What is the specific heat capacity of a 50 gram piece of 100C metal that will change 400 g of 20C water to 22*C?

Answers

Answer 1

The specific heat capacity of the metal is 1.672 J/g°C.

How we calculated?

Using the formula:

Q = m * c * ΔT

where Q is the heat transferred, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature, we can solve for the specific heat capacity of the metal.

Assuming no heat is lost to the surroundings, the heat transferred from the metal to the water is equal to the heat gained by the water:

Qmetal = Qwater

(metal specific heat) x (metal mass) x (final temperature - initial temperature) = (water specific heat) x (water mass) x (final temperature - initial temperature)

Solving for the specific heat of the metal:

c = [(water specific heat) x (water mass) x (final temperature - initial temperature)] / [(metal mass) * (final temperature - initial temperature)]

Plugging in the given values:

c = [(4.18 J/g°C) x (400 g) x (22°C - 20°C)] / [(50 g) x (100°C - 20°C)]

c = 1.672 J/g°C

Learn more about specific heat

brainly.com/question/31608647

#SPJ11


Related Questions

a reaction has a rate constant of 0.0735 sec-1, how much of the compound (in mol/l) is left after 3.96 sec, if there was 0.969 mol/l at the start?

Answers

After 3.96 seconds, 0.549 mol/l of the compound is left. The rate constant of a reaction indicates how quickly reactants are being converted into products.

In this case, a rate constant of 0.0735 sec-1 means that 0.0735 moles of the compound react per second. To determine how much of the compound is left after 3.96 seconds, we can use the following equation:

ln([A]/[A]₀) = -kt

Where [A] is the concentration of the compound at time t, [A]₀ is the initial concentration (0.969 mol/l), k is the rate constant (0.0735 sec-1), and t is time (3.96 seconds).

Solving for [A], we get:

[A] = [A]₀ e^(-kt)

Plugging in the values, we get:

[A] = 0.969 mol/l e^(-0.0735 sec-1 * 3.96 sec)

[A] = 0.549 mol/l

Therefore, after 3.96 seconds, 0.549 mol/l of the compound is left.

learn more about the reaction here

https://brainly.com/question/30464598

#SPJ11

Determine the electron configuration of the following neutral atoms and ions of elements of the periodic table. Organize the electrons into the s,p,d,f orbitals.
a. Fluorine ion
b. Calcium
c. Lithium
d.Nickel​

Answers

Answer:

The answer for

a) p block

b) s block

c) s block

d) d block

methane has a heat of combustion of about 50 kj/g. about how much heat would be produced if 12 moles of methane were burned? methane has a molecular formula of ch4.

Answers

When 12 moles of methane are burned, approximately 9600 kj of heat will be produced.

To calculate the amount of heat produced when 12 moles of methane (CH4) are burned, we first need to determine the mass of methane in grams.

One mole of methane has a molecular weight of 16 g/mol (1 carbon atom with a weight of 12 g/mol and 4 hydrogen atoms with a weight of 1 g/mol each). Therefore, 12 moles of methane would have a mass of 12 x 16 = 192 g.

Next, we can calculate the total heat produced using the heat of combustion of methane, which is 50 kj/g.

The total heat produced when 192 g of methane are burned can be calculated as follows:

Total heat = mass x heat of combustion
Total heat = 192 g x 50 kj/g
Total heat = 9600 kj

Therefore, when 12 moles of methane are burned, approximately 9600 kj of heat will be produced.

To know about methane visit:

https://brainly.com/question/12645635

#SPJ11

Consider the total ionic equation below.
2H+ + CrO24- + Ba2+ + 2OH- -> Ba2+ + CrO24- + 2H2O
What are the spectator ions in this equation?

Answers

CrO24- and Ba2+ because they stay the same on both the reactants and products side

Calculate the pH of the resulting solution if 18.0 mL of 0.180 M HCl(aq) is added to:
(a) 23.0 mL of 0.180 M NaOH(aq)
(b) 28.0 mL of 0.230 M NaOH(aq)

Answers

(a) To solve for the pH of the solution when 18.0 mL of 0.180 M HCl(aq) is added to 23.0 mL of 0.180 M NaOH(aq), we can first find the moles of HCl and NaOH added to the solution using the equation:

n = C × V

where n is the number of moles, C is the concentration in molarity, and V is the volume in liters.

For HCl: n = (0.180 M) × (0.0180 L) = 0.00324 mol

For NaOH: n = (0.180 M) × (0.0230 L) = 0.00414 mol

Since NaOH is a strong base and HCl is a strong acid, they will react completely to form NaCl and H2O according to the equation:

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

The limiting reactant in this case is HCl because there is less of it. Therefore, all of the HCl will react, leaving 0.0009 mol of excess NaOH in solution.

To calculate the concentration of OH- ions in solution, we can use the equation:

[OH-] = n / V

where [OH-] is the concentration of hydroxide ions in M, n is the number of moles of excess NaOH, and V is the total volume of the solution.

[OH-] = 0.0009 mol / (0.0180 L + 0.0230 L) = 0.012 M

To find the pOH of the solution, we can take the negative logarithm of the hydroxide ion concentration

To learn more about concentration click here: brainly.com/question/3045247

#SPJ11

The salts of carboxylic acids, such as sodium benzoate, are often used in foods as
A) flavor enhancers.
B) colorings.
C) sweeteners.
D) preservatives.

Answers

The salts of carboxylic acids, like sodium benzoate, are typically used as preservatives in foods. This is because carboxylic acids have antimicrobial properties that help prevent the growth of bacteria, yeast, and fungi in food products.

Sodium benzoate is commonly used in soft drinks, fruit juices, and other acidic foods to extend their shelf life. While carboxylic acids can have a tart flavor, they are not generally used as flavor enhancers or sweeteners in foods. Similarly, carboxylic acids are not typically used as colorings, as they do not provide any pigmentation to food products.
Hi! The salts of carboxylic acids, such as sodium benzoate, are often used in foods as D) preservatives. These compounds help maintain food quality by inhibiting the growth of microorganisms, such as bacteria and mold, thus prolonging the shelf life of the products. While they do not function as flavor enhancers, colorings, or sweeteners, their primary role in the food industry is to ensure safety and freshness for consumers.

learn more about the acid here

https://brainly.com/question/29796621

#SPJ11

Hello, Can someone help me identify the homologous series the organic reactant belongs to

Answers

The reactant is an Alkene due to the C = C double bond.

So the homologues series is Alkenes.

Suppose you start with 25 mL of HCl solution (of unknown concentration), and suppose the concentration of your strong base solution (NaOH) is 0.65 M.
(a) What volume of NaOH solution is needed to get to the equivalence point?
(b) Find the concentration of the HCl solution.

Answers

The volume of NaOH solution needed to reach the equivalence point is 0.0385 times the unknown concentration of the HCl solution.

The concentration of the HCl solution is 1.001 M.

How to determine volume and concentration?

To solve this problem, use the concept of stoichiometry and the balanced chemical equation for the reaction between HCl and NaOH:

HCl + NaOH → NaCl + H₂O

(a) To find the volume of NaOH solution needed to reach the equivalence point, know the number of moles of HCl present in the 25 mL solution:

moles of solute = concentration × volume (in liters)

Since the volume is given in milliliters, convert it to liters by dividing by 1000:

moles of HCl = concentration of HCl × volume of HCl (in liters)

= unknown concentration × 25/1000

= 0.025 × unknown concentration

The balanced chemical equation shows that the stoichiometric ratio of HCl to NaOH is 1:1. Therefore, the number of moles of NaOH needed to react with the HCl is also 0.025 × unknown concentration.

Use the formula for moles of solute again, this time for NaOH, to find the volume needed to reach the equivalence point:

moles of NaOH = concentration of NaOH × volume of NaOH (in liters)

0.025 × unknown concentration = 0.65 × volume of NaOH (in liters)

Solving for the volume of NaOH:

volume of NaOH = (0.025 × unknown concentration) / 0.65

= 0.0385 × unknown concentration

Therefore, the volume of NaOH solution needed to reach the equivalence point is 0.0385 times the unknown concentration of the HCl solution.

(b) To find the concentration of the HCl solution, use the volume of NaOH solution needed to reach the equivalence point, which is found in part (a). At the equivalence point, the number of moles of NaOH added is equal to the number of moles of HCl in the original solution:

moles of NaOH added = moles of HCl in original solution

0.025 × unknown concentration = 0.65 × volume of NaOH (in liters)

Substituting the expression found for volume of NaOH in terms of the unknown concentration:

0.025 × unknown concentration = 0.65 × 0.0385 × unknown concentration

Solving for the unknown concentration:

unknown concentration = (0.65 × 0.0385) / 0.025

= 1.001 M

Therefore, the concentration of the HCl solution is 1.001 M.

Find out more on strong base solution here: https://brainly.com/question/22237946

#SPJ1

the critical feature determining whether a substance is a resource is whether it

Answers

The critical feature determining whether a substance is a resource is whether it has economic value and can be used to satisfy human wants and needs.

Without this ability to fulfill a demand, a substance cannot be considered a resource. Additionally, the availability and accessibility of the substance can also play a role in determining its status as a resource.

For something to be considered a resource, it must have some economic value and be able to satisfy human needs or wants in some way. Resources can take many different forms, including natural resources like oil, gas, minerals, and timber, as well as human-made resources like technology, knowledge, and skills.

However, it's worth noting that just because something has economic value doesn't necessarily mean it is a resource in the broader sense of the word. For example, something might have economic value as a luxury item or status symbol, but it might not be essential to meeting human needs or satisfying basic wants.


Visit here to learn more about economic value brainly.com/question/26181959

#SPJ11

consider the freezing of ice at 263k. what are the signs of dh, ds, and dg? h s g question 37 options: (a) positive positive positive (b) positive positive negative (c) positive negative positive (d) negative positive positive (e) negative negative negativ g

Answers

The answer is (e) negative negative negative. The process of freezing ice at 263K involves the conversion of water from a liquid to a solid phase.

Enthalpy (ΔH) is the heat energy absorbed or released during a process. In the case of freezing, water molecules lose kinetic energy as they form solid ice, so the process releases heat energy. Therefore, ΔH is negative.

Entropy (ΔS) is a measure of the degree of disorder or randomness of a system. When water freezes, the molecules become more ordered and less random, resulting in a decrease in entropy. Therefore, ΔS is negative.

Gibbs free energy (ΔG) is a measure of the spontaneity of a process. The formula for ΔG is ΔG = ΔH - TΔS, where T is the temperature in Kelvin. In the case of freezing, ΔH is negative and ΔS is negative, meaning that the second term in the formula (TΔS) is positive. At temperatures below the freezing point of water, TΔS is larger in magnitude than ΔH, so ΔG is negative, indicating that the process is spontaneous. Therefore, ΔG is negative.

Therefore, the signs of ΔH, ΔS, and ΔG for the freezing of ice at 263K are:

ΔH = negative

ΔS = negative

ΔG = negative

The answer is (e) negative negative negative.

Learn more about freezing ice here:

https://brainly.com/question/29080690

#SPJ11

if planck's constant were approximately 50% bigger, would atoms be larger or smaller?

Answers

If Planck's constant were approximately 50% bigger, atoms would be smaller. This is because Planck's constant plays a role in determining the energy levels and wavelengths of electrons in an atom.

With a larger Planck's constant, the energy levels and wavelengths would be smaller, meaning the electron orbits would be smaller and closer to the nucleus. This would result in a smaller overall size for the atom.

Planck's constant, denoted as "h," is a fundamental constant of nature that relates the energy of a photon to its frequency. It was first introduced by German physicist Max Planck in 1900 to explain the behavior of electromagnetic radiation emitted by heated objects, known as blackbody radiation.

The value of Planck's constant is approximately 6.626 x 10^-34 joule-second (J s). It is a key parameter in quantum mechanics and plays a critical role in determining the energy levels of atoms and molecules, the behavior of electrons in solids, and the functioning of many modern technologies, such as lasers, LEDs, and solar cells.

Visit here to learn more about Planck's constant brainly.com/question/27389304

#SPJ11

write a balanced chemical equation showing the products of the dissolution of cr(clo3)3. (include states-of-matter under the given conditions in your answer. use the lowest possible whole number coefficients.)

Answers

Chromium(III) chlorate (Cr(ClO3)3) is a solid (s) that dissolves in water to form aqueous chromium(III) ions (Cr^3+, aq) and 3 aqueous chlorate ions (ClO3^-, aq). The coefficients represent the lowest possible whole numbers to balance the equation.

When Cr(ClO3)3 is dissolved in water, it dissociates into its respective ions. The balanced chemical equation for the dissolution of Cr(ClO3)3 can be written as:

Cr(ClO3)3(s) → Cr3+(aq) + 3ClO3-(aq)

This equation shows that one molecule of solid Cr(ClO3)3 dissociates into one Cr3+ ion and three ClO3- ions in aqueous solution. The state-of-matter for Cr(ClO3)3 is solid (s), while the state-of-matter for Cr3+ ion and ClO3- ions is aqueous (aq). The coefficients in the equation are already in their lowest possible whole number form.

To know about Dissolution visit:

https://brainly.com/question/29882264

#SPJ11

arrange the following elements in order of decreasing atomic size: f, ne, na.

Answers

The atomic size generally decreases from left to right across a period in the periodic table and increases from top to bottom within a group.

Fluorine (F) is located on the right side of the periodic table and has a small atomic radius due to the strong attraction between the valence electrons and the nucleus. Neon (Ne) is located to the left of fluorine, in the noble gases group, and has a larger atomic radius than fluorine due to its additional electron shell. Sodium (Na) is located to the left of neon, in the alkali metals group, and has a much larger atomic radius due to its much larger atomic size.

Therefore, the correct order of the given elements in decreasing atomic size is:

Na > Ne > F

Learn more about atomic here:

https://brainly.com/question/1566330

#SPJ11

why might a solvent like turpentine be better for removing grease and grime than water?

Answers

Turpentine is a solvent that is often used for cleaning purposes because it has the ability to dissolve and remove substances like grease and grime.

This is because turpentine is a hydrocarbon-based solvent, meaning it is composed of molecules that are attracted to and can dissolve other hydrocarbon-based substances like oils and greases. Water, on the other hand, is a polar solvent that is not as effective at dissolving non-polar substances like grease and grime. Additionally, water can actually make grease and grime spread and smear, rather than dissolve it. Therefore, for effective removal of grease and grime, a solvent like turpentine may be a better option than water.

Turpentine is a better choice for removing grease and grime compared to water due to its organic solvent properties. Water is a polar molecule and grease is nonpolar; thus, they don't mix well. Turpentine, being a nonpolar solvent, dissolves the nonpolar grease more effectively. Additionally, turpentine has a lower surface tension, allowing it to penetrate and break down grime more easily. This makes turpentine an efficient and suitable option for removing stubborn grease and grime from various surfaces.

To learn more about  Turpentine, click here:

https://brainly.com/question/10921003

#SPJ11

what is the term for the component of a solution that is the greater quantity?

Answers

The term for the component of a solution that is present in the greater quantity is the solvent, as in a solution, the solvent refers to the component that is present in a larger quantity or amount compared to the other component, which is called the solute.

The solvent is the substance that dissolves the solute to form a homogeneous mixture. It is typically a liquid, but it can also be a gas or a solid. The solute, on the other hand, is the substance that is dissolved within the solvent. The solvent provides the medium in which the solute particles are dispersed and dissolved. It determines the physical state (such as liquid or gas) of the solution. The solute, being present in a lesser quantity, becomes evenly distributed within the solvent particles.

Learn more about the solution here.

https://brainly.com/question/1616939

#SPJ1

what would happen to the pressure of a gas inside a sealed bottle, if the bottle was squeezed tightly, reducing the volume of the gas by half?

Answers

The pressure of the gas inside the sealed bottle would double if the volume of the gas is reduced by half.

The pressure and volume of a gas are inversely proportional to each other according to Boyle's law. This means that if the volume of a gas is reduced while its temperature remains constant, the pressure of the gas will increase. In this case, squeezing the bottle tightly will reduce the volume of the gas inside by half, which means that the pressure of the gas will double.

This is because the same amount of gas molecules will now occupy half the volume, resulting in the molecules colliding with the walls of the bottle more frequently and with greater force, hence increasing the pressure. This is a fundamental concept in physics and has important applications in fields such as chemistry and engineering.

Learn more about Boyle's law here:

https://brainly.com/question/30367133

#SPJ11

the hydrogen cyanide (hcn) molecule exhibits how many sigma and how many pi bonds?

Answers

The hydrogen cyanide (HCN) molecule consists of three atoms: hydrogen (H), carbon (C), and nitrogen (N). It forms a linear molecular structure. In HCN, the bond between carbon and nitrogen is a triple bond (C≡N), which consists of one sigma bond and two pi bonds.

The sigma bond is formed by the overlap of one hybridized orbital from carbon and one hybridized orbital from nitrogen. The two pi bonds are formed by the overlap of unhybridized p orbitals, one from each atom.

The sigma bond provides strong and direct bonding, while the pi bonds contribute to the overall stability of the molecule. Therefore, the HCN molecule contains one sigma bond and two pi bonds.

To know more about sigma bonds: https://brainly.com/question/31377841

#SPJ11

102.35 g ZnO to atoms​

Answers

102.35 g of ZnO contains approximately 7.565 × 10^23 atoms.

To convert grams of a substance to atoms, you need to use the concept of molar mass and Avogadro's number.

The molar mass of ZnO (zinc oxide) is calculated by adding the atomic masses of zinc (Zn) and oxygen (O):

Zn: atomic mass = 65.38 g/mol

O: atomic mass = 16.00 g/mol

Molar mass of ZnO = (1 × Zn atomic mass) + (1 × O atomic mass)

= (1 × 65.38 g/mol) + (1 × 16.00 g/mol)

= 81.38 g/mol

Now, we can calculate the number of moles of ZnO:

Number of moles = mass of ZnO / molar mass of ZnO

= 102.35 g / 81.38 g/mol

≈ 1.257 mol

Finally, we can convert moles to atoms using Avogadro's number, which states that 1 mole of any substance contains 6.022 × 10^23 particles (atoms, molecules, ions, etc.):

Number of atoms = number of moles × Avogadro's number

= 1.257 mol × (6.022 × 10^23 atoms/mol)

≈ 7.565 × 10^23 atoms

For more such questions on atoms

https://brainly.com/question/441927

#SPJ11

which reaction is involved in preparing margarine from corn oil? sugars which contain an aldehyde group that can be oxidized are called g flashcards

Answers

The reaction involved in preparing margarine from corn oil is the hydrogenation of unsaturated fatty acids present in corn oil.

This process converts the double bonds in the fatty acids into single bonds, resulting in a more solid and saturated fat consistency suitable for margarine production. Margarine is a semi-solid fat commonly made from vegetable oils. To convert a liquid vegetable oil like corn oil into margarine, the process of hydrogenation is employed. Hydrogenation involves the addition of hydrogen gas (H2) to the unsaturated fatty acids present in the oil. Corn oil contains unsaturated fatty acids with double bonds in their carbon chains. These double bonds can be broken through a catalytic hydrogenation reaction, where hydrogen gas is added in the presence of a catalyst, typically nickel or palladium. The double bonds are converted into single bonds, resulting in a more saturated fat composition. This hydrogenation process increases the melting point of the oil, transforming it into a semi-solid consistency suitable for margarine. By controlling the degree of hydrogenation, the texture and consistency of the final product can be adjusted to meet the desired properties of margarine.

Learn more about margarine here: brainly.com/question/5301248

#SPJ11

If the temperature of a gas increases, but number and volume stay constant, then the pressure of the gas
increases
decreases
has no change
unable to tell

Answers

Answer:

Will the volume of a gas increase or decrease if the temperature increased and the pressure increased

an acid has a ph of 4. what iis the [OH-} concentration

Answers

Answer: The hydroxide ion concentration of a solution with a pH of 4 is 10−10 M which is equivalent to pOH of 10.

Explanation:

how many molecules of methane gas, ch4, have a mass equal to 3.20 g?

Answers

Answer:  1.20 × 1023 molecules

Explanation: At about 891 kJ/mol, methane's heat of combustion is lower than that of any other hydrocarbon, but the ratio of the heat of combustion (891 kJ/mol) to the molecular mass (16.0 g/mol, of which 12.0 g/mol is carbon) shows that methane, being the simplest hydrocarbon

Mrs. Aldaco adds a room-temperature
she just removed from the freezer to a beaker of boiling water.
Before
copper (Cu) cube and an aluminum (Al) cube that
After
She left the cubes in the water for three hours. Which of the following describes a heat
flow that took place during those three hours?
from the copper cube to the boiling water
from the aluminum cube to the copper cube
from the boiling water to the aluminum cube
from the aluminum cube to the beaker

Answers

Explanation:

During the three hours, a heat flow took place from the boiling water to both the copper and aluminum cubes, as the water was at a higher temperature than the room-temperature cubes. However, the direction of heat flow between the two cubes depends on their respective thermal conductivities, specific heat capacities, and initial temperatures, which are not provided in the question. Therefore, the correct answer cannot be determined based on the information given.

Answer:

from the boiling water to the aluminum cube

Explanation:

: )

decide which element probably has a boiling point most and least similar to the boiling point of rubidium.

Answers

The element with the most similar boiling point to rubidium is likely to be caesium, while the least similar is likely to be xenon.

Rubidium is a Group 1 alkali metal with a boiling point of 688°C. The Group 1 elements have similar chemical properties and boiling points that increase down the group. Therefore, the element with the most similar boiling point to rubidium is likely to be the heaviest alkali metal, caesium, which has a boiling point of 671°C, just 17°C lower than rubidium.

On the other hand, the noble gas xenon has a boiling point of -108°C, making it the least likely element to have a similar boiling point to rubidium. Noble gases have very low boiling points due to their full valence electron shells, which makes it difficult to excite their electrons and turn them into a gas. Therefore, xenon is unlikely to have a similar boiling point to rubidium.

Learn more about boiling point here:

https://brainly.com/question/20216784

#SPJ11

Solid sodium carbonate reacts with aqueous hydrochloric acid to form aqueous sodium chloride, carbon dioxide and water.

Na2CO3 + 2HCl = 2NaCl + CO2 + H2O

a. Rewrite this question to include state symbol

b. Calculate the number of moles of hydrochloric acid required
to react exactly with 4.15 g of sodium carbonate.
(A, values: C= 12.0, Na 23.0, O- 16.0, H=1.0, Cl = 35.5)

Answers

Answer:

a.

Na2CO3 (aq) + 2 HCl (aq) → H2O (l) + CO2 (g) + 2 NaCl (aq)

b.

0.0783 mols of HCl

Explanation:

Na2CO3 (aq) + 2 HCl (aq) → H2O (l) + CO2 (g) + 2 NaCl (aq)

n= 1 n= 2

Mr = 106 Mr= 36.5

m= 106g m= 73g

106 g Na2CO3 reacts with 73 g HCl

1 g Na2CO3 will react with 73/106 g HCl

4.15 g Na2CO3 will react with (73/106)× 4.15 = 2.858 g HCl

number of moles = mass/ Mr

num of moles of HCL = 2.858/36.5

= 0.07830188678

= 0.0783 mols

a. Balanced equation with state symbols:

Solid sodium carbonate (Na₂CO₃(s)) + Aqueous hydrochloric acid (2HCl(aq)) = Aqueous sodium chloride (2NaCl(aq)) + Carbon dioxide (CO₂(g)) + Water (H₂O(l))

b. 0.05 moles of HCl is required to react with 4.15 g of sodium carbonate.

To calculate the number of moles of hydrochloric acid (HCl) required to react with 4.15 g of sodium carbonate (Na₂CO₃), we first need to determine the molar mass of Na₂CO₃.

Molar mass of Na₂CO₃:

2(Na) + 1(C) + 3(O) = 2(23.0 g/mol) + 12.0 g/mol + 3(16.0 g/mol) = 46.0 g/mol + 12.0 g/mol + 48.0 g/mol = 106.0 g/mol

Next, we can use the given mass and molar mass to calculate the number of moles of Na₂CO₃:

Number of moles = Mass / Molar mass

Number of moles = 4.15 g / 106.0 g/mol ≈ 0.0391 moles

According to the balanced equation, 1 mole of Na₂CO₃ reacts with 2 moles of HCl. Therefore, the number of moles of HCl required to react with 0.0391 moles of Na₂CO₃ is:

Number of moles of HCl = 2 × 0.0391 moles ≈ 0.0782 moles

Thus, 0.0782 moles of HCl (or approximately 0.05 moles when rounded to two decimal places) are required to react exactly with 4.15 g of sodium carbonate.

To learn more about molar mass here

https://brainly.com/question/31545539

#SPJ2

why do elements in group 1 become more reactive the further they are down the group?

Answers

Elements in group 1 of the periodic table, also known as the alkali metals, become more reactive as you move down the group. This is because the outermost electron of these elements is held less tightly by the positively charged nucleus as you move down the group.

As a result, the outermost electron is more easily lost, which means the element becomes more reactive. This trend can also be explained by the increasing atomic radius and decreasing electronegativity as you move down the group. Additionally, the alkali metals become more reactive because the metal ions formed by losing their outermost electron become more stable due to the increased screening effect of the additional inner electron shells.

Elements in Group 1, also known as alkali metals, become more reactive as you move down the group due to the increasing atomic size and decreasing ionization energy. As you go down the group, an additional electron shell is added, increasing the distance between the outermost electron and the nucleus. This causes the attractive force between the nucleus and the outermost electron to weaken, making it easier for the electron to be lost in a chemical reaction. Consequently, the ionization energy decreases, and the reactivity increases as the elements can more readily form compounds with other elements.

To know about elements:

https://brainly.com/question/30858299

#SPJ11

explain why sodium (na has a smaller radius than cesium (cs))

Answers

Sodium (Na) has a smaller radius than Cesium (Cs) due to the increase in number of electron shells in Cs compared to Na.

The atomic radius of an element is determined by the number of electron shells it has. As you move down a group in the periodic table, the number of electron shells increases, resulting in larger atomic radius. Sodium and Cesium belong to the same group in the periodic table, but Cesium has one additional electron shell than Sodium.

This increase in the number of electron shells leads to an increase in atomic radius, making Cesium have a larger atomic radius than Sodium. Therefore, Sodium has a smaller radius than Cesium.

To know more about Sodium visit:

https://brainly.com/question/30878702

#SPJ11

Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is not spontaneous under standard conditions by calculating ΔG∘rxn.
Part B If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. What maximum partial pressure of NO builds up before the reaction ceases to be spontaneous?
Part C What temperature is required to make the reaction spontaneous under standard conditions?

Answers

The temperature required to make the reaction spontaneous under standard conditions is approximately 1078 K.

Part A:

To determine if the reaction is spontaneous under standard conditions, we need to calculate the standard free energy change of the reaction (ΔG∘rxn) using the standard free energies of formation (ΔG∘f) of the reactants and products:

ΔG∘rxn = ΣnΔG∘f(products) - ΣmΔG∘f(reactants)

The values of ΔG∘f for N2O(g), NO2(g), and NO(g) are:

ΔG∘f(N2O(g)) = 104.1 kJ/mol

ΔG∘f(NO2(g)) = 51.3 kJ/mol

ΔG∘f(NO(g)) = 86.7 kJ/mol

Substituting these values into the equation, we get:

ΔG∘rxn = 3(86.7 kJ/mol) - (104.1 kJ/mol + 51.3 kJ/mol) = -39.3 kJ/mol

Since ΔG∘rxn is negative, the reaction is spontaneous under standard conditions in the reverse direction, from right to left. However, in the forward direction (from left to right), the reaction is not spontaneous.

Part B:

If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. To find the maximum partial pressure of NO before the reaction ceases to be spontaneous, we can use the expression for the reaction quotient (Qc) and the equilibrium constant (Kc):

Qc = [NO]3/([N2O][NO2])

Kc = [NO]3/([N2O][NO2])

When the reaction mixture reaches equilibrium, Qc = Kc. Let x be the equilibrium partial pressure of NO. Then we have:

x3/(1.0 atm)(1.0 atm) = Kc

x3 = Kc

x = (Kc)^(1/3)

Substituting the value of Kc at 298 K, which can be calculated using the standard free energy change of the reaction (ΔG∘rxn) and the relation ΔG∘rxn = -RTlnK, where R is the gas constant and T is the temperature in kelvin, we get:

ΔG∘rxn = -RTlnKc

-39.3 kJ/mol = -(8.314 J/mol-K)(298 K)lnKc

lnKc = 16.0

Kc = e^(16.0) = 8.89 × 10^6

Therefore, the maximum partial pressure of NO that builds up before the reaction ceases to be spontaneous is:

x = (8.89 × 10^6)^(1/3) ≈ 197 atm

Part C:

To make the reaction spontaneous under standard conditions, we need to find the temperature at which ΔG∘rxn becomes negative. Since ΔG∘rxn is a function of temperature, we can use the relation ΔG∘rxn = ΔH∘rxn - TΔS∘rxn, where ΔH∘rxn and ΔS∘rxn are the standard enthalpy and entropy changes of the reaction, respectively. At the temperature T where ΔG∘rxn becomes negative, we have:

ΔH∘rxn = TΔS∘rxn

Let's assume that ΔH∘rxn and ΔS∘rxn are temperature-independent over a small temperature range around 298 K, so we can use the values of ΔH∘rxn and ΔS∘rxn at 298 K to estimate the temperature at which ΔG∘rxn becomes negative. The values of ΔH∘rxn and ΔS∘rxn for the reaction are:

ΔH∘rxn = -190.2 kJ/mol

ΔS∘rxn = -176.6 J/mol-K

Substituting these values into the equation, we get:

-190.2 kJ/mol = T(-176.6 J/mol-K)

T ≈ 1078 K

Therefore, the temperature required to make the reaction spontaneous under standard conditions is approximately 1078 K.

Visit here to learn more about temperature brainly.com/question/7510619

#SPJ11

place the following in order of increasing radius: ar, ca2+, s2−, cs, s

Answers

Answer: Ca2+, S, S2-, Cs

Explanation: Cs is near the bottom left corner of the periodic table, making it have the biggest atomic radius out of the four atoms/ions. S2- and Ca2+ are isoelectronic, but Ca2+ has a large positive charge that pulls the electrons very close to it, causing it to be smaller than S2-, which is larger than S because the additional electrons create extra repulsion between the electrons, decreasing the Zeff of the valence electrons and causing them to be further away from the nucleus of the atom, which in turn increases the ionic radius. By periodic trends, elements get smaller across a period (row), so S is larger than Ca2+, which is isoelectronic to the noble gas Ar.

when soda is exposed to room temperature, the taste becomes flat due to carbon dioxide escaping:

Answers

When soda is exposed to room temperature, the carbon dioxide molecules that give it its fizziness start to escape. This process is known as carbonation loss.

As carbon dioxide escapes, the soda becomes less carbonated and loses its characteristic fizziness. This change in carbonation levels affects the taste of the soda, making it taste flat and less refreshing. The loss of carbon dioxide also affects the texture of the drink, making it feel less bubbly in the mouth. To prevent carbonation loss, it is recommended to store soda in a cool, dark place, such as a refrigerator, to keep it fresh and maintain its carbonation levels.

To learn more about temperature click here: brainly.com/question/15267055

#SPJ11

Other Questions
in a calcium fluoride crystal what is the ratio of calcium ions to fluoride ions Which of the following was created for the transfer of hypertext documents across the Internet?A) SSLB) HTTP hypertext transfer protocolC) FTPD) HTML owen is a type b personality. owen would be characterized by _____ behavior. what should the nurse include in the plan of care for a client who just had a total laryngectomy? Chemical equation for zinc carbonate and sulphuric vi acid The effect caused by smoking crack cocaine in the 1980s that the media most emphasized was:A. dying of an overdose of the drugB. progressing to the use of other, more dangerous drugsC. becoming addicted or dependent on the drugD. becoming insaneE. using crack in conjunction with alcohol and becoming an alcoholic when a study participant no longer wants to disclose phi, what can be done? For diblock-copolymer system, what type of phase separation do you expect to see? Use the keyword below to describe. Keyword: Self-assembly, Lamella, Cylinder, Sphere, Gyroid, Packing Pattern, Microphase-separation as a nurse, you know that which condition is caused by excessive levels of circulating cortisol: after nat turners rebellion, the virginia legislature discussed ending slavery in that state.T/F Sandals are on sale for 75% off. The original price of one pair of sandals is $30. What is the new cost of the sandals after discount? The diagram shows the distance between my home, H, and two towns, A and B.It also shows information about journey times.a)b)c)10 milesJourney time20 minutesH20 milesJourney time30 minutesBWhat is the average speed of the journey from my home town to A?What is the average speed of the journey from my home town to B?I drive from town A to my home and then to town B.The journey time is 50 minutes.What is my average speed? What is the total paymentrequired to pay off a promissorynote issued for $400.00 at 12%ordinary interest and a 90-dayterm?A. $460.00C. $490.00B. $410.80D. $412.00 question 3 what type of visualizations give you the most control over the story you want to tell with your data? Aj is transferred to a stretcher and his airway is opened with no noted obstruction. What is the nurse's order of interventions? which of the following is an effective form of nonfinancial compensation provided to salespeople? What is the equation, in slope-intercept form, of the line that is perpendicular to the liney-4=(x-6) and passes through the point (-2,-2)?0 y=-x-10Oy=-3x+10Oy=2x-1O y = 2x+1 Which of the following was NOT a technical improvement to the nineteenth-century piano?A. It was made louder.B. Its range was expanded.C. A second keyboard was added.D. It was given improved mechanical action. how long does it take the moon to rotate once on its own axis? the phosphate-containing head of a phospholipid attracts water and is thus said to be