Answer:
[tex]\Delta H=1962.3J[/tex]
Explanation:
Hello,
In this case, we can compute the change in the solution enthalpy by using the following formula:
[tex]\Delta H=mC\Delta T[/tex]
Whereas the mass of the solution is 350 g, the specific heat capacity is 4.184 J/g °C and the change in the temperature is 1.34 °C, therefore, we obtain:
[tex]\Delta H=350g*4.184\frac{J}{g\°C} *1.34\°C\\\\\Delta H=1962.3J[/tex]
It is important to notice that the mass is just 350 g that is the reacting amount and by means of the law of the conservation of mass, the total mass will remain constant, for that reason we compute the change in the enthalpy as shown above, which is positive due to the temperature raise.
Best regards.
In the activity, click on the Keq and ΔG∘ quantities to observe how they are related. Calculate ΔG∘using this relationship and the equilibrium constant (Keq) obtained in Part A at T=298K:Keq=1.24×1020Express the Gibbs free energy (ΔG∘) in joules to three significant figures.
Answer: The Gibbs free energy of the reaction is -114629.4 J
Explanation:
To calculate the Gibbs free energy of the reaction, we use the equation:
[tex]\Delta G^o=-RT\ln K_{eq}[/tex]
where,
[tex]\Delta G^o[/tex] = Gibbs free energy of the reaction = ?
R = Gas constant = [tex]8.314 J/K.mol[/tex]
T = temperature of the reaction = 298 K
[tex]K_{eq}[/tex] = equilibrium constant of the reaction = [tex]1.24\times 10^{20}[/tex]
Putting values in above equation, we get:
[tex]\Delta G^o=-(8.314J/mol.K\times 298K\times \ln (1.24\times 10^{20}))\\\\\Delta G^o=-114629.4J[/tex]
Hence, the Gibbs free energy of the reaction is -114629.4 J
The equilibrium constant, Kc, for the following reaction is 4.76×10-4 at 431 K. PCl5(g) PCl3(g) + Cl2(g) When a sufficiently large sample of PCl5(g) is introduced into an evacuated vessel at 431 K, the equilibrium concentration of Cl2(g) is found to be 0.233 M. Calculate the concentration of PCl5 in the equilibrium mixture. M
Answer:
Explanation:
Step 1: Data given
The equilibrium constant, Kc, for the following reaction is 4.76 * 10^-4 at 431 K
The equilibrium concentration of Cl2(g) is 0.233 M
Step 2: The balanced equation
PCl5(g) ⇄ PCl3(g) + Cl2(g)
Step 3: The initial concentration
[PCl5]= Y M
[PCl] = 0M
[Cl2] = 0M
Step 4: Calculate the concentration at equilibrium
[PCl5] = Y + X M = Y - 0.233 M
[PCl]= XM = 0.233 M
[Cl2]= XM = 0.233 M
Step 5: Define Kc
Kc = [Cl2]* [PCl3] / [PCl5]
4.76 * 10^-4 = 0.233² / (Y -0.233)
0.000476 = 0.05429 / (Y - 0.233)
Y - 0.233 = 0.05429 / 0.000476
Y - 0.233 = 114.05 M
Y = 114.283 M = the initial concentration
The concentration of PCl5 at the equilibrium is 114.05 M
Use bond energies to calculate ΔHrxn Δ H r x n for the reaction. 2H2(g)+O2(g)→2H2O(g) 2 H 2 ( g ) + O 2 ( g ) → 2 H 2 O ( g )
Answer:
[tex]\large \boxed{\text{-486 kJ}}[/tex]
Explanation:
You calculate the energy required to break all the bonds in the reactants.
Then you subtract the energy needed to break all the bonds in the products.
2H₂ + O₂ ⟶ 2H-O-H
Bonds: 2H-H 1O=O 4H-O
D/kJ·mol⁻¹: 436 498 464
[tex]\begin{array}{rcl}\Delta H & = & \sum{mD_{\text{reactants}}} - \sum{nD_{\text{products}}}\\& = & 2 \times 436 +1 \times 498 - 4 \times 464\\&=& 1370 - 1856\\&=&\textbf{-486 kJ}\\\end{array}\\\text{The enthalpy of reaction is $\large \boxed{\textbf{-486 kJ}}$}.[/tex]
The core of the pyruvate dehydrogenase complex is made up of eight catalytic________that make up the_______component.
a. monomers; E1b. dimers; E2c. dimers; E3d. trimers; E2
Answer:
(D.)
The core of the pyruvate dehydrogenase complex is made up of eight catalytic trimers that make up the E2 component.
Explanation:
Eight trimers assemble as a hollow truncated cube, which forms the core of the multi-enzyme complex, known as the E2 complex in human pyruvate dehydrogenase complex.
The transfer of surface water into the ground to become groundwater is known as
and it can replenish an aquifer.
Answer: Recharge
Explanation:
To solve this we must be knowing each and every concept related to groundwater recharge. Therefore, the transfer of surface water into the ground to become groundwater is known as groundwater recharge.
What is groundwater recharge?The water that is added to the aquifer and through unsaturated zone after percolation (or infiltration) following any storm rainfall event is known as groundwater recharge.
In the natural world, rivers, lakes, streams, rain, and snowmelt all contribute to groundwater recharge. Other surface water trickles and through soil, eventually connecting with a source of water underneath the surface, while other surface water has evaporated or enters another watershed.
Therefore, the transfer of surface water into the ground to become groundwater is known as groundwater recharge.
To know more about groundwater recharge, here:
https://brainly.com/question/29450929
#SPJ5
how do you create flu vaccine,
Answer:
Explanation:
The fluid containing virus is harvested from the eggs. For inactivated influenza vaccines (i.e., flu shots), the vaccine viruses are then inactivated (killed), and the virus antigen is purified. The manufacturing process continues with quality testing, filling and distribution.
To determine the absolute age of rocks and fossils, geologists use _____.
Answer:
The rates of decay of radioactive elements
Explanation:
The age of a rock in years is called its absolute age. Geologists find absolute ages by measuring the amount of certain radioactive elements in the rock. When rocks are formed, small amounts of radioactive elements usually get included.
If complications arise after cataract surgery, the ophthalmologist will use a Nd:YAG laser to perform a posterior capsulotomy. If the wavelength of the laser used is 1064 nm (infrared), and the pulse duration is 2.00 x 10–6 s whose energy is 0.245 J per pulse, how many photons are produced in each pulse?
Answer: 1.311 × 10^18 photons are produced in each pulse
Explanation: Please see the attachments below
Water was poured over a large oil fire to extinguish it. What would happen and why?
Answer:
I think that the fire will continue burning, because the oil and water don't mix and the water is heavier (denser) than oil, so the oil will go up and the fire with it. That's why because the gas station have sand instead of water
Water is heavier than oil. Because oil is lighter and immiscible with water, it will form a separate layer above the surface of the water and continue to burn when water is poured on a large oil fire. As a result, the fire won't be put out.
What happens when you pour water on an oil fire?A small amount of water will instantly sink to the bottom of a pan or deep fryer filled with hot, burning oil and explode there. The Scientific American claims that the characteristics of oils explain why they do not mix with water.
Oil or petroleum-related fires cannot be put out with water. Water sinks below the oil because it is heavier than oil and does not float, allowing the fire to continue to burn. Oil and petroleum fires can be put out with fire extinguishers or sand.
The temperature of the burning substance is lowered by water. The fire goes out when the temperature drops below the burning substance's ignition temperature. Here, the water serves as an acclimatizer.
Thus, it will form a separate layer above the surface of the water and continue to burn when water is poured on a large oil fire.
To learn more about the oil fire, follow the link;
https://brainly.com/question/15173100
#SPJ6
ch3-ch2-ch-ch(cl)-ch=o IUPAC name
Answer:
2-chloropentanal
Answer:
2-chloropentanal
Explanation:
ch3-ch2-ch-ch(cl)-ch=o IUPAC name
H H H H
H - C - C - C - C - C = O
H H H Cl
So as can be seen 2 as the Chlorine is on the second carbon.
Chloro because of the chlorine.
Pent because there's 5 carbon
al because there's an aldehydes
Aldehyde = −CHO
2-chloropentanal
Select the correct answer.
What effect does an increase in products have on the reaction rate of a mixture at equilibrium?
A.
The forward reaction rate increases.
B.
Both the forward and the reverse reaction rates decrease.
Both the forward and the reverse reaction rates increase.
D.
The reverse reaction rate increases.
Reset
Next
Answer:
At equilibrium the rate of the forward reaction is equal to the rate of the backward reaction.
When the product of a reaction at equilibrium is increased the equilibrium will shift left or to the reactant side. As a result the excess product will get converted to reactant. This is in accordance to Le Chatelier's principle.
Le Chatelier's principle states that when a system is subjected to stress the equilibrium will shift in a direction to minimize effect of the stress.
Thus the products added to the system at equilibrium will make the equilibrium shift to the reactant side, the rate of the reverse or backward reaction will increase.
Explanation:
Hope This Helps Amigo!
A 33.0−g sample of an alloy at 93.00°C is placed into 50.0 g of water at 22.00°C in an insulated coffee-cup calorimeter with a heat capacity of 9.20 J/K. If the final temperature of the system is 31.10°C, what is the specific heat capacity of the alloy? J g·°C
Answer:
THE SPECIFIC HEAT OF THE ALLOY IS 0.9765 J/g K
Explanation:
Mass of alloy = 33 g
Initial temperature of alloy = 93°C
Mass of water = 50 g
Initail temp. of water = 22 °C
Heat capacity of calorimeter = 9.20 J/K
Final temp. = 31.10 °C
specific heat of alloy = unknown
specific heat capacity of water = 4.2 J/g K
Heat = mass * specific heat * change in temperature = m c ΔT
Heat = heat capcity * chage in temperature = Δ H * ΔT
In calorimetry;
Heat lost by the alloy = Heat gained by water + Heat of the calorimeter
mc ΔT = mcΔT + Heat capacity * ΔT
33 * C * ( 93 - 31.10) = 50 * 4.2 * ( 31.10 -22) + 9.20 * ( 31.10 -22)
33 * C * 61.9 = 50 * 4.2 * 9.1 + 9.20 * 9.1
2042.7 C = 1911 + 83,72
C = 1911 + 83.72 / 2042.7
C = 1994.72 /2042.7
C =0.9765 J/g K
The specific heat of the alloy is 0.9765 J/ g K
A solution of pentane and ethanol (CH3CH2OH)that is 50.% pentane by mass is boiling at 57.2°C. The vapor is collected and cooled until it condenses to form a new solution.
Calculate the percent by mass of pentane in the new solution. Here's some data you may need:
normal boiling point density vapor pressure at
57.2°C
pentane 36.°C 0.63gmL 1439.torr
ethanol 78.°C 0.79gmL 326.torr
Be sure your answer has 2 significant digits.
dont round during math only for answer!
Note for advanced students: you may assume the solution and vapor above it are ideal.
Answer:
The correct answer is 81.52 percent.
Explanation:
Based on the given information, the boiling point of pentane is 36 degree C and the boiling point of ethanol is 78 degree C. The density of pentane and ethanol is 0.63 g/ml and 0.79 g/ml. The vapor pressure of pentane at 57.2 degree C is 1439 torr and the vapor pressure of ethanol at 57.2 degree C is 326 torr.
In the given case, 50 percent pentane by mass signifies that mass of pentane is 50 grams. Thus, the mass of ethanol will be 100-50 = 50 grams.
The moles or n can be calculated by using the formula,
n = weight/molecular mass
The molecular mass of pentane is 72.15 g per mol and the molar mass of ethanol is 46.07 g/mol.
The moles of pentane is,
= 50 g/72.15 g/mol = 0.6930 mol
The moles of ethanol is,
= 50 g/46.07 g/mol = 1.0853 mol
The mole fraction of pentane is,
= 0.6930 mol / (0.6930 + 1.0853) mol = 0.3897
The mole fraction of ethanol is,
= 1.0853 mol / (0.6930 + 1.0853) mol = 0.6103
Now the vapor pressure of solution will be,
= pressure of pentane * mole fraction of pentane + pressure of ethanol * mole fraction of ethanol
= (1439 * 0.3897) + (326 * 0.6103)
= 759.736 torr
The vapor pressure of pentane within the solution,
= vapor pressure of pentane * mole fraction of pentane
= 1439 torr * 0.3897
= 560.778 torr
The fraction of pentane is,
= 560.778 / 759.736 = 0.738
Let us assume that the total mole is 1, the mole fraction of pentane is 0.738, so the mole fraction of ethanol will become, 1-0.738 = 0.262
The mass of pentane = 0.738 * 72.15 = 53.2467
The mass of ethanol = 0.262 * 46.07 = 12.07034
The percent by mass of pentane in new solution will be,
Mass% = mass of pentane/Total mass * 100%
= 53.2467/(53.2467 + 12.07034) * 100%
= 53.2467/65.31704 * 100 %
= 81.52 %
When pressure is increased on the following equilibrium, where will the shift be? 3H2 + N2 2NH3
Answer:
Explanation:
it is based on le chatliers principles
the left side of reaction you have 4 moles , where as at the right hand side you have 2 moles,,,,
so when you increase the pressure the reaction will shift towards the lower moles producing reaction that is reaction move towards forward in you case.
how many moles of helium gas occupy 22.4 L at 0 degreeC at 1 atm pressure
Answer:
1 mole of the gas occupies 22. 4L at O0C at 1atm pressure. Hence, the correct option is C.
Explanation:
Wine goes bad soon after opening because the ethanol dissolved in it reacts with oxygen gas to form water and aqueous acetic acid , the main ingredient in vinegar. Calculate the moles of water produced by the reaction of of oxygen. Be sure your answer has a unit symbol, if necessary, and round it to significant digits.
Answer:
1.7 moles of ethanol would be needed.
Explanation:
* Calculate the moles of ethanol needed to produce 1.70mol of water. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.
First off, we have to state the equation for the reaction.
So we know that;
ethanol + oxygen → acetic acid + water
This leads us to;
C2H5OH + O2 → CH3COOH + H2O
1 1 1 1
To obtain the moles of ethanol needed to produce 1.70mol of water, we look at the stoichiometry of the reaction above.
1 mol of ethanol produces 1 mole of water
x mol of thanol would produce 1.7 mol of water
Thus we have;
1 = 1
x = 1.7
x = 1.7 moles of ethanol would be needed.
5. Rubbing alcohol is a commonly used disinfectant and has a cooling effect when applied to the skin. The active ingredient in rubbing alcohol is isopropanol. In drugstores, the most common concentration of rubbing alcohol sold contains 70% (vol/vol) isopropanol in water. Assuming the rubbing alcohol manufacturer uses a 100% isopropanol solution, what volume of pure isopropanol is required to produce a 200-mL bottle of rubbing alcohol
Answer:
Explanation:
70% (vol/vol) means
cotnaimns 70 %(vol/vol) 70 ml of isoprapnol is there in 100 ml of Rubbing sold alcohol.
if it is 200 ml then obvouly it has the 70*2 =140 ml of isoproanol required.
Alcohol is an organic compound that when rubbed on the skin it evaporates quickly leaving a cool effect on the skin. The reason why it evaporates is because it has loosely bound molecules and a low boiling temperature.
The volume of pure isopropanol required to produce a 200-ml bottle of rubbing alcohol is 140 ml
From the question:
Alcohol sold contains 70%(vol/vol). This means 70 ml of the solute of isopropanol can be found in 100 ml of solution.
Hence:
100ml of solution = 70ml of isopropanol
200ml of solution = ?
Cross Multiply
200 ml x 70 ml / 100 ml
= 140 ml
Therefore, the volume of pure isopropanol required to produce a 200-ml bottle of rubbing alcohol is 140 ml
To learn more, visit the link below:
https://brainly.com/question/3693273
a binary ionic compound is made of two components name one of them
Answer:
CATION
Explanation:
It's one is the action and the mother is a cation.
Classify the following unbalanced chemical reaction Fe(OH)2(s) + HCl(aq) = FeCl2(aq) + H2O(l)
1. Acid-Base Reaction
2. Precipitation Reaction
3. Oxidation-Reduction Reaction
4. Combustion Reaction
Answer:
1. Acid-Base Reaction
Explanation:
Fe(OH)2(s) + HCl(aq) = FeCl2(aq) + H2O(l)
base acid
This a reaction between base and acid.
Ferrous hydroxide is an inorganic alkaline compound whereas hydrochloric acid is an acid. The reaction between Fe(OH)₂and HCl is an acid-base reaction. Thus, option 1 is correct.
What is an acid-base reaction?An acid-base reaction is a chemical change that occurs and takes place when the reactant constitutes an acid and a base. They are characterized by the exchange of protons that results in the formation of conjugate bases and acids or salt.
The acid-base chemical reaction is shown as,
Fe(OH)₂(s) + HCl(aq) ⇒ FeCl₂(aq) + H₂O(l)
Here, ferrous hydroxide is a base with hydroxide ions and hydrochloric acid is an acid with hydrogen ions. HCl donates its proton to form water molecules with hydroxide ions of ferrous hydroxide.
Therefore, in option 1. the reaction is an acid-base reaction.
Learn more about acid-base reaction, here:
https://brainly.com/question/14276012
#SPJ2
Write the equilibrium constant: Pb3(PO4)2(s) = 3Pb2+ (aq) +
2PO2 (aq)
Answer:
Kc = [Pb²⁺]³.[PO₄³⁻]²
Explanation:
Let's consider the following reaction at equilibrium.
Pb₃(PO₄)₂(s) ⇄ 3 Pb²⁺(aq) + 2 PO₄³⁻(aq)
The concentration equilibrium constant is the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species.
Kc = [Pb²⁺]³.[PO₄³⁻]²
This equilibrium constant is known as the solubility product of Pb₃(PO₄)₂.
An excess of sodium carbonate, Na2CO3, in solution is added to a solution containing 15.71 g CaCl2. After performing the experiment, 13.19 g of calcium carbonate, CaCO3, is produced. Calculate the percent yield of this reaction
Answer:
93.15 %
Explanation:
We have to start with the chemical reaction:
[tex]CaCl_2~+~Na_2CO_3~->~CaCO_3~+~NaCl[/tex]
Now, we can balance the reaction:
[tex]CaCl_2~+~Na_2CO_3~->~CaCO_3~+~2NaCl[/tex]
Our initial data are the 15.71 g of [tex]CaCl_2[/tex], so we have to do the following steps:
1) Convert from grams to moles of [tex]CaCl_2[/tex] using the molar mass (110.98 g/mol).
2) Convert from moles of [tex]CaCl_2[/tex] to moles of [tex]CaCO_3[/tex] using the molar ratio. ( 1 mol [tex]CaCl_2[/tex]= 1 mol of [tex]CaCO_3[/tex]).
3) Convert from moles of [tex]CaCO_3[/tex] to grams of [tex]CaCO_3[/tex] using the molar mass. (100 g/mol).
[tex]15.71~g~CaCl_2\frac{1~mol~CaCl_2}{110.98~g~CaCl_2}\frac{1~mol~CaCO_3}{1~mol~CaCl_2}\frac{100~g~CaCO_3}{1~mol~CaCO_3}=14.16~g~CaCO_3[/tex]
Finally, we can calculate the yield percent:
[tex]%~=~\frac{13.19~g~CaCO_3}{14.16~g~CaCO_3}*100=93.15~%[/tex]
I hope it helps!
The percentage yield obtained when excess sodium carbonate, Na₂CO₃, is added to a solution containing 15.71 g CaCl₂ is 93.2%
We'll begin by writing the balanced equation for the reaction. This is given below: [tex]Na_{2}CO_{3} + CaCl_{2} - > CaCO_{3} + 2NaCl[/tex]Molar mass of CaCl₂ = 40 + (35.5×2) = 111 g/mol
Mass of CaCl₂ from the balanced equation = 1 × 111 = 111 g
Molar mass of CaCO₃ = 40 + 12 + (16×3) = 100 g/mol
Mass of CaCO₃ from the balanced equation = 1 × 100 = 100 g
SUMMARY
From the balanced equation above,
111 g of CaCl₂ reacted to produce 100 g of CaCO₃
Next, we shall determine the theoretical yield of of CaCO₃. This can be obtained as follow:From the balanced equation above,
111 g of CaCl₂ reacted to produce 100 g of CaCO₃.
Therefore,
15.71 g of CaCl₂ will react to produce = [tex]\frac{15.71 * 100}{111} \\\\[/tex] = 14.15 g of CaCO₃.
Thus, the theoretical yield of of CaCO₃ is 14.15 g
Finally, we shall determine the percentage yield. This can be obtained as follow:Actual yield of CaCO₃ = 13.19 g
Theoretical yield of CaCO₃ = 14.15 g
Percentage yield =?[tex]Percentage yield = \frac{Actual}{Theoretical} * 100\\\\= \frac{13.19}{14.15} * 100\\\\[/tex]
= 93.2%Therefore, the percentage yield of the reaction is 93.2%
Learn more: https://brainly.com/question/13930222
For the aqueous reaction dihydroxyacetone phosphate↽−−⇀glyceraldehyde−3−phosphate dihydroxyacetone phosphate↽−−⇀glyceraldehyde−3−phosphate the standard change in Gibbs free energy is ΔG°′=7.53 kJ/molΔG°′=7.53 kJ/mol . Calculate ΔGΔG for this reaction at 298 K298 K when [dihydroxyacetone phosphate]=0.100 M[dihydroxyacetone phosphate]=0.100 M and [glyceraldehyde-3-phosphate]=0.00200 M[glyceraldehyde-3-phosphate]=0.00200 M .
Answer:
ΔG = -2.17 kJ/mol
Explanation:
ΔG of a reaction at any moment could be obtained thus:
ΔG = ΔG° + RT ln Q
Where ΔG° is standard change in free energy of a particular reaction (7.53kJ/mol for the reaction of the problem, R is gas constant (8.314×10⁻³kJ/molK), T is absolute temperature (298K) and Q is reaction quotient of the reaction.
For the reaction:
dihydroxyacetone phosphate ⇄ glyceraldehyde−3−phosphate
Q is defined as:
Q = [glyceraldehyde−3−phosphate] / [dihydroxyacetone phosphate]
Replacing values in ΔG formula:
ΔG = 7.53kJ/mol + 8.314×10⁻³kJ/molK × 298.15K ln [0.00200M] / [0.100M]
ΔG = -2.17 kJ/mol
What happens in a double replacement reaction
Answer: D
Explanation: The elements in two compunds switch places
Consider a solution containing 0.100 M fluoride ions and 0.126 M hydrogen fluoride. The concentration of fluoride ions after the addition of 5.00 mL of 0.0100 M HCl to 25.0 mL of this solution is __________ M.
a. 0.0980
b. 0.0817
c. 0.0167
d. 0.0850
e. 0.00253
Answer:
The answer is "Option b"
Explanation:
In this question first we calculates the moles in F-, HF, and in HCL, which can be defined as follows:
Formula:
[tex]\ Number \ of \ moles\ = \ Molarity \times \ Volume \ in \ litter[/tex]
[tex]\ moles \ in\ F- = 0.100 \ M \times 0.0250 L\\\\[/tex]
[tex]=\ 0.0025 \ moles[/tex]
[tex]\ moles \ in \ HF \ = 0.126M \times 0.0250 L[/tex]
[tex]= 0.00315 \ moles[/tex]
[tex]\ moles \ in \ HCl = 0.0100M \times 0.00500 L[/tex]
[tex]= 0.00005 \ moles[/tex]
[tex]\ Reaction: \\\\F - + H+ \rightarrow HF[/tex]
[tex]\Rightarrow \ moles \ in \ F- = 0.0025 \\\\\Rightarrow \ moles \ in \ H+ = 0.00005 \\\\ \Rightarrow \ moles \ in \ HF = 0.00315\\\\ \ total \ moles = 0.00250 -0.0000500 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.00315 + 0.00005\\\\\ total \ moles =0.00245 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.00245[/tex]
[tex]\ total \ volume \ in \ the \ solution = \ V = \ 0.0300 L\\\\ after \ addition \ of \ HCl \ the \ concentration \ of \ F- \ = 0.00245\ moles \div V[/tex]
[tex]=\frac{ 0.00245 \ moles }{0.0300L}\\\\= \frac{245 \times 10^4}{300 \times 10^5} \\\\= \frac{245}{3000} \\\\ = 0.0817 M[/tex]
A thermometer is placed in water in order to measure the water’s temperature. What would cause the liquid in the thermometer to rise? The molecules in the water move closer together. The molecules in the thermometer’s liquid spread apart. The kinetic energy of the water molecules decreases. The kinetic energy of the thermometer’s liquid molecules decreases.
Answer: The molecules in the thermometer's liquid spread apart.
Explanation:
Mercury is the only metal that remains liquid at room temperature. It has a high coefficient of expansion therefore the its level rises when exposed to a temperature range. It can detect a slight change in temperature. It has a high boiling point.
When the thermometer is placed in the water to measure the temperature, the molecules of thermometer liquid that is mercury only will spread due to high coefficient of expansion. This can be seen as rise in temperature.
Answer:
B
Explanation:
Just did the test
In this reaction: Mg (s) + I₂ (s) → MgI₂ (s)
If 2.34 moles of Mg react with 3.56 moles of I₂, and 1.76 moles of MgI₂ form, what is the percent yield?
Answer:
98.9%
Explanation:
2 moles of I₂ are required for each mole of Mg, so the reaction is limited by the available I₂. The 3.56 moles of I₂ should react with 1.78 moles of Mg to produce 1.78 moles of MgI₂. Instead, we get 1.76 moles of MgI₂.
The yield is 1.76/1.78 × 100% ≈ 98.876%
The yield is 98.9% of the quantity expected based on available reactants.
Benzene can be converted to 1,3,5-tribromobenzene in five reaction steps and four intermediate compounds. Select the appropriate reagent from the followings.
Br2, R2O2
CH3Cl, AlCl3
CH3COCl, AlCl3
NaNO2, HCl
HNO3, H2SO4
H3PO2
H3PO4
KMnO4
Answer:
The appropriate reagent is: H3PO2.
Explanation:
H3PO2 is in charge of eliminating the amino group by diazotization, remember that the amino group had previously achieved bromination at positions m; that is to say that it achieved in the beginning that the three bromine atoms of 1,2,4 tribromobenzene were introduced in the meta positions among themselves, which finally corresponds as part of the last reaction to the 1,3,5-tribromobenzene position.
how many grams of NH3 can be produced from 2.51 mil of N2 and excess H2 ?
please help! due in a bit
Answer:
85.34g of NH3
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
N2 + 3H2 —> 2NH3
Step 2:
Determination of the number of moles of NH3 produced by the reaction of 2.51 moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 2.51 moles of N2 will react to produce = (2.51 x 2)/1 = 5.02 moles of NH3.
Therefore, 5.02 moles of NH3 is produced from the reaction.
Step 3:
Conversion of 5.02 moles of NH3 to grams. This is illustrated below:
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Number of mole of NH3 = 5.02 moles
Mass of NH3 =..?
Mass = mole x molar Mass
Mass of NH3 = 5.02 x 17
Mass of NH3 = 85.34g
Therefore, 85.34g of NH3 is produced.
Which of the following provides evidence to support Thomson's hypothesis about electrons??
A.) Gold foil experiment
B.) Cathode ray experiments
C.)Spectrum of colors emitted by gas
D.) Radiation produced when beryllium is bombarded with alpha particles
Cathode ray experiments of the following provides evidence to support Thomson's hypothesis about electrons.
What is the hypothesis of Thomson's atomic model?Rutherford's gold leaf experiment demonstrated that the atom is essentially empty space with such a tiny, compact, positively-charged nucleus. Thomson had proposed the plum pie model of the atom, which featured negatively-charged electrons buried within a favorably "soup." Since most of the alpha particles flow through an atom directly without being deflected, contrary to what Thomson's model predicted, the majority of a space inside of an atom is empty. As a result, the Thomson model of a molecule was disproved.
Who disproved Thomson's theory?According to Thomson's model, every atom is made up of negative charges "plums" surrounded in positively charged "pudding," or electrons with a soup of positive ion to balance their negative charges. Hans Geiger and Arthur Marsden's 1909 gold foil test refuted the 1904 Thomson model.
To know more about Thomson hypothesis visit:
https://brainly.com/question/28824828
#SPJ2
what is the correct ionic equation, including all coefficients, charges, and phases for the following sets of reactants? Assume that the contribution of protons from H2SO4 is near 100%.
Ba(OH)2(aq)+H2SO4(aq) —>
help, I have no clue
Answer:
Ba(OH)2(aq)+H2SO4(aq) gives us 2BaH+H2O
Explanation: