Answer:
B) It can have different compositions, but it has a set of characteristics that does not change.
Explanation:
On e d g e n u i t y
I believe the answer is d lmk if im wrong or right
which statement describes the reactions in an electrochemical cell
Answer & explanation:
Summary on electrochemical cells and redox reactions:
Electrochemical cells (or batteries) can be defined as devices capable of transforming chemical energy into electrical energy through spontaneous reactions of redox, in which electron transfer occurs.
Redox it is a chemical reaction in which there is the occurrence of oxidation and reduction of atoms of substances (chemical species) present in the process.
Oxidation is the loss of electrons by an atom of a chemical species, while reduction is the gain of electrons by an atom of a chemical species.
Thus, during an oxirreduction reaction, electrons move from the species that loses them towards the species that will receive them. This "movement" results in the formation of an electric current (or electrical energy) as occurs with batteries, for example.
A scientists compares two samples of white powder
Answer:
answer is in exaplation
Explanation:
Answer. Chemical reaction had occurred and both the powders are different substances.
Explanation:
As density is an intensive property of the substance.Which means that different substance have different densities.
Density = \frac{mass}{volume}
volume
mass
Density of powder 1, d_1=\frac{0.5g}{45cm^3}=0.11g/cm^3d
1
=
45cm
3
0.5g
=0.11g/cm
3
Density of powder 2, d_2=\frac{1.3g}{65cm^3}=0.02g/cm^3d
2
=
65cm
3
1.3g
=0.02g/cm
3
On comparing both the densities of the powders we can say that both the substances are different. So we can conclude that the chemical reaction had occurred.
Which activities can help conserve water when taking showers
Answer:
If you're ever shaving in the bathroom, turn the water off.
Explanation:
If you do this, you can save at least 3-4 pounds of water.
Answer:
The following activities can help conserve water while taking showers:
1) Lower shower time
2) Don't leave shower running.
3) Check for leaks
How do forces between particles in liquids compare to forces in tho other states of matter?
Answer:I hope it will be beneficial for you
Force of attraction between the particles of solid is very strong the particles of solid are held together by strong inter molecular forces leading to the formation of a rigid structure
Force of attraction between the particles of the liquid is weak as compare to solids there particles are far away from each other and have the property to move easily.
Force of attraction between the particles of gases is very weak than the two states hence the particles of gases are highly compressible having week intermolecular interaction between them and have indefinite shape and volume
Answer:
Forces between particles in Liquids are closely packed compared to other states of matter like the liquid and gaseous state of matter.
Explanation:
In the Lewis structure of an ozone molecule, we saw that it is made of three oxygen atoms, and the central atom is connected to the other two oxygen atoms with equivalent bonds. It turns out that the ozone molecule has a small dipole moment. How is it possible, given that all the atoms are the same
Answer:
Ozone has dipole moments because its molecular chemical structure is no linear.
Explanation:
This molecular form refers to the geometry of said gas, which is potentially toxic and dangerous.
This non-linear geometric shape is what makes it have dipolarity.
Methods in electrochemistry that can be used for the separation of proteins and enzymes?
Answer:
Some of the methods in Methods in electrochemistry that can be used for the separation of proteins and enzymes are as follows:
Redox transformations: In this method enzymes or proteins would be adsorbed on the electrode surface and facilitates direct electron transfer that causes denaturation and loss of their electrochemical activities and bioactivities. It is widely used in biosensors and biofuel cells.
Protein electrophoresis: In this process proteins are seperated by placing them in a gel matrix in the presence of an electrical field. In this method a negative charge is applied so that proteins move towards a positive charge.
The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum. A compound containing C, H, and O exhibits broad absorption at 3450 cm^-1 (m) and an intense band at 1725, plus a band at 1100 cm^-1 (m). Relative absorption intensity: (s) = strong, (m) = medium, (w) = weak.
What functional class(es) does the compound belong to?
List only classes for which evidence is given here. Attach no significance to evidence not cited explicitly. Do not over-interpret exact absorption band positions. None of your inferences should depend on small differences like 10 to 20 cm^-1.
The functional class(es) of this compound is(are)________. (Enter letters from the table below, in any order, with no spaces or commas.)
a. alkane (List only if no other functional class applies.)
b. alkene h. amine
c. terminal alkyne i. aldehyde or ketone
d. internal alkyne j. carboxylic acid
e. arene k. ester
f. alcohol l. nitrile
g. ether
Answer:
The functional class(es) of this compound is(are):
alcoholcarboxylic acidesterExplanation:
3450 cm-1 is indicative of OH stretching
1725 cm-1 is indicative of carbonyl group C=O
1100cm-1 shows carbon is bonded to electronegative element e.g C-O
Further information on molecular formula is required for proper structural elucidation
Based on VSEPR theory and your observations from the Molecular Geometry lab consider the following questions What is the predicted hybridization at an atom which is surrounded by a double bond and two single bonds?
a) Sp
b) sp^2
c) sp^3
Answer:
b) sp^2
Explanation:
Hybridization refers to the concept that atomic orbitals fuse to form newly hybridized orbitals, which in turn, influences molecular geometry and bonding properties. In chemistry, orbital hybridisation (or hybridization) is the implies the mixing of atomic orbitals to form hybrid orbitals (with different energies, shapes, etc., different from that of the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds according to the principles of the valence bond theory.
In 1931 Linus Pauling proposed the idea of “mixing” the orbitals or “hybridizing” them to account for certain observed bonding patterns. Pauling proposed a sort of a combination of the orbitals giving you an orbital that has partial characters.
Hybridization is merely a mathematical construct. It is never an actual “process” that occurs within orbitals . Hybridization is a mathematical model that describes how the atomic orbitals would’ve looked like based on the observable molecular orbitals.
sp2 hybridization leads to the formation of a double bond. sigma bonds may also be formed depending on the valency of the central atom. In alkenes, an sp2 hybridized carbon atom forms a double bond in addition to two sigma bonds to other atoms.
The predicted hybridization is:
b) [tex]sp^2[/tex]
What does Hybridization tell us?It is the integration of atomic orbitals to shape new orbitals with exclusive energies and shapes than the unique orbitals.
Given: An atom that's surrounded with the aid of using a double bond and unmarried bonds.
[tex]sp^2[/tex] hybridization ends in the formation of a double bond. sigma bonds can also be shaped relying at the valency alkenes, an [tex]sp^2[/tex]sigma bonds to different atoms.
Thus, correct option is b.
Find more information about Hybridization here:
brainly.com/question/26079947
A water tank measures 24in.×48in.×12in. Find the capacity of the water tank in cubic feet. Do not include units in your answer.
Answer: 8 (feet)
Explanation:
24 inches = 2 feet
48 inches = 4 feet
12 inches = 1 foot
To find volume you do Base * Width * Height
2*4*1 = 8
Hope this helps!
The correct answer is 8 (feet).
How to calculate ?
24 inches = 2 feet48 inches = 4 feet12 inches = 1 footTo find volume the method is Base * Width * Height
Therefore, 2*4*1 = 8
Hence, the capacity of the water tank in cubic feet is 8 feet.learn more about capacity below,
https://brainly.com/question/15747509
#SPJ2
What does the atmosphere do for humans?
molar mass of A1C1 3
Answer:
Gold(III) chloride
Please choose one of the choices
Answer:
A. the law of constant composition
Explanation:
The molecules in the container would have the same composition because they would have traded around atoms until an equilibrium was reached with every molecule having 1 Hydrogen and 1 Chlorine.
Enter your answer in the provided box. To make use of an ionic hydrate for storing solar energy, you place 409.0 kg of sodium sulfate decahydrate on your house roof. Assuming complete reaction and 100% efficiency of heat transfer, how much heat (in kJ) is released to your house at night
Answer:
409.0 kg of sodium sulfate decahydrate will produce 4.49×10⁵ kJ
of heat energy.
Explanation:
CHECK THE COMPLETE QUESTION BELOW
To make use of an ionic hydrate for storing solar energy, you place 409.0 kg of sodium sulfate decahydrate on your house roof. Assuming complete reaction and 100% efficiency of heat transfer, how much heat (in kJ) is released to your house at night? Note that sodium sulfate decahydrate will transfer 354 kJ/mol
EXPLANATION
Here we were asked to calculate the amount of heat will be generated by 409.0 kg of sodium sulfate decahydrate at night assuming there Isa complete reaction and 100% efficiency of heat transfer in the process
The molecular weight of sodium sulfate decahydrate (H₂₀Na₂O₁₄S) is needed here, so it must be firstly calculated.
The molecular weight of sodium sulfate decahydrate (H₂₀Na₂O₁₄S)
( 1*20) + (22.98*2) + (16*14)+ (32*14)= 322.186 g/mol.
Thus 409.0 kg of H₂₀Na₂O₁₄S will have a value which is equivalent to = (409000g)/(322.186 g/mol.)
=1269.453mol of H₂₀Na₂O₁₄S.
But it was stated in the the question that per mole of H₂₀Na₂O₁₄S will transfer 354 kJ heat.
Therefore, 1269.453mol will transfer 1269.453× 354 kJ = 4.49×10⁵ kJ of heat.
Hence, 409.0 kg of sodium sulfate decahydrate will produce
4.49×10⁵ kJ of heat energy.
How has human action affected the
population?
Answer:
Human action has affected the population in quite a negative way. Technological innovations and urbanization gave rise to a high degree of pollution on the land, air and water.
Emission of hydrocarbons from automobiles and factories are known to pollute and cause sicknesses related to the respiratory system thereby shortening the lifespan of humans. Pollution of water bodies also cause death of sea animals and thereby reducing food availability of humans.
What is the gram-formula mass of Ca3(PO4)2 ?
1) 355 g/mol
2) 340. g/mol
3) 310. g/mol
4) 275 g/mol
Answer:
3) 310 g/mol
Explanation:
Hello,
In this case, for calcium carbonate, we are able to compute its gram-formula mass by considering the atomic mass of each element composing it and their subscripts as shown below:
[tex]M=3*m_{Ca}+2*m_P+4*2*m_O\\[/tex]
Thus, we compute:
[tex]M=3*40g/mol+2*31g/mol+4*2*16g/mol\\\\M=310g/mol[/tex]
Hence answer is 3) 310 g/mol . Remember this is also known as the molar mass of the mentioned compound.
Best regards.
g Enter your answer in the provided box. If 30.8 mL of lead(II) nitrate solution reacts completely with excess sodium iodide solution to yield 0.904 g of precipitate, what is the molarity of lead(II) ion in the original solution
Answer:
[tex]M=0.0637M[/tex]
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
[tex]Pb(NO_3)_2(aq)+2NaI(aq)\rightarrow PbI_2(s)+2NaNO_3(aq)[/tex]
Thus, for 0.904 g of precipitate, that is lead (II) iodide, we can compute the initial moles of lead (II) ions in lead (II) nitrate:
[tex]n_{Pb^{2+}}=0.904gPbI_2*\frac{1molPbI_2}{461gPbI_2}*\frac{1molPb(NO_3)_2}{1molPbI_2} *\frac{1molPb^{2+}}{1molPb(NO_3)_2} =1.96x10^{-3}molPb^{2+}[/tex]
Finally, the resulting molarity in 30.8 mL (0.0308 L):
[tex]M=\frac{1.96x10^{-3}molPb^{2+}}{0.0308L}\\ \\M=0.0637M[/tex]
Regards.
What kind of solid is crystalline boron (B)?
A. lonic solid
B. Metallic solid
C. Molecular solid
D. Network solid
Answer:
D
Explanation:
gr. 2.3 at 25°C; valence +3. Boron is a nonmetallic element existing as a dark brown to black amorphous powder or as an extremely hard, usually jet-black to silver-gray, brittle, lustrous, metallike crystalline solid
it is a network solid, a lattice of many covalent bonds (like diamond, except that it is black rather than transparent).
Network solid kind of solid is crystalline boron (B). Hence, option D is correct.
What is Network solid?A network solid is a solid where all the atoms are covalently bonded in a continuous network.
Boron is a nonmetallic element existing as a dark brown to black amorphous powder or as an extremely hard, usually jet-black to silver-grey, brittle, lustrous, metallike crystalline solid
It is a network solid, a lattice of many covalent bonds (like a diamond, except that it is black rather than transparent).
Hence, option D is correct.
Learn more about Network solid here:
https://brainly.com/question/2700493
#SPJ2
Gallium is produced by the electrolysis of a solution made by dissolving gallium oxide in concentrated NaOH(aq). Calculate the amount of Ga(s) that can be deposited from a Ga(III) solution using a current of 0.850 A that flows for 60.0 min.
Answer:
Mass of Ga = 0.73694 gram
Explanation:
Given:
Current = 0.850 A
Time = 60 minutes
Find:
Amount of gas deposit.
Computation:
Total charge = Current × Time in second
Total charge = 0.850 × 60 × 60
Total charge = 3,060 C
Mole of electron = Total charge / Faraday constant [Faraday constant = 96,485.3329]
Mole of electron = 3,060 / 96,485.3329
Mole of electron = 0.0317146
Moles of Ga = 1/3 [Mole of electron]
Moles of Ga = 1/3 [0.0317146]
Moles of Ga = 0.01057
Mass of Ga = molar mass × Moles of Ga
Mass of Ga = 69.72 × 0.01057
Mass of Ga = 0.73694 gram
(a) Titration curve for the titration of 5.00 mL 0.010 M NaOH(aq) with 0.005 M HCl(aq), indicating the pH of the initial and final solutions and the pH at the stoichiometric point.
What volume of HCl has been added at
(b) the stoichiometric point
(c) the halfway point of the titration?
Answer:
AT STOICHIOMETRIC POINT, THE VOLUME OF ACID ADDED IS 0.01 L
AT HALF-WAY POINT, THE VOLUME OF ACID IS 0.0050 L
Explanation:
In solving titration problems, you must remember this formula;
MaVa = MbVb
Since M a= 0.005 M
Mb = 0.010 M
Vb = 5 mL = 5 /1000 = 0.005 L
Va = unknown.
Solving for Va, we have:
Va = MbVb / Ma
Va = 0.010 * 0.005 / 0.005
Va = 0.01 L
So therefore, the volume of acid added at:
1. the stoichiometric point is 0.01 L
2. half-way point of titration is 0.01 /2 = 0.0050 L
For the pH:
Since HCl is a strong acid, it dissociate into {H30}+ ion.
First calculate the number of moles of hydronium ion
number of mole = concentration of hydronium ion {H30}+ * Volume
n = 0.005 * 0.01 = 0.00005 moles
A. At initial point of the titration, the volume of base added is 0 L
{H30]+ = n(H+)/ V = 0.00005 / 0.01 = 0.005 M
pH = - log {0.005}
pH = 2.3
B. At the final point, since the volumes and concentrations of acid and base are the same, the pH is equal to 7.
n(H+) = n(OH^-)
pH = 7
If the sign for delta G is negative (spontaneous process) and the sign for delta S is positive (more disorder) for both dissolving processes, how could one be endothermic (positive delta H) and one be exothermic (negative delta H)
Answer: From your question,
One could be exothermic which means that the final enthalpy will be less than the initial enthalpy. H= Hf-Hi(Hf<Hi).
In Endothermic reaction, the entropy is lowered by absorbing energy in the surronding. By so doing, the surronding losses energy and the reaction is not spontaneous.
H is positive and S (entropy) is positive.
Explanation:
Exothermic reaction is the reaction where heat is released In the surronding which lead to increase in the surronding Temperature.
Endothermic reaction is the reaction that absorb heat from the surronding and decrease the surronding Temperature.
Calculate the pH of this solution 0.0043 M of H2SO4=
Answer:
pH = - log [concentration]
pH = - log (0.0043M)
pH = 2.37
Chemical formula for copper gluconate I have 1.4g of Copper gluconate. There is .2g of copper within the copper gluconate. Determine the chemical formula for Copper gluconate with the given information: Copper Gluconate: Cu(C6H11O?)? Cu = 63.55 g/mol H = 12.01 g/mol O = 1.008 g/mol Cu = 63.55 g/mol
Answer:
The simplest chemical formula of the compound is Cu(C₆H₁₁O₇)₂
Explanation:
Given mass of sample = 1.4 g
mass of copper in the sample = 0.2 g
mass of the gluconate =1.4 - 0.2 = 1.2 g
The mole ratio is determined first using the formula;
mole ratio = reacting mass / atomic mass
atomic mass of copper = 63.55
mass of gluconate, C₆H₁₁O₇ = 12*6 + 1*11 + 16*7 = 195 g/mol
mole ratio ( copper : gluconate) = 0.2/63.55 : 1.4/195
mole ratio ( copper : gluconate) = 0.003 : 0.007
convert to whole number ratios by dividing with the smallest ratio
mole ratio ( copper : gluconate) = 0.003/0.003 : 0.007/0.003
mole ratio ( copper : gluconate) = 1 : 2
Therefore, the simplest chemical formula of the compound is Cu(C₆H₁₁O₇)₂
The fluoride ion is the conjugate base of the weak acid hydrofluoric acid. The value of Kb for F-, is 1.39×10-11. Write the equation for the reaction that goes with this equilibrium constant.
Answer:
F⁻(aq) + H₂O(l) ⇄ HF(aq) + OH⁻(aq)
Explanation:
According to Brönsted-Lowry acid-base theory, an acid is a substance that donates H⁺ ions. In this sense, hydrofluoric acid is an acid according to the following equation.
HF(aq) + H₂O(l) ⇄ F⁻(aq) + H₃O⁺(aq)
According to Brönsted-Lowry acid-base theory, a base is a substance that accepts H⁺ ions. In this sense, the fluoride ion is a base according to the following equation.
F⁻(aq) + H₂O(l) ⇄ HF(aq) + OH⁻(aq)
The equilibrium constant for this reaction is Kb = 1.39 × 10⁻¹¹.
If 200.4g of water is mixed with 101.42g of salt the mass of the final solution would be reported as
Answer:
301.8 g
Explanation:
We prepare a solution with 200.4 g of water (solvent) and 101.42 g of salt (solute). The mass of the solution is equal to the sum of the mass of the solvent and the mass of the solute.
m(solution) = m(solute) + m(solvent)
m(solution) = 200.4 g + 101.42 g
m(solution) = 301.8 g (we round-off to one decimal according to the significant figures rules)
Hydrogen bonds can be found between molecules of which substance? NH3 H2 HI CH4
Answer:
All except ch4
Explanation:
NH3 N H 3 and HF can form hydrogen bonds as they have a hydrogen atom bonded to fluorine and nitrogen atoms.
Hydrogen bonds are formed between hydrogen and a highly electronegative atom such as oxygen, halogens etc. Among the given compounds HI form hydrogen bond.
What is hydrogen bond?Hydrogen bond a strong bond type formed between hydrogen and an electronegative atom. Water, hydrogen halides, hydrogen sulphide etc are formed by hydrogen bonds.
Hydrogen is an electropositive atom and will easily lose an electron to a electronegative atom. Thus hydrogen bonds with atoms by sharing electrons each other where, the shared pair of electrons are attractively pulled to the electronegative atom.
Therefore, all the hydrogen bonded compounds are polar in nature. Hydrogen bonds are strong bonds and it can be seen in proteins, DNA, and in other biomolecules.
HI or hydrogen iodide forms hydrogen bond because iodine is comparatively electronegative.
To find more on hydrogen bonds, refer here:
https://brainly.com/question/15099999
#SPJ2
.Draw the born-Haber lattice energy cycle for sodium chloride. Explain the concept of resonance using the nitrate ion structure.
Answer:
Born-Haber cycle is consist on four to five steps. 1: ionization energy 2: electron affinity 3: dissociation energy 4: sublimation energy and last is Hess law.Nitrate ion have 3 localized sigma bonds and 1 delocalized pie bond according to the resonance structure.Explanation:
Step 1: NaCl(s) → Na(s) + 1/2 Cl2(g) ΔHf (ionization energy) in this step energy is required to change the phase of the compound
Step 2: Na(s) + 1/2 Cl2(g) → Na(g) + 1/2 Cl2(g) ΔHa (elements needed to be in gaseous state for born-haber cycle so metal changes from solid to gas state by changing the enthalpy.
Step 3: Na(g) + 1/2 Cl2(g) → Na(g) + Cl (g) 1/2ΔHd
Step 4: Na(g) + Cl(g) → Na⁺(g) + Cl⁻(g) IE+EA ( in this step both ionization energy and electron affinity was involved because in metal (Na) electron is added which needs the energy and this energy draw from the step 3 and Chlorine require releasing electron to be in ionic state so when electron leaves the orbit energy releases.
Step 5: final step is Hess Law which is the combination of all the steps which step 4 again go back to step 5 and this cycle continues by repeating same steps Na⁺(g) + Cl⁻(g)→NaCl(s)
at this step heat of formation is calculated
Heat of formation= atomization energy+ dissociation energy+ sum of ionization energies + sum of electron affinity + lattice energy.
2: if we look at the electron configuration of the nitrogen it has 5 electrons in its outermost shell which indicates it can make 5 bonds 4 bonds and 1 lone pair usually and Oxygen has 6 electrons in its outermost shell. So nitrate ion have the total number of 24 electrons including the 1 electron which shows on the compound.
So when they make nitrate ion NO₃⁻¹ it shows that nitrate has 3 resonance structures. Nitrogen's three sigma bonds are attached to oxygen and fourth one make 1 pie bond which can rotate, delocalized and change its position anytime from one Oxygen atom to other oxygen atom.
Round to 3 significant figures.
1.4593
Answer : The correct answer is 1.46
Explanation :
The following rules are used to round off a number to the required number of significant figures:
(1) If the rightmost digit to be removed is more than 5, the preceding number is increased by one.
(2) If the rightmost digit to be removed is less than 5, the preceding number is not changed.
(3) If the rightmost digit to be removed is 5, then the preceding number is not changed if it is an even number but it is increased by one if it is an odd number.
(4) The same procedure is follow for decimal values.
As we are given, 1.4593
In the given answer, there are 5 significant figures. Now we have to convert it into 3 significant figures.
According to the rules, round off the given measurement in three significant figures as 1.46
Therefore, the correct answer is 1.46
Aqueous sulfuric acid H2SO4 will react with solid sodium hydroxide NaOH to produce aqueous sodium sulfate Na2SO4 and liquid water H2O. Suppose 62. g of sulfuric acid is mixed with 33.8 g of sodium hydroxide. Calculate the minimum mass of sulfuric acid that could be left over by the chemical reaction. Round your answer to 2 significant digits.
Answer:
Approximately [tex]21\; \rm g[/tex].
Explanation:
[tex]\rm H_2SO_4[/tex] (a diprotic acid) reacts with [tex]\rm NaOH[/tex] (a monoprotic base) at a one-to-two ratio:
[tex]\rm 2\; NaOH\, (s) + H_2SO_4\, (aq) \to Na_2SO_4\; (aq) + 2\; H_2O\, (l)[/tex].
In other words, if [tex]n(\mathrm{NaOH})[/tex] and [tex]n(\mathrm{H_2SO_4})[/tex] represent the number of moles of the two compounds reacted, then:
[tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex].
Look up the relative atomic mass data on a modern periodic table:
[tex]\rm H[/tex]: [tex]1.008[/tex].[tex]\rm S[/tex]: [tex]32.06[/tex].[tex]\rm O[/tex]: [tex]15.999[/tex].[tex]\rm Na[/tex]: [tex]22.990[/tex].Calculate the (molar) formula mass of [tex]\rm H_2SO_4[/tex] and [tex]\rm NaOH[/tex]:
[tex]M(\mathrm{H_2SO_4}) = 2 \times 1.008 + 32.06 + 4 \times 15.999 = 98.072\; \rm g \cdot mol^{-1}[/tex].
[tex]M(\mathrm{NaOH}) = 22.990 + 15.999 + 1.008 = 39.997\; \rm g \cdot mol^{-1}[/tex].
Calculate the number of moles of formula units in that [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:
[tex]\begin{aligned}n(\mathrm{NaOH}) &= \frac{m(\mathrm{NaOH})}{M(\mathrm{NaOH})} \\ &= \frac{33.8\; \rm g}{39.997\; \rm g \cdot mol^{-1}} \approx 0.845\; \rm mol\end{aligned}[/tex].
Apply the ratio [tex]\displaystyle \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} = \frac{1}{2}[/tex] to find the (maximum) number of moles of [tex]\rm H_2SO_4[/tex] that would react with the [tex]33.8\; \rm g[/tex] of [tex]\rm NaOH[/tex]:
[tex]\begin{aligned}n(\mathrm{H_2SO_4}) &= \frac{n(\mathrm{H_2SO_4})}{n(\mathrm{NaOH})} \cdot n(\mathrm{NaOH})\\ &= \frac{1}{2} \times 0.845 \approx 0.4225\; \rm mol\end{aligned}[/tex].
Calculate the mass of that [tex]0.4225\; \rm mol[/tex] of [tex]\rm H_2SO_4[/tex]:
[tex]\begin{aligned}m(\mathrm{H_2SO_4}) &= n(\mathrm{H_2SO_4}) \cdot M(\mathrm{H_2SO_4})\\ &= 0.4225 \; \rm mol \times 98.072\; \rm g \cdot mol^{-1} \approx 41.435\; \rm g \end{aligned}[/tex].
When the maximum amount of [tex]\rm H_2SO_4[/tex] is reacted, the minimum would be in excess. Hence, the minimum mass of
[tex]62\; \rm g - 41.435\; \rm g \approx 21\; \rm g[/tex] (rounded to two significant figures.)
Why don't we discuss the results during the results section of the project?
Answer: The result section of the project contains your findings while carrying out your research or study.
Explanation:
The Results section of a research or study usually contains only the findings of your study or research.The findings which usually include
1. Data presented in tables, charts, graphs, and other figures.
2. A contextual analysis of this data explaining its meanings. Usually in sentences.
Our result gotten is not discussed in result section because every project or research work has a discussion page where every results or findings are discussed. The result section is expected to carry what you found.
n an experiment, 39.26 mL of 0.1062 M NaOH solution was required to titrate 37.54 mL of \ v unknown acetic acid solution to a phenolphthalein end point. Calculate the molarity of the acetic acid solution, and the percent (by weight) of acetic acid in the solution (assuming its density to be 1.00 g/mL).
Answer:
Molarity: 0.111M
% (w/w): 0.666
Explanation:
The reaction of NaOH with acetic acid (CH₃COOH) is:
NaOH + CH₃COOH → CH₃COO⁻Na⁺ + H₂O
where 1 mole of NaOH reacts per mole of acetic acid producing 1 mole of water and 1 mole of sodium acetate.
As 39.26mL ≡ 0.03926L of 0.1062M are required to titrate the solution of acetic acid. Moles are:
0.03926L × (0.1062mol / L) = 4.169x10⁻³ moles of NaOH. As 1 mole of NaOH reacts per mole of acetic acid:
4.169x10⁻³ moles of CH₃COOH.
Molarity is defined as ratio between moles of substance and volume of solution in liters. Thus, molarity of acetic acid solution is:
4.169x10⁻³ moles of CH₃COOH / 0.03754L = 0.111M
As molar mass of acetic acid is 60g/mol, 4.169x10⁻³ moles weights:
4.169x10⁻³ moles × (60g / mol) = 0.2501 g of acetic acid
Now, assuming density of solution as 1.00g/mL, 37.54mL weights 37.54g.
Thus, percent by weight is:
0.2501g CH₃COOH / 37.54g × 100 = 0.666% (w/w)
The molarity of acetic acid is 0.11M and the percent by weight is 0.666%.
How we calculate molarity?Molarity of any solution is used to define their concentration and it will be calculated as:
M = n/V, where
n = moles
V = volume
Molarity of acetic acid will be calculated as:
M₁V₁ = M₂V₂, where
M₁ = molarity of acetic acid = ?
V₁ = volume of acetic acid = 37.54mL = 0.037L
M₂ = molarity of NaOH = 0.1062M
V₂ = volume of NaOH = 39.26mL = 0.039L
On putting all these values on the above equation we can calculate the molarity as:
M₁ = (0.1062)(39.26) / (37.54) = 0.11M
Now we calculate the moles of acetic acid by using the molarity formula as:
n = 0.11M × 0.037L = 0.00407 moles
Molar mass of acetic acid = 60g/mole
Mass of 0.00407 moles of acetic acid = 4.1x10⁻³ moles×(60g / mol) = 0.2501 g
Density of solution = 1.00 g/mL
So, 37.54mL in 1g/mL = 37.54g/mL
Percent by weight will be calculated as:
%w/w = 0.2501g CH₃COOH / 37.54g × 100 = 0.666% (w/w)
Hence, molarity and %(w/w) of acetic acid is 0.11M and 0.666% respectively.
To know more about percent weight, visit the below link:
https://brainly.com/question/5493941