The standard reduction potentials is Ba metal will be oxidized to Ba2+ and the Li+ and Mg2+ ions will be reduced to Li and Mg metal.
When Ba metal is added to an aqueous solution containing dissolved LiCl and MgCl2, Ba metal will be oxidized to Ba2+ ions based on the standard reduction potentials. However, the species that will undergo reduction depends on their respective reduction potentials.
According to the standard reduction potentials, Li+ has a more positive reduction potential than Mg2+, which means Li+ has a greater tendency to undergo reduction compared to Mg2+. Therefore, Li+ ions will be reduced to Li metal while Mg2+ ions will remain in solution.
The overall reaction can be represented as follows:
Ba(s) + 2Li+(aq) → Ba2+(aq) + 2Li(s)
Therefore, the correct answer is Ba metal will be oxidized to Ba2+ and the Li+ and Mg2+ ions will be reduced to Li and Mg metal. Mg2+ ions will not be reduced to Mg metal is incorrect. The formation of H2 gas and -OH ions, which are not supported by the standard reduction potentials is incorrect. -OH ions are not formed when Li+ ions undergo reduction is incorrect. A reaction does occur based on the standard reduction potentials is incorrect.
Know more about standard reduction potentials here:
https://brainly.com/question/2731940
#SPJ11
plants animals and human beings live ____
Answer:
Humans and animals are dependent on plants directly or indirectly for food. Only plants are autotrophs i.e., they are capable of synthesizing their own food. Animals are heterotrophs i.e., they are incapable of synthesizing their own food. They depend on plants and other animals for food. The man also being a heterotroph, gets his food from plants as well as animals.
Select the correct answer.
Which statement about a rotation is true?
O A. Rotating a right trapezoid around its vertical axis will form a cone.
Rotating a right triangle around its vertical axis will form a cone.
Rotating a square around its vertical axis will form a sphere.
Rotating a rectangle around its vertical axis will form a sphere.
B.
C.
OD.
Reset
Next
Rotating a right triangle around its vertical axis will form a cone. The correct option is B.
The above one is basically the correct statement. When a two-dimensional shape is rotated around an axis, it creates a three-dimensional shape.
Rotating a right triangle around its vertical axis creates a cone because one of the sides of the triangle forms the curved surface of the cone, while the other side becomes the height.
The rotation axis goes through the apex of the triangle and creates a point at the other end of the curved surface.
Rotating a right trapezoid around its vertical axis would result in a frustum (a truncated cone). Rotating a square or rectangle around its vertical axis would form a cylinder, not a sphere.
Thus, the correct option is B.
For more details regarding rotation, visit:
https://brainly.com/question/1571997
#SPJ1
6. Given a mixture of gases: 1.00 g He,
14.0 g N2 and 10.0 g NO. What is the total pressure at 27.0 °C if the gases are confined in a 2.00 L container?
A) 0.310 atm
B) 1.24 atm
C) 13.3 atm
D) 21.6 atm
Considering the ideal gas law, the total pressure at 27.0 °C if the gases are confined in a 2.00 L container is 13.3 atm.
Definition of ideal gas lawAn ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P×V = n×R×T
Where:
P is the gas pressure.
V is the volume that occupies.
T is its temperature.
R is the ideal gas constant. The universal constant of ideal gases R has the same value for all gaseous substances.
n is the number of moles of the gas.
Total pressure in this caseIn this case you know:
mass of He= 1 gr
mass of N₂= 14 gr
mass of NO= 10 gr
molar mass of He= 4 gr/mole
molar mass of N₂= 28 gr/mole
molar mass of NO= 30 gr/mole
moles of He= mass of He÷ molar mass of He= 1 gr÷ 4 gr/mole= 0.25 moles
moles of N₂= mass of N₂÷ molar mass of N₂= 14 gr÷ 28 gr/mole= 0.5 moles
moles of NO= mass of NO÷ molar mass of NO= 10 gr÷ 30 gr/mole= 1/3 moles
total moles= moles of He + moles of N₂ + moles of NO= 0.25 moles + 0.5 moles + 1/3 moles= 13/12 moles
V= 2 L
R= 0.082 (atmL)/(molK)
T= 27 °C= 300 K
Replacing in the ideal gas law:
P×2 L = 13/12 moles×0.082 (atmL)/(molK)×300 K
Solving:
P= [13/12 moles×0.082 (atmL)/(molK)×300 K]÷ 2 L
P= 13.3 atm
Finally, the total pressure is 13.3 atm.
Learn more about ideal gas law:
https://brainly.com/question/4147359
#SPJ1
g) explain why All group VIII elements are gases at room temperature
Answer:
The Group 8A elements are essentially chemically inert and have a full octet of eight valence electrons in their highest-energy orbitals (ns2np6), so these elements have very little tendency to gain or lose electrons to form ions, or share electrons with other elements in covalent bonds. This is the most stable arrangement of electrons, so noble gases rarely react with other elements and form compounds. Under standard conditions all members of the noble gas group behave similarly. All are monotomic gases under standard conditions.
Element Q is a theoretical nonmetal with atomic number 59. Consider the isotope: Q-123. How many neutrons are in an atom of Q-123 if the atom has a charge of -1?
There are 64 neutrons in an atom of Q-123 with a charge of -1.
Since the isotope Q-123 has an atomic number of 59, we know that it has 59 protons. The charge of -1 tells us that the atom has one more electron than protons, so it has 60 electrons.
To find the number of neutrons, we need to subtract the atomic number (59) from the mass number (123):
Number of neutrons = Mass number - Atomic number
Number of neutrons = 123 - 59
Number of neutrons = 64
Hence there are 64 neutrons in an atom of Q-123 with a charge of -1. It is important to note that the charge does not affect the number of neutrons in the atom, only the number of electrons. The number of protons and neutrons in the nucleus of an atom determine its identity and chemical properties.
for more questions on atom
https://brainly.com/question/26952570
#SPJ11
Calculate how many grams of rust (Fe2O3) should form when 10.0g of iron reacts with 20.0g of oxygen.
4Fe + 3O2 → 2Fe2O3
Taking into account the reaction stoichiometry, 14.31 grams of Fe₂O₃ are formed when 10.0g of iron reacts with 20.0g of oxygen.
Reaction stoichiometryIn first place, the balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
Fe: 4 molesO₂: 3 molesFe₂O₃: 2 molesThe molar mass of the compounds is:
Fe: 55.85 g/moleO₂: 32 g/moleFe₂O₃: 159.7 g/moleBy reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
Fe: 4 moles ×55.85 g/mole= 223.4 gramsO₂: 3 moles ×32 g/mole= 96 gramsFe₂O₃: 2 moles ×159.7 g/mole= 319.7 gramsLimiting reagentThe limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, it is possible to use a simple rule of three as follows: if by stoichiometry 96 grams of O₂ reacts with 223.4 grams of Fe, 20 grams of O₂ reacts with how much mass of Fe?
mass of Fe= (20 grams of O₂ ×223.4 grams of Fe) ÷96 grams of O₂
mass of Fe= 46.54 grams
But 46.54 grams of Fe are not available, 10 grams are available. Since you have less mass than you need to react with 20 grams of O₂, Fe will be the limiting reagent.
Mass of Fe₂O₃ formedConsidering the limiting reagent, the following rule of three can be applied: if by reaction stoichiometry 223.4 grams of Fe form 319.7 grams of Fe₂O₃, 10 grams of Fe form how much mass of Fe₂O₃?
mass of Fe₂O₃= (10 grams of Fe×319.7 grams of Fe₂O₃)÷223.4 grams of Fe
mass of Fe₂O₃= 14.31 grams
Finally, 14.31 grams of Fe₂O₃ are formed.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
#SPJ1
Elements are organized in the....... by increasing atomic number
The periodic table is a tool used by chemists to organize the elements based on their properties and characteristics. The table is arranged in rows and columns, with the rows being called periods and the columns called groups. The elements in the table are organized in order of increasing atomic number.
Atomic number refers to the number of protons in the nucleus of an atom. Elements with the same number of protons have similar properties, which is why they are grouped together in the periodic table. The number of protons also determines an element's placement in the table. Elements with fewer protons are located on the left side of the table, while those with more protons are located on the right side.
The periodic table also has a unique arrangement of blocks, which are based on the electron configuration of the elements. The s-block elements are located on the left side of the table, followed by the p-block elements on the right. The d-block elements are located in the middle, and the f-block elements are located at the bottom of the table.
The periodic table is a powerful tool for understanding the behavior of the elements, and it has been instrumental in the development of modern chemistry. Its organization by increasing atomic number allows for easy comparison of the elements and their properties, which has led to many important discoveries and advancements in the field of chemistry.
for more such questions on elements
https://brainly.com/question/18096867
#SPJ11
When a mixture of 1,20 g H2(g) and 7.45 g CO are allowed to
react, how many moles of methanol could be produced?
When a mixture of 1,20 g H2(g) and 7.45 g CO are allowed to react, 0.2659 moles of methanol could be produced from the given mixture.
The balanced chemical equation for the reaction between H2 and CO to form methanol (CH3OH) is:
H2(g) + CO(g) → CH3OH(l)
To determine how many moles of methanol could be produced, we need to first determine the limiting reactant.
This is the reactant that will be completely consumed in the reaction and will limit the amount of product that can be formed.
The molar mass of H2 is 2.016 g/mol, so 1.20 g of H2 is:
1.20 g H2 × (1 mol H2/2.016 g H2) = 0.5952 mol H2
The molar mass of CO is 28.01 g/mol, so 7.45 g of CO is:
7.45 g CO × (1 mol CO/28.01 g CO) = 0.2659 mol CO
Now we can use the mole ratio from the balanced equation to determine which reactant is limiting:
1 mol H2 : 1 mol CO : 1 mol CH3OH
0.5952 mol H2 : 0.2659 mol CO : x mol CH3OH
The limiting reactant is CO, since it produces less moles of CH3OH than the H2. Therefore, the amount of methanol that could be produced is:
0.2659 mol CO × (1 mol CH3OH/1 mol CO) = 0.2659 mol CH3OH
Thus, 0.2659 moles of methanol could be produced from the given mixture.
For more details regarding moles, visit:
https://brainly.com/question/31597231
#SPJ1
Given:
180.0 mL chloric acid (HCIO3)
440.0 mL of 1.75 M strontium hydroxide (Sr(OH)2)
Wanted: [HCIO3] necessary to neutralize Sr(OH)?
The molarity of the 180.0 mL chloric acid, HClO₃ solution needed to neutralize the 440.0 mL of 1.75 M strontium hydroxide, Sr(OH)₂ is 8.56 M
How do i determine the molarity of the chloric acid, HClO₃?We'll begin by writing the balanced equation for the reaction. This is given below:
2HClO₃ + Sr(OH)₂ —> Sr(ClO₃)₂ + 2H₂O
The mole ratio of the acid, HClO₃ (nA) = 2The mole ratio of the base, Sr(OH)₂ (nB) = 1Volume of Sr(OH)₂ (Vb) = 440.0 mLMolarity of Sr(OH)₂ (Mb) = 1.75 M Volume of HClO₃ (Va) = 180.0 mLMolarity of HClO₃ (Ma) =?The molarity of the chloric acid, HClO₃ solution necessary can be obtained as follow:
MaVa / MbVb = nA / nB
(Ma × 180) / (1.75 × 440) = 2
Cross multiply
Ma × 180 = 1.75 × 440 × 2
Divide both side by 180
Ma = (1.75 × 440 × 2) / 180
Ma = 8.56 M
Thus, we can conclude that the molarity of the chloric acid, HClO₃ solution is 8.56 M
Learn more about molarity:
https://brainly.com/question/13386686
#SPJ1
Complete question:
Given that 180.0 mL chloric acid (HCIO3) reacted with 440.0 mL of 1.75 M strontium hydroxide (Sr(OH)2). What is the molarity of HCIO3 necessary to neutralize Sr(OH)?
Wanted: [HCIO3] necessary to neutralize Sr(OH)?
NEED HELP FAST!
Hydrogen covalently bonds with nitrogen to form the compound ammonia. Nitrogen becomes MORE chemically stable because
Question 4 options:
Hydrogen transfers an electron from nitrogen to fill it's outer energy level.
it partially fills its outer energy level with shared electrons from hydrogen.
Hydrogen acquires transferred electrons from nytrogen leaving nytrogen with 6 outer electrons.
it partially fills its outer energy level with transferred electrons from hydrogen.
Nitrogen becomes more chemically stable when it forms a covalent bond with hydrogen to form the compound ammonia (NH3). The stability of the nitrogen in this compound is primarily due to the sharing of electrons between the nitrogen and hydrogen atoms.
In a covalent bond, atoms share electrons to achieve a more stable electron configuration. Nitrogen has five electrons in its outer energy level, which means it needs three more electrons to fill its outer energy level and achieve a stable configuration. On the other hand, hydrogen has one electron in its outer energy level and needs one more electron to complete its outer energy level.
When nitrogen and hydrogen combine to form ammonia, each hydrogen atom shares one electron with the nitrogen atom, and in turn, the nitrogen atom shares one of its electrons with each hydrogen atom. This sharing of electrons allows nitrogen to partially fill its outer energy level, completing a stable eight-electron configuration. Hydrogen, in turn, partially fills its outer energy level with a transferred electron from nitrogen.
By sharing electrons, the nitrogen in ammonia acquires a more stable electron configuration that resembles the stable configuration of noble gases. This stability contributes to the overall stability of the ammonia molecule. The covalent bond in ammonia provides a balance of electron sharing, allowing both nitrogen and hydrogen to achieve more favorable and stable electron configurations than they would individually.
In short, nitrogen becomes chemically more stable in the ammonia compound because it partially fills its outer energy level with shared electrons from hydrogen. This sharing of electrons allows the nitrogen to achieve a stable configuration, which contributes to the stability of the ammonia molecule as a whole.
For more such questions on electron configuration ,
https://brainly.com/question/5306808
#SPJ11
Answer:
it partially fills its outer energy level with shared electrons from hydrogen.
Explanation:
When a 20.2 mL sample of a 0.382 M aqueous hydrocyanic acid solution is titrated with a 0.421 M aqueous barium hydroxide solution, what is the pH after 13.7 mL of barium hydroxide have been added?
The concept molarity is used here to determine the pH after adding 12.6 mL of the base. The term molarity is an important method which is used to calculate the concentration of a solution. Here the pH is 1.23.
The term molarity is defined as the number of moles of the solute dissolved per litre of the solution. It is also called the molar concentration. It is represented as 'M' and its unit is mol / L.
Molarity is given as:
M = Number of moles / Volume of solution in liters
'n' of HCN = 20.2 × 1 L / 1000 mL × 0.382 = 0.0077 mol
'n' of Ba(OH)₂ = 13.7 × 1L / 1000 mL × 0.421 = 0.0057 mol
Excess H⁺ = 0.002
Total volume = 20.2 + 13.7 = 33.9 mL = 0.0339 L
Concentration of H⁺ = 0.002 / 0.0339 = 0.058
So pH is:
pH = - log[H⁺]
pH = - log[ 0.058] = 1.23
To know more about pH, visit;
brainly.com/question/27945512
#SPJ1
Shown above is the phase diagram for water as it is heated. Which section represents the phase of water with the highest kinetic energy?
The section that represents the phase of water with the highest kinetic energy is the gas phase or vapor phase.
Gas phase or vapor phase section is above the boiling point curve, which separates the liquid and gas phases. At this point, the temperature is at or above 100°C (at standard atmospheric pressure), and the kinetic energy of the water molecules is sufficient to overcome the intermolecular forces holding them in the liquid phase and escape into the gas phase. The gas phase has the highest kinetic energy because the water molecules in this phase are more widely separated and move more rapidly than in the liquid or solid phases. The gas phase is also characterized by the highest entropy or disorder, as the molecules are free to move in any direction and occupy a large volume. The section that represents the phase of water with the highest kinetic energy is gas phase or vapor phase.
for more questions on water
https://brainly.com/question/19491767
#SPJ11
pllllllllsssssssssssssss helpp
Which of the these is a balanced chemical equation?
Question 18 options:
H2O + CHO2 → H2CO3
H2O + CO2 → H2CO3
3H2O + 2CO2 → 2H2CO3
2H2O + 2CO2 → H4CO4
Answer:
The balanced chemical equation is:
3H2O + 2CO2 → 2H2CO3
Explanation:
How many water molecules is in 1liter of water
Multiplying by Avogadro's number we find that 55.6 moles of water contains 3.34 × 1025 molecules.
Answer:
A molecular weight often is simply referred to as a mole. Thus, 1 L of water contains 55.6 moles of water. Multiplying by Avogadro's number we find that 55.6 moles of water contains [tex]3.34 * 10^2^5[/tex] molecules.
Hope this helps :)
Pls brainliest...
Personal values have a direct impact on how people treat personal and
nvironmental health. Explain this statement.
Personal values can have a direct impact on how people treat personal and environmental health, as these values shape an individual's attitudes and behaviors towards health and well-being.
Personal values are the beliefs and principles that guide an individual's behavior and decision-making. These values are shaped by a variety of factors, including culture, upbringing, education, and life experiences.
Similarly, an individual who values environmental health and sustainability may be more likely to engage in environmentally friendly behaviors, such as recycling, reducing energy consumption, and using sustainable products. In contrast, an individual who does not value environmental health may be less likely to engage in these behaviors.
Overall, personal values play a critical role in shaping an individual's attitudes and behaviors towards personal and environmental health. By understanding the impact of personal values on health-related decisions, individuals can become more conscious of their values and how they influence their actions, leading to more positive health outcomes and a more sustainable environment.
Know more about personal values here:
https://brainly.com/question/12318197
#SPJ11
Calculate the molar solublity of SrCO3 (Ksp = 5.40×10-10) in 0.099 M Sr(NO3)2.
The solubility product constant (Ksp) for strontium carbonate (SrCO3) is given as 5.40×10^-10. The reaction equation for the dissolution of SrCO3 in water is: The molar solubility of SrCO3 in 0.099 M Sr(NO3)2 is 7.4×10^-6 M.
SrCO3(s) ⇌ Sr2+(aq) + CO32-(aq)
In the presence of Sr(NO3)2, the equilibrium of the reaction will shift to the left to form more SrCO3 precipitate. This is known as the common ion effect. The dissociation reaction of Sr(NO3)2 in water is:
Sr(NO3)2(s) ⇌ Sr2+(aq) + 2NO3-(aq)
Assuming that the solubility of SrCO3 is small, the concentration of Sr2+ in the solution is approximately equal to the concentration of Sr(NO3)2 added. Thus, the concentration of Sr2+ in the solution is:
[Sr2+] = 0.099 M
Using the solubility product expression for SrCO3, we can write:
Ksp = [Sr2+][CO32-]
Assuming that the solubility of SrCO3 is x, then the concentration of CO32- is also equal to x. Thus, we can write:
Ksp = (0.099 + x)(x)
Solving for x, we get:
x^2 + 0.099x - 5.40×10^-10 = 0
Using the quadratic formula, we get:
x = 7.4×10^-6 M
Therefore, the molar solubility of SrCO3 in 0.099 M Sr(NO3)2 is 7.4×10^-6 M.
for more such questions on solubility
https://brainly.com/question/24057916
#SPJ11
26 What is the charge on each ion in these compounds?
(a) CaS
(b) MgF2
(c) Cs,O
(d) ScCl,
(e) Al,S,
The charges present on the following ionic compounds are Ca²⁺, Mg²⁺, Cs⁺, Sc⁺, Al³⁺, S²⁻, F⁻, O²⁻, Cl⁻.
Ionic compounds are held together by ionic bonds are classed as ionic compounds. Elements can gain or lose electrons in order to attain their nearest noble gas configuration. The formation of ions (either by gaining or losing electrons) for the completion of octet helps them gain stability.
In a reaction between metals and non-metals, metals generally loose electrons to complete their octet while non-metals gain electrons to complete their octet. Metals and non-metals generally react to form ionic compounds.
Ionic compounds include salts, oxides, hydroxides, sulphides, and the majority of inorganic compounds. Ionic solids are held together by the electrostatic attraction between the positive and negative ions.
Learn more about Ionic compounds, here:
brainly.com/question/3222171
#SPJ1
Identify three specific changes that could be made to a chemical system that will shift the equilibrium to increase the yield of NH3 in the following reaction:
N2(g) + 3H2(g) → 2NH3(g) + Heat
Three changes could be made to a chemical system to shift the equilibrium to increase the yield of NH3 in the reaction [tex]N_{2} (g)[/tex] + [tex]3H_{2} (g)[/tex] → [tex]2NH_{3} (g)[/tex] + Heat are Increase the pressure, Decrease the temperature, and Add a catalyst.
1. Increase the pressure: According to Le Chatelier's principle, increasing the pressure will shift the equilibrium towards the side with fewer moles of gas. In this case, that means increasing the pressure on the left-hand side of the equation, where there are only two moles of gas (one [tex]N_{2}[/tex] and three [tex]H_{2}[/tex]), compared to the two moles of gas on the right-hand side (two [tex]NH_{3}[/tex]). By increasing the pressure, more of the reactants will be forced to react and produce more [tex]NH_{3}[/tex].
2. Decrease the temperature: The forward reaction in this equation is exothermic, meaning that it releases heat. According to Le Chatelier's principle, decreasing the temperature will shift the equilibrium towards the side of the equation that produces heat. In this case, that means shifting towards the products (the right-hand side). By decreasing the temperature, more [tex]NH_{3}[/tex] will be produced.
3. Add a catalyst: Adding a catalyst can increase the rate of the reaction, which can also shift the equilibrium towards the products. In this case, a catalyst like iron can be added to the reaction to increase the rate of [tex]NH_{3}[/tex] production. This will allow more [tex]NH_{3}[/tex] to be produced in the same amount of time, effectively increasing the yield.
Know more about Equilibrium here :
https://brainly.com/question/18849238
#SPJ11
Which statement about balanced chemical equations is true?
OA. The mass of the new atoms that are formed equals the mass of
the atoms that made up the reactants.
OB. The total mass of the reactants equals the total mass of the
products.
OC. The total number of moles of products equals the total number of
moles of reactants,
OD. The mass of the products is greater than the mass of the
reactants when the number of moles increases.
SUBMIT
The total mass of the reactants equals the total mass of the products the statement about balanced chemical equations is true. Hence, option B is correct.
This is known as the Law of Conservation of Mass, which states that matter can neither be created nor destroyed in a chemical reaction. In other words, the mass of the reactants must equal the mass of the products in a balanced chemical equation.
While the identities of the atoms may change during a reaction, the total number of atoms of each element on both sides of the equation must be the same, thus leading to the conservation of mass.
To learn more about the balanced chemical equation, follow the link:
https://brainly.com/question/28294176
#SPJ1
What apparatus are used in crystallization?
Answer:
Crystallization apparatus: (1) laboratory crucible furnace, (2) continuosly changeable transformer, (3) air cooler (“cold key”), (4) movable rings and (5) branched Tamman's test tube (“crystallization test comb”).
LOOK AT TABLE 2 WHAT IS THE RELATIONSHIP BETWEEN THE NUMBER OF CARBON ATOMS IN ON MOLECULE OF ALCOHOL AND THE HEAT ENERGY RELEASED WHEN 1g OF THE ALCOHOL OS BURNED.
The relationship between the number of carbon atoms in one molecule of alcohol and the heat energy released when 1g of the alcohol is burned is not straightforward from the data in Table 2.
What other observable relationships are there?Observe that the heat energy released varies for each alcohol. In general, alcohols with more carbon atoms in their molecules tend to release more heat energy when burned compared to those with fewer carbon atoms.
This is because larger alcohols have more bonds that can be broken and reformed during combustion, leading to the release of more energy. However, this relationship does not hold for all alcohols, as can be seen from the data for alcohols with 2 and 4 carbon atoms.
Find out more on heat energy here: https://brainly.com/question/878982
#SPJ1
A gas at a pressure of 2.0 atm occupies a volume of 20 liters. If the volume is decreased to 10 liters and the pressure is increased to 4.0 atm, what will be the final volume of the gas?
2. Show the calculation supporting the claim that atmospheric pressure near sea level corresponds to the pressure exerted by a column of mercury that is about 760 mm high. Considering the density of mercury = 13.6 g/cm³.
The pressure exerted by a column of mercury that is about 760 mm high corresponds to approximately 0.987 atm.
To calculate the pressure exerted by a column of mercury, we can use the formula:
Pressure = density * gravity * height
Given:
Density of mercury = 13.6 g/cm³
Height of the mercury column = 760 mm = 76 cm
Acceleration due to gravity = 9.8 m/s²
First, we need to convert the height of the mercury column from centimeters to meters:
Height = 76 cm * (1 m / 100 cm) = 0.76 m
Now, we can calculate the pressure:
Pressure = 13.6 g/cm³ * 9.8 m/s² * 0.76 m
To ensure consistent units, we need to convert the density from grams per cubic centimeter (g/cm³) to kilograms per cubic meter (kg/m³):
Density = 13.6 g/cm³ * (1 kg / 1000 g) * (1 cm³ / (1e-6 m³))
Density = 13600 kg/m³
Plugging in the values into the pressure formula:
Pressure = 13600 kg/m³ * 9.8 m/s² * 0.76 m
Pressure = 99992.8 Pa
We can express the pressure in terms of atmospheric pressure:
1 atm = 101325 Pa (approximately)
To compare the pressure with atmospheric pressure, we can convert 99992.8 Pa to atm:
Pressure in atm = 99992.8 Pa / 101325 Pa/atm
Pressure in atm ≈ 0.987 atm
The pressure exerted by a column of mercury that is about 760 mm high corresponds to approximately 0.987 atm. Since atmospheric pressure near sea level is approximately 1 atm, this calculation supports the claim that atmospheric pressure near sea level is equivalent to the pressure exerted by a column of mercury about 760 mm high.
for more such questions on pressure
https://brainly.com/question/24719118
#SPJ11
Complete and balance the following half-reaction in acidic solution. Be sure to include the proper phases for all species within the reaction.
S2O3 2- (aq) --> S4O6 2- (aq)
We must take into consideration the balance of atoms and charges in order to balance the half-reaction for the conversion of S2O3 2- to S4O6 2- in acidic solution.
Write the imbalanced half-reaction as the first step.
S2O3 S4O6 2- (aq)
Step 2: Align the atoms, with the exception of hydrogen and oxygen.
2S4O6 2-(aq) = S2O3 2-(aq)
Step 3: Add water (H2O) to balance the oxygen atoms.
2S4O6 2- (aq) + H2O = S2O3 2- (aq)
Step 4: Add hydrogen ions (H+) to balance the hydrogen atoms.
2S4O6 2- (aq) + H2O = S2O3 2- (aq) + 4H+ (aq)
Step 5: Add more electrons (e-) to balance the charge.
2S4O6 2- (aq) + H2O = S2O3 2- (aq) + 4H+ (aq) + 2e-
The balanced half-reaction in acidic solution is:
S2O3 2- (aq) + 4H+ (aq) + 2e- → 2S4O6 2- (aq) + H2O
For more such question on acidic solution.
https://brainly.com/question/12351264
#SPJ11
Which two substances are among the six most abundant elements in living things?
A. Potassium
B. Sodium
C. Phosphorus
D. Oxygen
CaS + AlC → A + CaC Balance this equation.
The balanced chemical equation of CaS + AlC → A + CaC is CaS + AlC → A + CaCS, ensuring that the number of atoms is equal on both sides.
The chemical equation given is:
CaS + AlC → A + CaC
To balance this equation, we need to ensure that the number of atoms of each element is the same on both sides. Let's go through the balancing process step by step:
Calcium (Ca): There is one Ca atom on the left side and one on the right side, so Ca is already balanced.
Sulfur (S): There is one S atom on the left side and none on the right side. To balance sulfur, we need to add an S atom on the right side.
CaS + AlC → A + CaCS
Aluminum (Al): There is one Al atom on the left side and one on the right side, so Al is already balanced.
Carbon (C): There is one C atom on the left side and one on the right side, so C is already balanced.
Now the balanced equation is:
CaS + AlC → A + CaCS
In this balanced equation, we have one calcium atom, one sulfur atom, one aluminum atom, and one carbon atom on both sides, ensuring that the law of conservation of mass is satisfied.
It's important to note that the "A" in the balanced equation represents an unknown product and may require further experimentation or information to determine its identity. Additionally, the compound "CaCS" is not a commonly known compound, so further investigation would be needed to verify its existence and properties.
Know more about law of conservation of mass here:
https://brainly.com/question/15289631
#SPJ8
please help with this! ty
The mole concept is an important method which is used to calculate the amount of the substance. 1 mole is defined as a number which is equal to 6.022 × 10²³ particles also called the Avogadro's constant.
One mole of a substance is that amount of it which contains as many particles or entities as there are atoms in exactly 12 g of Carbon-12.
The equation used to calculate the number of moles is:
Number of moles = Given mass / Molar mass
Molar mass of NaCl = 58.44 g/mol
1. n = 8 / 58.44 = 0.13
2. n = 2.3 / 58.44 = 0.039
3. n = 9.59 / 58.44 = 0.16
4. n = 38.44 / 58.44 = 0.65
To know more about number of moles, visit;
https://brainly.com/question/30307377
#SPJ1
Bombardment of alumninum-27 by alpha particles produces phosphorus-30 and one other article. Write the nuclear equation for this reaction and identify the other particle.
The complete nuclear equation for this reaction is:
^27Al + ^4He → ^30P + ^1n
The bombardment of aluminum-27 by alpha particles can produce phosphorus-30 and one other particle. An alpha particle consists of two protons and two neutrons, which means it has the same composition as a helium nucleus (He). Therefore, we can write the nuclear equation for this reaction as follows: ^27Al + ^4He → ^30P + X
Where X represents the other particle produced in the reaction.
To balance the equation, we need to ensure that the total number of protons and neutrons on both sides is the same. On the left side, we have 27 protons and 31 neutrons, while on the right side we have 15 protons and 15 neutrons (since phosphorus-30 has 15 protons and 15 neutrons). Therefore, the other particle produced must have 12 protons and 16 neutrons to balance the equation.
The other particle produced is a neutron (n), which has no charge and a mass of approximately 1 atomic mass unit.
for more such questions on nuclear
https://brainly.com/question/3992688
#SPJ11
For electrical currents, the switch must be in the
a. Closed
b. Open
c. Reverse
d. Doesn't matter
position for the current to flow. (3.3.1)
Aqueous hydrobromic acid will react with solid sodium hydroxide to produce aqueous sodium bromide and liquid water . Suppose 5.66 g of hydrobromic acid is mixed with 1.1 g of sodium hydroxide. Calculate the maximum mass of water that could be produced by the chemical reaction.
The balanced chemical equation for the reaction between hydrobromic acid and sodium hydroxide is: The maximum mass of water that can be produced in this reaction is 0.495 g.
HBr + NaOH → NaBr + H2O
According to the equation, 1 mole of hydrobromic acid reacts with 1 mole of sodium hydroxide to produce 1 mole of water. The molar mass of HBr is 80 g/mol, while the molar mass of NaOH is 40 g/mol. Therefore, the number of moles of HBr and NaOH can be calculated as follows:
moles of HBr = 5.66 g / 80 g/mol = 0.07075 mol
moles of NaOH = 1.1 g / 40 g/mol = 0.0275 mol
Since the reaction between HBr and NaOH is a one-to-one ratio, the limiting reagent is NaOH because it produces fewer moles of product. Therefore, the number of moles of water produced can be calculated as follows:
moles of H2O = 0.0275 mol
The mass of water produced can be calculated using its molar mass, which is 18 g/mol:
mass of H2O = 0.0275 mol × 18 g/mol = 0.495 g
Therefore, the maximum mass of water that can be produced in this reaction is 0.495 g.
for more such questions on chemical
https://brainly.com/question/7807455
#SPJ11