is $ (Round to the nearest cent as needed.) The Transportation Security Administration (TSA) is responsible for airport safety. On some flights, TSA officers randomly select passengers for an extra security check before hoarding. One such flight had 76 passengers -12 in first class and 64 in coach class. Some passengers were surprised when none of the 10 passengers chosen for screening were seated in first class. Can we use a binomial distribution to approximate this probability? Justify your answer. In the six-step process for Green Sourcing the initial step is Assessing the Oppontunty Which of the following is not among the fve most common arcas of relevant costs to bie taken into account? O Energy O Engineerting O Recycing O Packaging Consider the differential equation t2 y t(t+2)y +(t+2)y=0,(t>0). (a) Show that y=t is a solution to the given equation. (b) Find the general solution to the equation by using the reduction of order method) (Cryptography)- This problem provides a numerical example of encryption using a one-round version of DES. We start with the same bit pattern for both the key K and the plaintext block, namely: Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E FBinary notation: 0000 0001 0010 0011 0100 0101 0110 01111000 1001 1010 1011 1100 1101 1110 1111(a) Derive k1, the first-round subkey (b) Derive L0 and R0 (i.e., run plaintext through IP table) (c) Expand R0 to get E[R0] where E[.] is the Expansion/permutation (E table) in DES Draft a comprehensive and thoughtful paragraph to the items/questions below and post your Discussion. Cite your sources.What are the main security weaknesses of SNMP? Calculate the theoretical yield of virstatin in thisreaction.1,8-naphthalic anhydride 0.50g4-aminobutanoic acid 0.90 g Melena dreamed that she began a pleasant conversation with a woman in an elevator which stage of sleep did this dream most likely occur? Utilize the Chapter 20 textbook reading, which covers unemployment and minimum wage laws, as well as the interactive "FRED Graph" provided in the topic Resources to address the following questions:According to the textbook, has the federal minimum wage kept pace with inflation over time?The graph displays nominal minimum wage as a blue line, while real minimum wage (adjusted for inflation) is in depicted by the red line. Discuss which is higher and the difference between nominal and real minimum wage in 1990. Compare that to the difference between nominal and real minimum wage today.As a policymaker, explain how you might address that disparity. Describe the different allotropes of carbon. Match the words in the left column to the appropriate blanks in the sentences on the right. Reset Help graphite In dispersion forces , carbon atoms are arranged in sheets. Within each sheet, the atoms are covalently bonded to one another by a network of sigma and pi bonds. Neighboring sheets are held together by Ionic bonds nanotubes In hydrogen bonds each carbon atom forma tour to four other carbon atoms in a tetrahedral geometry are long carbon structures, which consist of sheets of interconnected Cs rings that assume the shape of a cylinder (ike a roll of chicken wire) fullerenes covalent bonds diamond occur as soccer ball-shaped clusters of 60 carbon atoms (Co) and are black solids similar to graphite-the individual clusters are held to one another by What are the three categories of ceramics? Check all that apply. metallic ceramics hydride ceramics oxide ceramics silicate ceramics nonoxide ceramics borate ceramics nonmetallic ceramics Submit Province Anouare Dani What is the difference between the valence band and the conduction band? Match the words in the left column to the appropriate blanks in the sentence on the right. Reset Help valence band conduction band In band theory, electrons become mobile when they make a transition from the occupied molecular orbital into higher-energy empty molecular orbitals. For this reason, the occupied molecular orbitals are often called the and the unoccupied orbitals are called the highest lowest Review Constantie Consider the face centered cubic structure shown here Part A What is the length of the ine Gabeled e) that runs diagonaly across one of the faces of the cube in terms of the atomic radius? Express your answer in terms of C-4 Prvi An Correct Part Use the answer to Port And The Pythagoratheromo derive expression for the edge engine (t) in terms of Express your answer in terms of Submit Previous Answers Request Answer Review ContiPod Table Consider the body cerradbructure shown here Part A DO PI What is the length of their beled that runs from one comer of the cube diagonalt the center of the cube to the other comer in terms of the wome Express your answer in terms of Screen 020-07- Correct Part Use there there to drive an expression for the longth of the treated and diagonally across one of these be inform the edge 09 Post Express your newer in terms of OVO AL O Sub AM Review Constants Periodic Table Consider the body-centered Cubic structure shown here Part A What is the length of the line labeled c) that runs from one comer of the cube dagonally through the center of the cube to the other comes in terms of the atomic radial Express your answer in terms of Correct Part Use the moderne noget at ons only one of the focus of the cute in form the edge Express your answer in terms of IVOS - 5.6577 Submit * Incorrect; Try Again: 21 attempt remaining 4) AD is a common internal tangent to circles B and C. Find the length of the radiusof circle B. Round to the nearest hundredth. (Hint: Prove that the two trianglesare similar and use proportions to find missing lengths.) (10 points)IBE6D how did china recover from imperialism this case acknowledged that reasonable suspicion is a lower standard than probable cause and may arise from information that itself has questionable reliability: Explain in your own words what the Capital Assets Pricing Model is. Provide the formula and explain what its elements mean.What are the assumptions used in the CAPM Model?Identify at least 3 advantages and 3 disadvantages of the CAPM Model. Given an array of n 1 positive real numbers (represented as constant size floating points), A[1..n], we are interested in finding the smallest product of any subarray of A, i.e., min{A[i]A[i + 1] A[j] : i j are indices of A}(a) Give a recurrence relation (including base cases), that is suitable for an O(n) time dynamic programming solution to the smallest product problem. Briefly explain why your recurrence relation is correct. Hint: The longest increasing subsequence recurrence might give you some inspiration, but this recurrence should be simpler than that.(b) Give pseudocode implementing an O(n) time bottom-up dynamic programming solution to the smallest product problem. Provide the formula and name of a pure substance that has dipole-dipole interactinne Edit View Insert Format Tonle.