Heating systems that involve the circulation of air in a room are known as forced air heating systems.
Heating systems that involve the circulation of air in a room are known as forced air heating systems. These systems use a furnace or heat pump to generate heat, which is then distributed throughout the room or building using a network of ducts. The heated air is forced through the ducts by a blower or fan, allowing it to circulate and warm the space.
Forced air heating systems are commonly used in residential and commercial buildings due to their efficiency and ability to quickly heat large areas. They can be powered by various energy sources, including natural gas, electricity, or oil.
Learn more:About heating systems here:
https://brainly.com/question/26301591
#SPJ11
The kind of heating systems that involve circulation of the air in a room is the forced-air heating system. The forced-air heating system is a type of heating system that is found in many residential homes, commercial buildings and industrial applications.
It circulates the air in a room by using a fan or blower to distribute warm air throughout the building.An important component of a forced-air heating system is a furnace that generates heat and is located in a central location. The furnace heats up air and the warm air is then distributed through a network of ducts that run throughout the building.
The ducts are usually located in the walls, ceiling or floors of the building and they carry the warm air to the different rooms that require heating.In conclusion, a forced-air heating system involves circulation of the air in a room through the use of a furnace, fan or blower, and a network of ducts that distribute warm air throughout the building.
To know more about heating system visit:-
https://brainly.com/question/30651040
#SPJ11
Which of the following is not the use of permanent magnets? A. Seismograph B. Transformers C. Loudspeakers D. Energy meters
The correct option is A. Seismograph
Explanation: Permanent magnets are very important and find application in various electrical and electronic devices. Here is a brief description of each option and how permanent magnets are used in it:A. Seismograph: Seismographs are instruments that measure motion caused by earthquakes, volcanic eruptions, and other seismic activity. Permanent magnets are not used in seismographs. B. Transformers: Permanent magnets are used in the transformers to generate a magnetic field and also to rectify an electrical current.
C. Loudspeakers: Permanent magnets play an essential role in loudspeakers, where they are used to convert electrical energy into mechanical energy to produce sound waves.D. Energy meters: In energy meters, permanent magnets are used to create a magnetic field, and this field interacts with an electrical current, inducing a voltage difference. This voltage difference is measured by a coil, and the energy usage is determined.Based on this, it can be concluded that the use of permanent magnets is not in the seismograph.
To know more about permanent magnets, visit:
https://brainly.com/question/14139838
#SPJ11
The noise level coming from a pig pen with 136 pigs is 75.2 dB.
Assuming each of the remaining pigs squeal at their original level after 73 of their companions have been removed, what is the decibel level of the remaining pigs?
Answer in units of dB
The decibel level of the remaining pigs is approximately 63.5 dB.
Given that the noise level coming from a pig pen with 136 pigs is 75.2 dB.
Assuming each of the remaining pigs squeals at their original level after 73 of their companions have been removed, we need to find the decibel level of the remaining pigs.
To solve this problem, we can use the fact that the sound intensity level is measured in decibels (dB), and the relationship between the number of pigs and the sound intensity level is directly proportional.
Therefore, we can use the following formula: I₁/I₂ = (d₂/d₁)²WhereI₁ and d₁ are the initial intensity level and the initial number of pigs, respectively.I₂ and d₂ are the final intensity level and the final number of pigs, respectively.
Substituting the given values in the above formula, we have: I₁ = 10^(75.2/10) = 4.46 x 10⁶ pigsI₂ = 136 - 73 = 63 pigsd₁ = 136d₂ = 63
Therefore, I₁/I₂ = (d₂/d₁)²⇒ I₂ = I₁/(d₂/d₁)²= 4.46 x 10⁶ / (63/136)²= 1.72 x 10⁵ pigs
Thus, the decibel level of the remaining pigs is given by:d₂ = 10 logs (I₂/I₀)= 10 logs (1.72 x 10⁵/1)≈ 63.5 dB
Therefore, the decibel level of the remaining pigs is approximately 63.5 dB.
To know more about sound intensity please refer to:
https://brainly.com/question/17062836
#SPJ11
A parallel-plate capacitor has plates with area 2.30×10−2 m2 separated by 1.10 mm of Teflon. Calculate the charge on the plates when they are charged to a potential difference of 15.0 V. Express your answer in coulombs. Use Gauss's law to calculate the electric field inside the Teflon. Express your answer in newtons per coulomb. Use Gauss's law to calculate the electric field if the voltage source is disconnected and the Teflon is removed. Express your answer in newtons per coulomb
- The charge on the plates is approximately 2.754 x 10^-9 coulombs.
- The electric field inside the Teflon is approximately 5.572 x 10^10 newtons per coulomb.
- The electric field is zero when the voltage source is disconnected and the Teflon is removed.
To calculate the charge on the plates,
we can use the formula Q = C * V,
where Q is the charge,
C is the capacitance, and
V is the potential difference.
Given that the plates have an area of 2.30×10−2 m2 and are separated by 1.10 mm of Teflon, we can find the capacitance using the formula C = ε0 * (A / d),
where ε0 is the vacuum permittivity, A is the area of the plates, and d is the separation between the plates.
First, let's calculate the capacitance:
C = ε0 * (A / d)
C = (8.85 x 10^-12 F/m) * (2.30 x 10^-2 m2 / 1.10 x 10^-3 m)
C ≈ 1.836 x 10^-10 F
Now, let's calculate the charge on the plates using the given potential difference of 15.0 V:
Q = C * V
Q = (1.836 x 10^-10 F) * (15.0 V)
Q ≈ 2.754 x 10^-9 C
Therefore, the charge on the plates is approximately 2.754 x 10^-9 coulombs.
Next, let's calculate the electric field inside the Teflon using Gauss's law. Gauss's law states that the electric field inside a capacitor is E = Q / (ε0 * A), where E is the electric field, Q is the charge on the plates, ε0 is the vacuum permittivity, and A is the area of the plates.
Using the previously calculated charge on the plates, we can find the electric field:
E = Q / (ε0 * A)
E = (2.754 x 10^-9 C) / ((8.85 x 10^-12 F/m) * (2.30 x 10^-2 m2))
E ≈ 5.572 x 10^10 N/C
Therefore, the electric field inside the Teflon is approximately 5.572 x 10^10 newtons per coulomb.
Finally, let's calculate the electric field if the voltage source is disconnected and the Teflon is removed. In this case, the charge on the plates becomes zero, so the electric field will also be zero.
Therefore, the electric field will be zero when the voltage source is disconnected and the Teflon is removed.
To summarize:
- The charge on the plates is approximately 2.754 x 10^-9 coulombs.
- The electric field inside the Teflon is approximately 5.572 x 10^10 newtons per coulomb.
- The electric field is zero when the voltage source is disconnected and the Teflon is removed.
To learn more about Gauss's law calculation :
https://brainly.com/question/14773637
#SPJ11
2W power fed to an antenna with 10 dB and transmit signals to a 15 km distance line of sight to a receiver with 15 dB gain (transmission frequency is 1 GHz).
calculate the EIRP
Calculate the receive power in dB
What is the spectral density?
IF there is a 0.5 dB power loss due to a interference during transmission what is the receive power?
If EIRP get double calculate the receive power in dB
1. The EIRP is 43.01 dBW.
2. the receive power in dB is 2.61 dBW.
3. The spectral density is 4.14 x 10-19 W/Hz
4. the receive power in dB if EIRP gets double is 5.61 dBW.
Given parameters:
Power fed to an antenna = 2W
Antenna gain = 10 dB
Transmission distance = 15 km
Transmission frequency = 1 GHz
Receiver gain = 15 dB
Spectral density formula:
σ = (KTB)/B
where
K = Boltzmann’s constant (1.38 x 10-23 J/K)
T = Absolute temperature in Kelvin
B = Bandwidth in Hz
Formula to calculate EIRP:
EIRP (dBW) = Transmitter Power (dBW) + Antenna Gain (dB) - Feedline Loss (dB)
Formula to calculate receive power in dB:
Pr (dB) = EIRP (dBW) - Lp (dB) - Ls (dB) + Gr (dB)
where
Lp = Path loss in dB.
Ls = Transmission line loss (feeder loss) in dB.
Gr = Gain of the receiver antenna in dB.
Given the above parameters, the following are the steps to obtain the solutions:
Solution:
1. Calculation of EIRP:
Transmitter Power (dBW) = 10 log10 (2 W)
= 33.01 dBW
Antenna Gain (dB) = 10 dB
Feedline Loss (dB) = 0
EIRP (dBW) = Transmitter Power (dBW) + Antenna Gain (dB) - Feedline Loss (dB)
= 33.01 + 10 - 0 = 43.01 dBW
Therefore, the EIRP is 43.01 dBW.
2. Calculation of receive power:
Given that the transmission distance is 15 km and transmission frequency is 1 GHz.
Let us calculate the path loss.
Path loss formula:
LP (dB) = 20 log10 (d) + 20 log10 (f) + 32.45
where d = Distance in km
f = frequency in MHzLP (dB)
= 20 log10 (15) + 20 log10 (1000) + 32.45
= 20 x 1.176 + 60 + 32.45
= 54.90 dB
Given that transmission line loss is 0.5 dB.
Gr = Gain of the receiver antenna in
dB = 15 dB
EIRP (dBW) = 43.01 dBW
Feedline Loss (dB)
= 0.5 dBPr (dB)
= EIRP (dBW) - Lp (dB) - Ls (dB) + Gr (dB)
= 43.01 - 54.90 - 0.5 + 15
= 2.61 dBW
Therefore, the receive power in dB is 2.61 dBW.
3. Calculation of spectral density:
Given that,
K = 1.38 x 10-23 J
T = 27°C
= 300 KB
= 1 MHz
= 106 Hz
Spectral density formula:
σ = (KTB)/B
= (1.38 x 10-23 J/K x 300 K x 1 MHz)/106 Hz
= 4.14 x 10-19 W/Hz
Therefore, the spectral density is 4.14 x 10-19 W/Hz
4. Calculation of receive power if EIRP gets double:
If the EIRP gets double, then the new EIRP will be
43.01 + 3 = 46.01 dBW.
Feedline Loss (dB)
= 0.5 dBPr (dB)
= EIRP (dBW) - Lp (dB) - Ls (dB) + Gr (dB)
= 46.01 - 54.90 - 0.5 + 15
= 5.61 dBW
Therefore, the receive power in dB if EIRP gets double is 5.61 dBW.
To know more about spectral density visit:
https://brainly.com/question/32063903
#SPJ11
give examples of bottom-up processing from your everyday life
bottom-up processing is a cognitive process that involves perceiving and understanding information based on individual sensory stimuli. examples of bottom-up processing in everyday life include recognizing objects based on their color, shape, and texture, identifying sounds based on their pitch, volume, and timbre, and perceiving tastes and textures based on individual flavors and tactile sensations.
bottom-up processing is a cognitive process that involves perceiving and understanding information based on the individual sensory stimuli. It refers to the way our brains make sense of the world by analyzing the basic features of stimuli and building up a complete perception.
In everyday life, we encounter numerous examples of bottom-up processing. For instance, when we see a new object, our brain processes its individual features such as color, shape, and texture, and then combines them to form a complete perception of the object. This allows us to recognize and understand the object without prior knowledge or expectations.
Similarly, when we hear a new sound, our brain analyzes its pitch, volume, and timbre to recognize and understand the sound. This enables us to differentiate between different sounds and identify their sources.
Bottom-up processing is also involved in other sensory experiences. When we taste a new food, our brain processes the individual flavors and textures to form a perception of the taste. Similarly, when we touch different textures, our brain analyzes the tactile sensations to understand the texture.
In summary, bottom-up processing plays a crucial role in our everyday lives by allowing us to perceive and understand the world around us based on the individual sensory stimuli we encounter.
Learn more:About bottom-up processing here:
https://brainly.com/question/18996262
#SPJ11
Briefly explain the biggest reason for using copper as a metal wiring material in the latest VLSI and (2) the biggest reason for using damascene in the copper wiring process.
The biggest reason for using copper as a metal wiring material in the latest VLSI is due to its high electrical conductivity. Copper is an excellent conductor of electricity, which means it can transmit electrical signals with very little resistance. This is important in VLSI because the size of the components is very small, and any resistance in the wires can lead to signal loss or degradation.
Copper has a low resistivity, which means that it can conduct electrical signals efficiently, even at small scales. Additionally, copper is also easy to process and can be deposited onto a wide range of materials, making it a versatile choice for VLSI applications.The biggest reason for using damascene in the copper wiring process is to reduce the amount of material waste and improve the reliability of the wiring. The damascene process involves patterning the metal lines onto the substrate and then filling in the gaps with a dielectric material.
This process eliminates the need to etch the metal lines into the substrate, which can result in material waste and reduce the reliability of the wiring. Damascene also allows for finer and more complex wiring patterns to be created, which is important in VLSI where the components are very small and densely packed. Overall, the use of damascene in the copper wiring process can improve the performance and reliability of VLSI circuits while also reducing material waste.
To know more about electrical visit:-
https://brainly.com/question/33513737
#SPJ11
Please document all your reasoning so that I could
understand.
8. An airplane executes a flight in a vertical circle, with a speed of \( 80 \mathrm{~m} / \mathrm{s} \). Calculate the minimum radius that the circle must have so that the acceleration at the lowest
To maintain the acceleration at its lowest point during the flight in a vertical circle, the airplane must have a minimum radius of approximately 653.06 meters.
To calculate the minimum radius that the circle must have for the acceleration at the lowest point, we need to consider the forces acting on the airplane and apply the principles of circular motion.
Speed of the airplane (v) = 80 m/s
At the lowest point of the vertical circle, the acceleration is directed towards the center of the circle. The net force causing this acceleration is the difference between the gravitational force (mg) and the normal force (N). The normal force provides the centripetal force required to keep the airplane moving in a circle.
Using Newton's second law, we have:
Net force = mass × acceleration.
At the lowest point, the net force is given by:
Net force = N - mg,
where m is the mass of the airplane and g is the acceleration due to gravity.
The centripetal force required for circular motion is given by:
Centripetal force = mass × acceleration_c,
where acceleration_c is the centripetal acceleration.
The centripetal acceleration is related to the speed (v) and the radius (r) of the circle by:
Centripetal acceleration = v² / r.
Since the net force is equal to the centripetal force, we can equate the two equations:
N - mg = (m * v²) / r.
To find the minimum radius, we need to consider the condition when the acceleration is at its lowest. This occurs when the normal force is at its minimum, which happens when the airplane is inverted at the top of the circle. In this case, the normal force is zero.
Substituting N = 0 into the equation, we have:
0 - mg = (m * v²) / r.
Simplifying the equation, we can solve for the radius (r):
r = (v²) / g.
Substituting the given values:
r = (80 m/s)² / 9.8 m/s²
r = 653.06 m.
Therefore, the minimum radius that the circle must have for the acceleration to be at its lowest is approximately 653.06 meters.
To know more about acceleration refer here
brainly.com/question/30660316
#SPJ11
A Young's slit experiment is setup with a slit separation of 0.05 mm and a screen placed 5.2 m away from the slits. Five bright lines are clearly visible on the screen. The distance between the two most separated lines is 21 cm. What wavelength is the light? Give your answer in nm to 3 s.f.
Young's double-slit experiment is a physical experiment that demonstrates the wave theory of light. The experiment comprises shining a monochromatic light source through a pair of slits and observing the light's resultant interference pattern on a screen. 202 nm wavelength is the light
Young's double-slit experiment is a physical experiment that demonstrates the wave theory of light. The experiment comprises shining a monochromatic light source through a pair of slits and observing the light's resultant interference pattern on a screen. Here's the solution to the given problem:
A Young's slit experiment is set up with a slit separation of 0.05 mm and a screen placed 5.2 m away from the slits. Five bright lines are visible on the screen. The distance between the two most separated lines is 21 cm.
We are asked to find out the wavelength of the light. We can use the formula:
λ=(ax)/D
Where,
λ = wavelength of light
a = slit separation
x = distance between the two most separated bright lines on the screen
D = distance between the slits and the screen
x = 21 cm
= 0.21 ma
= 0.05 mm
= 5×10⁻⁵ mD
= 5.2 m
Putting the given values in the above formula, we get:
λ=(ax)/D
λ=(5 × 10⁻⁵ × 0.21) / 5.2
λ= 2.02 × 10⁻⁶ m = 2.02 × 10⁻⁹ km
λ= 202 nm Answer: 202 nm
To know more about monochromatic light visit:
https://brainly.com/question/32064872
#SPJ11
Dr Examines Image of a patients tiny mole w/ magnifying lens. A doctor (Veterinarian) examines a mole that is 15.3cm away from a magnifying lens, as shown below. The lens has a focal length of 19.7cm. What is its magnification? Hint: Where is the image of the mole?
The magnification of the magnifying lens is approximately 0.562.
To determine the magnification of the magnifying lens, we can use the lens formula:
1/f = 1/v - 1/u
Where, f = focal length of the lens
v = image distance from the lens (unknown)
u = object distance from the lens
Given, f = 19.7 cm
u = -15.3 cm (negative since the object is on the opposite side of the lens)
Rearranging the lens formula, we can solve for v,
1/v = 1/f - 1/u
1/v = 1/19.7 - 1/(-15.3)
1/v = (1/19.7) + (1/15.3)
1/v = 0.0508 + 0.0654
1/v = 0.1162
Now, we can find the value of v:
v = 1 / 0.1162
v ≈ 8.61 cm
The image of the mole is formed approximately 8.61 cm away from the lens on the same side as the object (negative distance indicates that it is on the same side as the object).
To calculate the magnification (M), we can use the magnification formula,
M = -v/u
M = -8.61 cm / -15.3 cm
M ≈ 0.562
Therefore, the magnification of the magnifying lens is approximately 0.562.
Learn more about magnification from the given link:
https://brainly.com/question/29306986
#SPJ11
6. The work W done by a force
F
is given by the line integral W=∫
F
⋅d
l
. Calculate the work done by the force
F
=(3xy;−5z;10x) along the curve described by x=t
2
,y=2 and z=t
3
from t=1 to t=2.
The work done by force F along the given curve is 260.4.
Force is, F = (3xy; −5z; 10x) along the curve, x = t², y = 2 and z = t³from t = 1 to t = 2.
The work done by the force F is given by the line integral as, W = ∫F.dl
To find the work done by force F, we need to calculate the value of this line integral over the given curve.
Substituting the given values of x, y, and z in the given expression of F, we get: F = (3t²(2); −5t³; 10t²) = (6t²; −5t³; 10t²)
Now, the differential length element dl along the curve can be written as dl = dx I + dy j + dz k = (2t dt) I + 0 j + (3t² dt) k The dot product of F and dl can be written as F . dl = (6t²)(2t dt) + (−5t³)(0) + (10t²)(3t² dt)= 12t⁴ dt + 30t⁴ dt= 42t⁴ dt
Now, the line integral of F along the given curve can be written as W = ∫F.dl= ∫₁² (42t⁴ dt)= [ 42 (t⁵)/5] ₁²= 42(2⁵ − 1⁵)/5= 42(31)/5= 260.4
To know more about the work done please refer to:
https://brainly.com/question/25573309
#SPJ11
1- For the circuit given below, calculate the voltage across the capacitor. (2 points) -j2 n 1₁ 20 1:2, ΖΩ ww +12/0° V 36/0° V+
Given information: The circuit given below is a series RLC circuit with a voltage source of 12/0° V and a voltage source of 36/0° V.The value of the inductor L = j2 Ω.The value of the capacitor C = 1 μF.
The value of the resistor R = 20 Ω.Formula used:The formula to calculate the voltage across the capacitor is:Vc = Vmsin(ωt - φ)WhereVmsin(φ) is the amplitude and angle of the voltage source,ω = 2πf is the angular frequency, andφ is the phase angle between the voltage source and the impedance of the circuit.(φ) = tan-1((XL-XC)/R)Where XL and XC are the reactance of the inductor and the capacitor, respectively.Calculation:
The impedance of the circuit is given byZ = R + j(XL - XC)Z = 20 + j(2 - 1592)Z = 20 - j1590The voltage source 12/0° V is in series with the impedance of the circuit.Z1 = Z + j2Z1 = 20 - j1588The current in the circuit isI = V1/Z1I = (12/0°)/(20 - j1588)I = 0.0075 + j0.0047
The voltage across the capacitor can be found by using the formula mentioned above.Vc = Vmsin(ωt - φ)WhereVmsin(φ) is the amplitude and angle of the voltage source.ω = 2πf is the angular frequency, andφ is the phase angle between the voltage source and the impedance of the circuit.
To know more about circuit visit:
https://brainly.com/question/12608516
#SPJ11
Beyond the formation of iron, nuclear energy can be produced only by
A) fusion of still heavier elements.
B) ionization of the radioactive nuclei.
C) fission of heavy nuclei back toward lighter ones.
D) gravity.
E) the dark force.
Beyond the formation of iron, nuclear energy can be produced only by the A) fusion of still heavier elements. Nuclear fusion is the process by which two atomic nuclei combine to form a heavier nucleus, releasing energy in the process.
Fusion reactions take place under high pressure and temperature conditions, such as those found in the core of stars like the sun. In these conditions, atomic nuclei are stripped of their electrons and can come close enough together to interact through the strong nuclear force, which binds protons and neutrons together.
Fusion reactions can only occur when the temperature is high enough to overcome the electrostatic repulsion between positively charged atomic nuclei. At high enough temperatures, atomic nuclei have enough kinetic energy to overcome their mutual repulsion and fuse together. This temperature, called the ignition temperature, is typically in the tens of millions of degrees.
Once a fusion reaction begins, it releases energy in the form of light and heat, as well as subatomic particles like neutrons and positrons. The fusion of lighter elements like hydrogen and helium is what powers the sun and other stars. Beyond these lighter elements, nuclear energy can only be produced by the fusion of still heavier elements. The fusion of heavier elements requires even higher temperatures and pressures than the fusion of lighter elements.
At present, nuclear fusion is not a practical energy source on Earth, as it requires such extreme conditions to occur. However, scientists are working on developing nuclear fusion reactors that can harness the power of fusion reactions to produce electricity.
To know more about nuclear energy, refer
https://brainly.com/question/15214614
#SPJ11
Unpolarised light of intensity I is incident on a system of two polarizers
Unpolarized light of intensity I is incident on a system of two polarizes, A followed by B. The intensity of emergent light is I/2. If a third polarizer C is placed between A and B, the intensity of emergent light is reduced to I/3. The angle between the polarizers A and C is θ
When unpolarized light of intensity I passes through a system of two polarizers A and B, with an angle θ between A and C, and a third polarizer C placed between A and B, the intensity of the emergent light is reduced to I/3.
The given scenario involves unpolarized light with an initial intensity of I passing through two polarizers, A and B. When the emergent light passes through this system, its intensity reduces to I/2.
However, if a third polarizer, C, is introduced between A and B, the intensity of the emergent light further decreases to I/3. The angle between polarizers A and C is denoted as θ.
The interaction of polarizers with unpolarized light is due to their ability to transmit light waves oscillating in a specific plane while blocking those oscillating perpendicular to that plane.
When unpolarized light passes through the first polarizer A, it allows only a portion of the light oscillating in a specific plane to pass through, reducing the intensity to I/2.
When polarizer C is inserted between A and B, it further restricts the passage of light oscillating in the plane perpendicular to its transmission axis. This leads to a decrease in the intensity of emergent light to I/3.
The angle θ between A and C influences the extent to which light is transmitted through this intermediate polarizer C.
Overall, the polarizers A and B, in combination with the intermediate polarizer C, work together to reduce the intensity of unpolarized light incident on the system. The specific angle θ between polarizers A and C determines the resulting intensity of emergent light.
Learn more about polarizers:
https://brainly.com/question/29217577
#SPJ4
Neutron stars are formed from the remnants of supernovæ and have a very high mass density. They often rotate very fast. Assume you have discovered a perfectly spherical neutron star with twice the mass of our sun and a diameter of 20 km. What is the largest angular momentum it can have so that matter at the star's equator is hold in place by gravity? To examine the star, you place a satellite with a mass of 5 kg in a circular orbit around the star (radius 2000 km). How long does it take for the satellite to complete one full orbit? How much energy is required to double the radius of the orbit?
The time it takes for a satellite with mass 5 kg to complete one full orbit around the neutron star (radius 2000 km) is 7 s (1 sf).
The energy required to double the radius of the satellite's orbit is 3.3 × (10^14) J (2 sf).
Neutron stars are formed from the remnants of supernova and have a very high mass density. They often rotate very fast. The largest angular momentum that a neutron star can have so that matter at the star's equator is held in place by gravity is given by the formula;
I = (2/5) MR²ω Where; I is the moment of inertia M is the mass R is the radiusω is the angular velocity
Firstly, we calculate the moment of inertia: I = (2/5) MR²I
= (2/5) × 2 × (10^30) × (10^3)²I
= 8 × (10^38) kg m²The maximum angular velocity that the star can have to hold matter at the star's equator in place is therefore:ω = √(GM/R)
where; G is the gravitational constant M is the mass of the neutron star R is the radius of the neutron star G = 6.67 × (10^-11) N m²/kg²ω
= √[(6.67 × (10^-11) N m²/kg²) × (2 × (10^30) kg)]/[20 × (10^3) m]ω
= 7.5 × (10^3) s^-1 (3 sf)
Thus, the largest angular momentum that the neutron star can have so that matter at the star's equator is held in place by gravity is: I = (2/5) MR²ω = (2/5) × 2 × (10^30) × (10^3)² × 7.5 × (10^3)I
= 4.5 × (10^46) kg m²/s
Now, we are to determine the time it takes for a satellite with mass 5 kg to complete one full orbit around the neutron star (radius 2000 km) using the formula; T = 2π(r/v)
where; T is the period of orbit is the radius of orbit v is the velocity of the satellite To determine v, we use the formula:v² = GM/r
where; G is the gravitational constant M is the mass of the neutron star r is the radius of orbit v = √[(6.67 × (10^-11) N m²/kg²) × (2 × (10^30) kg)]/[2 × (10^6) m]v
= 1.8 × (10^6) m/sT
= 2π(r/v)T = 2π × (2 × (10^6) m)/(1.8 × (10^6) m/s)T
= 7 s (1 sf)
Lastly, we need to determine the energy required to double the radius of the satellite's orbit using the formula;
E = (GM m/2r) [(R/r)² - 1]where; E is the increase in potential energy m is the mass of the satellite M is the mass of the neutron star R is the final radius of orbit r is the initial radius of orbit E = (6.67 × (10^-11) × 2 × (10^30) × 5)/(2 × (2 × (10^6))) [(2 × (2 × (10^6))/(2 × 10^6))² - 1]E = 3.3 × (10^14) J (2 sf)
Therefore, the time it takes for a satellite with mass 5 kg to complete one full orbit around the neutron star (radius 2000 km) is 7 s (1 sf).
The energy required to double the radius of the satellite's orbit is 3.3 × (10^14) J (2 sf).
To know more about neutron star visit:
https://brainly.com/question/31087562
#SPJ11
In which of these examples does chemical energy change to electrical energy?
A.
digesting food
B.
photosynthesis
C.
respiration
D.
using a battery
Answer: D. using a battery
Explanation:
Chemical energy is converted into electrical energy when using a battery. Batteries contain chemical compounds that undergo chemical reactions, releasing electrons in the process. These electrons can then flow through an external circuit, generating an electric current and supplying electrical energy to devices connected to the battery.
Let's look at the other options to understand their energy conversions:
A. Digesting food: This process involves the breakdown of food molecules to release energy in the form of chemical energy. However, the conversion here is from food's chemical energy to other forms, such as mechanical energy (used for movement), thermal energy (body heat), and potential energy (energy stored in molecules like ATP). It does not directly convert chemical energy into electrical energy.
B. Photosynthesis: Photosynthesis is a process carried out by plants, algae, and some bacteria to convert light energy from the sun into chemical energy in the form of glucose (a sugar molecule). Photosynthesis does not directly convert chemical energy into electrical energy.
C. Respiration: Respiration is the process by which organisms release energy stored in glucose or other organic molecules. In cellular respiration, glucose is broken down to produce ATP (adenosine triphosphate), which is the primary energy currency of cells. Similar to digestion, respiration involves the conversion of chemical energy into other forms (mechanical, thermal, etc.), not electrical energy.
Therefore, the correct answer is D. Using a battery, where chemical energy is converted into electrical energy.
Answer:
D.Using a battery
Explanation:
The chemical energy stored in a battery will convert to electrical energy to power electronic appliances.
For the satellite to remain stationary with respect to the earth, the satellite's period must be 24 hours. How high is the satellite from the Earth surface? Mass of the Earth is 5.98×1024 kg.
For the satellite to remain stationary with respect to the Earth, the satellite's period must be 24 hours. The height of the satellite from the Earth's surface is 35,786 kilometers.
To calculate the height of the satellite from the Earth's surface, we can use the formula for the period of a satellite in a geostationary orbit, which is 24 hours.
The formula for the period of a satellite is T = [tex]2π√(r^3/GM)[/tex], where T is the period, r is the distance from the center of the Earth to the satellite, G is the gravitational constant (6.67 x [tex]10^-11 N m^2/kg^2[/tex]), and M is the mass of the Earth (5.98 x [tex]10^{24}[/tex] kg).
We can rearrange the formula to solve for r: r =[tex](GMT^2 / 4π^2)^(1/3)[/tex]Substituting the given values, we have: r = (6.67 x [tex]10^-11 N m^2/kg^2[/tex] * 5.98 x [tex]10^{24}[/tex]kg * (24 x [tex]3600 s)^2[/tex]/ [tex](4π^2))^(1/3)[/tex]
Evaluating this equation, we find that the satellite is approximately 35,786 kilometers (or 35,786,000 meters) above the Earth's surface.
Therefore, the height of the satellite from the Earth's surface is approximately 35,786 kilometers.
Learn more about the Period of a satellite:
https://brainly.com/question/28103637
#SPJ11
What is the nature of Fourier representation of a discrete \& aperiodic time signal Select one: a. no answer b. Discrete and aperiodic c. Discrete and periodic d. Continuous and periodic e. Continuous
The nature of Fourier representation of a discrete and periodic time signal is continuous and periodic. Thus, option D is correct.
The Fourier representation was proposed by Joseph Fourier. In order to approximately calculate or find out an unknown function, he came up with this method in which we can figure out using other functions. In this case, the sine function. However, this has been adapted for other functions.
The analysis of functions using the Fourier representation is called the Fourier analysis using the Fourier series. Since, it involves sine functions that when represented on a graph, are periodic and continuous by which the unknown functions can be mapped back to.
To learn more about Fourier representation:
brainly.com/question/29644687
#SPJ4
6) Assume young's modulus for bone is 1.5x100 N/m². The bone breaks if stress greater than 1.5x10³ N/m² is imposed on it. (4 Marks) A) What is the maximum force that can be exerted on the bone if it has an area 4.9x10* m² B) If this much force is applied compressively, by how much does the 25 x10² m long bone shorten?
[tex]1.225 * 10^-7[/tex]A) Given: Young's modulus for bone =[tex]1.5 x 10^10[/tex]N/m², maximum stress = 1.5 x 10^3 N/m², area of bone = [tex]4.9 x 10^-4[/tex] m². The 25 x 10² m long bone will shorten by[tex]1.225 x 10^-7[/tex][tex]1.225 * 10^-7[/tex]m.
We know that Stress = Force/Area
Maximum force = Stress x Area
= [tex]1.5 x 10^3[/tex][tex]1.225 * 10^-7[/tex]N/m² x [tex]4.9 x 10^-4[/tex][tex]1.225 * 10^-7[/tex]m²
Maximum force that can be exerted on the bone = 0.735 N (approx.)
B) Given: Length of bone = [tex]25 x 10^-2[/tex][tex]1.225 * 10^-7[/tex]m, maximum force = 0.735 N
We know that Strain = Change in length / Original length
Strain = Stress / Young's modulus
Change in length = Strain x Original length
Change in length = Stress x Original length / Young's modulus
Change in length =[tex]0.735 N x 25 x 10^-2 m / 1.5 x 10^10[/tex][tex]1.225 * 10^-7[/tex]N/m²
Change in length = [tex]1.225 x 10^-7[/tex][tex]1.225 * 10^-7[/tex] m
Therefore, the 25 x 10² m long bone will shorten by[tex]1.225 x 10^-7[/tex][tex]1.225 * 10^-7[/tex]m.
To know more about Young's modulus visit:
https://brainly.com/question/13257353
#SPJ11
in order to determine your distance flown you would multiply time by
To determine the distance flown, you would multiply time by the formula used is Distance = Speed x Time.
Speed is the rate of motion of an object in a given time interval. It can be calculated as distance/time. Time is the duration for which the object moves. In order to calculate the distance flown by an object, the value of speed and time must be known. Multiplying time by the speed is how distance flown is determined.
For example, if a car travels at 60 mph for 3 hours, the distance it covers can be calculated by multiplying the speed by the time i.e. Distance = 60 x 3 = 180 miles. Similarly, for a plane that flies at 600 mph for 5 hours, the distance it covers will be Distance = 600 x 5 = 3000 miles. Therefore, the formula of Distance = Speed x Time is used to calculate the distance covered by any object over a given duration of time.
Learn more about speed at:
https://brainly.com/question/13263542
#SPJ11
a) Describe the modes of heat transfer of a cup of hot coffee suddenly placed in a freezer. b) Thermal Advance Holdings has recently won a contract to supply and install steam pipes to a new multinational retail store. According to the contract, they must use a combination of Material A (coefficient of thermal conductivity 0.053 W/m.K) and Material B (coefficient of 0.076 W/m.K) for insulation of the steam pipes. For research purpose, the company is lagging a 10 m steam pipes (100 mm external diameter) with a combination of Material A and B an equal thickness of 35mm each. i) Which lagging materials must be on the inside to produce the best insulation? Justify your answer. 12/27 ii) If the internal surface temperature is 320°C and the external surface temperature is 28°C, what is the heat loss per hour for the lagged pipe with the best lagging arrangement?
a) When a cup of hot coffee is placed in a freezer, it loses its heat through the following modes of heat transfer: Conduction: The heat is transferred from the cup of coffee to the air particles present in contact with the cup, as they are in direct contact.
Convection: The air surrounding the coffee is cooled and then it circulates with the air inside the freezer. The circulation of the cold air cools down the coffee inside the cup. This results in convectional cooling.
Radiation: Heat is also lost via radiation, as the hot coffee radiates heat energy to the surrounding environment of the cup. Since the freezer is colder, the radiation from the cup to the environment is significant.
b) To get the best insulation, the Material A should be on the inside and material B on the outside. This is because the coefficient of thermal conductivity of Material A is less than that of Material B (0.053 W/m.K < 0.076 W/m.K).This indicates that Material A is better at restricting heat transfer than Material B
To know more about Conduction visit:
https://brainly.com/question/31201773
#SPJ11
How much energy is required to change a 46.0-g ice cube from ice at -11.0°C to steam at 109°C
J
The energy required to change the ice cube from ice at -11.0°C to steam at 109°C is approximately 139,494.34 J.
The energy required to change a substance from one phase to another can be calculated using the formula Q = m * ΔH, where Q represents the energy, m represents the mass of the substance, and ΔH represents the heat of fusion or vaporization.
To calculate the energy required to change the ice cube from ice at -11.0°C to steam at 109°C, we need to consider three separate phase changes:
1. Heating the ice from -11.0°C to its melting point (0°C):
- The specific heat capacity of ice is 2.09 J/g°C.
- The temperature change is 0°C - (-11.0°C) = 11.0°C.
- Therefore, the energy required to heat the ice cube is Q = m * c * ΔT, where c is the specific heat capacity.
- Q = 46.0 g * 2.09 J/g°C * 11.0°C = 1062.34 J.
2. Melting the ice at 0°C:
- The heat of fusion for ice is 334 J/g.
- The mass of the ice cube is 46.0 g.
- Therefore, the energy required to melt the ice is Q = m * ΔH.
- Q = 46.0 g * 334 J/g = 15364 J.
3. Heating the water from 0°C to its boiling point (100°C):
- The specific heat capacity of water is 4.18 J/g°C.
- The temperature change is 100°C - 0°C = 100°C.
- Therefore, the energy required to heat the water is Q = m * c * ΔT.
- Q = 46.0 g * 4.18 J/g°C * 100°C = 19108 J.
4. Vaporizing the water at 100°C:
- The heat of vaporization for water is 2260 J/g.
- The mass of the water is 46.0 g.
- Therefore, the energy required to vaporize the water is Q = m * ΔH.
- Q = 46.0 g * 2260 J/g = 103960 J.
Now, we can calculate the total energy required by summing up the energies for each phase change:
Total energy = Q1 + Q2 + Q3 + Q4 = 1062.34 J + 15364 J + 19108 J + 103960 J = 139494.34 J.
Therefore, the amount of energy required to change a 46.0-g ice cube from ice at -11.0°C to steam at 109°C is approximately 139,494.34 J.
To know more about energy, refer to the link below:
https://brainly.com/question/10120769#
#SPJ11
would you expect the energy levels of a neutral helium atom to be
the same, similar or very different to a neutral hydrogen
atom?
please explain this question that is so confused
The energy levels of a neutral helium atom are expected to be different from a neutral hydrogen atom. This is because a helium atom has two electrons and a hydrogen atom has one electron. This will affect the distribution of electrons and the energy levels of the atom.
The energy levels of an atom are determined by the configuration of its electrons. The electrons occupy different energy levels or orbitals within an atom. These energy levels are quantized and discrete, meaning that electrons can only exist at specific energy levels.
In the case of a neutral hydrogen atom, it has one electron that occupies the lowest energy level. This energy level is called the ground state. The electron in a hydrogen atom can absorb energy and move to a higher energy level, called an excited state. When the electron falls back to the ground state, it emits energy in the form of light.
Therefore, we would expect the energy levels of a neutral helium atom to be very different from a neutral hydrogen atom.
To know more about orbitals visit :
https://brainly.com/question/32355752
#SPJ11
In fair weather, there is an electric field at the surface of the Earth, pointing down into the ground. What is the sign of the electric charge on the ground in this situation? (2 marks)
In fair weather, there is an electric field at the surface of the Earth, pointing down into the ground. The sign of the electric charge on the ground in this situation is negative. Normally, the air closest to the Earth’s surface is negatively charged, and the air layers above it are positively charged, leading to the creation of a fair-weather electric field.
This field is generated due to the transfer of charges between the Earth's surface and the atmosphere, and it's generally quite feeble with a field intensity of about 100 to 150 volts per meter (V/m).In addition, the negative charges near the ground are repelled by the negatively charged particles and ions in the air, so they remain close to the ground, creating a negative charge on the Earth's surface.
The opposite charge is present in the upper atmosphere, which is exposed to cosmic rays, solar ultraviolet light, and solar wind particles. The fair-weather electric field, on the other hand, is a part of a much larger electric circuit known as the global electric circuit.
To know more about keyword visit:
https://brainly.com/question/11482745
#SPJ11
23. When a motor is reconnected from 6 poles to 4 poles with no other changes, the magnetic flux density of the stator
A. increases in the core and decreases in the teeth.
B. increases in the core and the teeth.
4. Chorded windings are used in induction motors because they
A. have better mechanical characteristics.
B. are made with less wire and are therefore cheaper.
C. are made with smaller wire and are therefore cheaper.
When reconnecting a motor from 6 poles to 4 poles, the magnetic flux density increases in the core and decreases in the teeth. Chorded windings in induction motors offer better mechanical characteristics, providing improved current distribution and stability.
When a motor is reconnected from 6 poles to 4 poles with no other changes, the magnetic flux density of the stator will increase in the core and decrease in the teeth. This is because the change in the number of poles affects the distribution of magnetic flux in the motor, causing a higher density in the core and a lower density in the teeth.
Chorded windings are used in induction motors because they have better mechanical characteristics. Chorded windings consist of multiple parallel conductors instead of a single conductor, which helps to distribute the current and reduce the skin effect. This results in a more uniform distribution of current and reduces the risk of overheating. Additionally, chorded windings provide better mechanical support and stability to the winding structure, making them less prone to vibration and mechanical stress. While chorded windings may require slightly more wire compared to other winding configurations, the improved mechanical performance outweighs the slight increase in cost. Therefore, option A is the correct answer.
To know more about magnetic flux ,
https://brainly.com/question/13851713
#SPJ11
A particle of mass m in the infinite square well (0
} with energy {E n
}. At t=0, the particle's wavefunction is described by, Ψ(x,0)=A(ψ 1
+3ψ 2
+ψ 3
), where A is a real positive constant. (a) Determine A. (2 marks) (b) What is the probability that a measurement of the energy would yield E 2
? (2 marks) (c) Find Ψ(x,t). (2 marks) (d) Find ⟨x⟩ at time t. (2 marks)
(a) The constant A is determined by normalizing the given wavefunction, resulting in A = 1/sqrt(11).
(b) The probability of measuring E₂ is 9/11.
(c) The time-evolved wavefunction Ψ(x,t) is obtained by combining the initial wavefunction Ψ(x,0) with the time-dependent factors.
(d) The expectation value ⟨x⟩ at time t can be found by evaluating the integral of the position operator with the time-evolved wavefunction.
We'll first need to determine the wavefunctions ψ₁(x), ψ₂(x), and ψ₃(x) for the infinite square well. The wavefunctions for the first three energy levels are as follows:
ψ₁(x) = √(2/L) * sin(pi*x/L)
ψ₂(x) = √(2/L) * sin(2*pi*x/L)
ψ₃(x) = √(2/L) * sin(3*pi*x/L)
where L is the length of the well.
(a) To determine the constant A, we need to normalize the given wavefunction Ψ(x,0) at t=0. The normalization condition is ∫ |Ψ(x,0)|² dx = 1 over the entire range of the well (0 to L).
So, let's calculate the normalization integral:
∫ |Ψ(x,0)|² dx = ∫ |A(ψ₁ + 3ψ₂ + ψ₃)|² dx
= ∫ A² |ψ₁ + 3ψ₂ + ψ₃|² dx
Since ψ₁, ψ₂, and ψ₃ are orthogonal functions, the cross-terms will integrate to zero. The integral becomes:
∫ A² (|ψ₁|² + 9|ψ₂|² + |ψ₃|²) dx
Now, we know that the integral of each individual wavefunction squared over the entire range (0 to L) is equal to 1 (since they are normalized). Thus:
∫ |Ψ(x,0)|² dx = A² (1 + 9 + 1) = 11A²
Since the integral should be equal to 1, we get:
11A² = 1
A² = 1/11
A = 1/√(11)
(b) The probability of measuring a specific energy level E₂ is given by the square of the coefficient of ψ₂ in the given wavefunction Ψ(x,0).
So, the probability of measuring E₂ is:
P(E₂) = |coefficient of ψ₂|² = (3A)² = 9A² = 9/11
(c) To find Ψ(x,t), we need to evolve the wavefunction with time using the time-dependent Schrödinger equation:
Ψ(x,t) = Σ [Cₙ * ψₙ(x) * exp(-i*Eₙ*t/hbar)]
where Cₙ is the coefficient of each energy level in the initial wavefunction Ψ(x,0).
For n = 1, 2, 3, C₁ = A, C₂ = 3A, C₃ = A.
Ψ(x,t) = A * ψ₁(x) * exp(-i*E₁*t/hbar) + 3A * ψ₂(x) * exp(-i*E₂*t/hbar) + A * ψ₃(x) * exp(-i*E₃*t/hbar)
(d) To find ⟨x⟩ at time t, we use the time-dependent position expectation value:
⟨x⟩ = ∫ Ψ*(x,t) * x * Ψ(x,t) dx
Calculate this integral using the Ψ(x,t) expression from part (c), and you'll get ⟨x⟩ as a function of time.
To know more about wavefunction, refer to the link below:
https://brainly.com/question/31390478#
#SPJ11
Answer the following questions If a layer of the atmosphere is well mixed in the vertical, how would you expect the potential temperature within it to change with height? Explain your answer clearly.
What is the lapse rate of a well-mixed layer and how is it different from a layer where the temperature T does not change with height?
If a layer of the atmosphere is well mixed in the vertical, you would expect the potential temperature within it to remain constant with height.
This is because in a well-mixed layer, the temperature is uniformly distributed and there is no significant variation in temperature as you move vertically. The lapse rate of a well-mixed layer is zero, meaning there is no change in temperature with height. This is because the air in a well-mixed layer is thoroughly mixed and there is no variation in temperature as you move up or down.
In contrast, in a layer where the temperature does not change with height, known as an isothermal layer, the lapse rate is also zero. However, in this case, the temperature remains constant at all heights, rather than being well mixed.
To summarize, in a well-mixed layer, the potential temperature remains constant with height and the lapse rate is zero. In an isothermal layer, the temperature also remains constant with height, but it is not necessarily well mixed.
Learn more about temperature:
https://brainly.com/question/11464844
#SPJ11
A transformer on a utility pole steps the rms down from 12kV to
240V. If the input current to the transformer is 2 A, what would
the power loss have been if there were no transformer?
The power loss in the transformer:P_Loss = Power input - Power outputPower input = VI = 12000 V × 2 A = 24000 WPower output = VI = 240 V × 100 A = 24000 WP_Loss = 24000 W - 24000 WP_Loss = 0 WThus, power loss with transformer is zero.
A transformer on a utility pole steps the rms down from 12kV to 240V. If the input current to the transformer is 2 A, the power loss would have been 480 watts if there were no transformer. This can be explained through power loss by resistance which is given by the formula;P
= I2R Where P is power, I is current and R is resistance.Since the input current to the transformer is 2A and we want to calculate power loss if there were no transformer, we will have to assume that the resistance of the power line is constant. Therefore the power loss without transformer:P
= I2R = (2A)2R
= 4R wattsOn the other hand, with the transformer, the output current is given by;I_2
= I_1 (N_1/N_2)Where I_2 is output current, I_1 is input current, N_1 is number of turns in primary coil and N_2 is number of turns in secondary coil.Ratio of turns of primary to secondary is;N_1/N_2
= V_1/V_2Where V_1 is input voltage and V_2 is output voltage.Since voltage is stepped down from 12 kV to 240V;N_1/N_2
= 12000/240N_1/N_2
= 50I_2
= I_1 (N_1/N_2)I_2
= 2A (50)I_2
= 100 A Therefore the power loss with transformer:P
= I2R
= (100A)2R
= 10000R wattsBut, since power input is equal to power output, the power loss in the transformer is equal to the power input minus power output. The power loss in the transformer:P_Loss
= Power input - Power output Power input
= VI
= 12000 V × 2 A
= 24000 W Power output
= VI
= 240 V × 100 A
= 24000 WP_Loss
= 24000 W - 24000 WP_Loss
= 0 W Thus, power loss with transformer is zero.
To know more about transformer visit:
https://brainly.com/question/15200241
#SPJ11
Andy has two samples of liquids. Sample A has a pH of 4, and sample B has a pH of 6. What can Andy conclude about these two samples?
Sample A is
, and sample B is
.
Based on the pH values, Andy can conclude that Sample A is more acidic than Sample B.
pH is a measure of the acidity or alkalinity of a solution. It is a logarithmic scale ranging from 0 to 14, where values below 7 indicate acidity, 7 is considered neutral, and values above 7 indicate alkalinity.In this case, Sample A has a pH of 4, while Sample B has a pH of 6. Since the pH scale is logarithmic, each unit represents a tenfold difference in acidity or alkalinity. Therefore, Sample A with a pH of 4 is more acidic compared to Sample B with a pH of 6.By comparing the pH values, Andy can conclude that Sample A is more acidic, while Sample B is less acidic (closer to neutral) than Sample A. It is important to note that pH does not provide information about the concentration or strength of the acid or base present in the samples, but only indicates their relative acidity or alkalinity.In summary, based on the pH values, Andy can conclude that Sample A is more acidic than Sample B, while Sample B is less acidic (closer to neutral) compared to Sample A.For more such questions on pH, click on:
https://brainly.com/question/12609985
#SPJ8
A car is travelling down a mountain of a slope of 20%. The speed of the car in 80 km/h and it should be stopped in a distance of 75 meters. Given is the diameter of the tires = 500 mm. Calculate: 1. The average braking torque to be applied to stop the car. (Please neglect all the frictional energy except for the brake). 2. Now, if the energy is stored in a 25 Kg cast iron brake drum, by how much will the temperature of the drum rise? (Use the specific heat for cast iron may be taken as 520 J/kg°C). 3. Determine, also, the minimum coefficient of friction between the tires and the road in order that the wheels do not skid, assuming that the weight is equally distributed among all the four wheels.
A car is moving down the slope of a mountain with a slope of 20%. The car's speed is 80 km/h, and it should be brought to a halt in a distance of 75 meters. The diameter of the tires is given to be 500 mm. Hence, the minimum coefficient of friction required to prevent the wheels from skidding is 0.318.
To calculate the Torque applied, we need to calculate the force applied on the brakes at the wheel's rim.Torque = Force x Radius of the wheelForce at the wheel's rim = 99.146 x 0.25 = 24.7865 NmHence, the average braking torque required to stop the car is 24.7865 Nm.2. The energy that has been stored in the cast iron brake drum is the same as the work done against it to bring the car to a halt.
To calculate the minimum coefficient of friction required to prevent the wheels from skidding, we use the following formula:μ = (g x slope) / (1 + (I/r2)m)Where:g = Acceleration due to gravity = 9.81 ms-2slope = 20%m = Mass of the car = 2000 kgI = Moment of inertia of the wheel = (1/2) m r2 = 0.5 x 2000 x (0.5)2 = 500 kg m2r = Radius of the wheel = 500 / 1000 = 0.5 metersSubstituting the values in the formula, we get:μ = (9.81 x 20) / (1 + (500 / (0.5 x 0.5 x 2000)))μ = 0.318
To know more about distance visit:
https://brainly.com/question/31713805
#SPJ11
Light with a wavelength 600 nm in air is used in a two slit experiment. On a screen 4.80 m away, the distance between two dark fringes is 6.00 mm.
1.. Calculate the separation between the slits (in mm).
2. The whole experimental setup is now submerged in water (n=1.33). What will be the separation (in mm) between two dark fringes?
1. To calculate the separation between the slits, we can use the formula for the distance between the dark fringes in a two-slit experiment: Distance between dark fringes = (wavelength * distance to screen) / (separation between slits)
Given: - Wavelength = 600 nm = 0.6 μm - Distance to screen = 4.80 m = 4800 mm - Distance between dark fringes = 6.00 mm Substituting the values into the formula, we can solve for the separation between the slits: 6.00 mm = (0.6 μm * 4800 mm) / (separation between slits) Rearranging the formula to solve for the separation between slits: separation between slits = (0.6 μm * 4800 mm) / 6.00 mm Simplifying the expression: separation between slits = 0.6 μm * 4800 mm / 6.00 mm separation between slits = 0.6 μm * 800 separations between slits = 480 μm Therefore, the separation between the slits is 480 μm. 2. Now, let's calculate the separation between two dark fringes when the experimental setup is submerged in water (n = 1.33). Using the same formula as before: Distance between dark fringes = (wavelength * distance to screen) / (separation between slits) Given: - Wavelength = 600 nm = 0.6 μm - Distance to screen = 4.80 m = 4800 mm - Separation between slits = 480 μm Substituting the values into the formula, we can solve for the new distance between dark fringes: Distance between dark fringes = (0.6 μm * 4800 mm) / (480 μm) Simplifying the expression: Distance between dark fringes = 0.6 μm * 4800 mm / 480 μm Distance between dark fringes = 0.6 μm * 10 Distance between dark fringes = 6 μm Therefore, when the experimental setup is submerged in water, the separation between two dark fringes is 6 μm.
Learn more about the Dark Fringes:
https://brainly.com/question/31576174
#SPJ11