Among the elements listed - niobium, technetium, yttrium, molybdenum, and zirconium - the element with the largest bonding atomic radius is Yttrium (Y).
Bonding atomic radius typically decreases across a period and increases down a group in the periodic table. In this case, all elements are part of the same period (Period 5), but Yttrium belongs to Group 3, which is further to the left compared to the other elements. Therefore, Yttrium has the largest bonding atomic radius.
Yttrium has the largest bonding atomic radius among the elements niobium, technetium, molybdenum, and zirconium.
To know more about atomic radius, click here
https://brainly.com/question/29440273
#SPJ11
Draw the structure of the major organic products of the reaction.
The structure of the major organic products of a chemical reaction depends on the reactants involved and the reaction conditions. However, in general, the products are formed due to the breaking and forming of chemical bonds between atoms.
In organic chemistry, reactions can involve various types of functional groups such as alcohols, alkenes, alkynes, and carbonyls. The products formed from a reaction involving these functional groups can vary widely.
For example, if we consider the reaction between an alkene and a halogen, such as bromine, the major organic products formed would be a vicinal dibromide. This is because the double bond of the alkene is broken and two bromine atoms are added to each carbon atom that previously had the double bond.
Similarly, if we consider the reaction between an alcohol and a carboxylic acid, the major organic product formed would be an ester. This is because the alcohol reacts with the carboxylic acid to form a water molecule and an ester functional group.
Therefore, understanding the structures of the reactants and the reaction conditions is crucial for predicting the major organic products of a chemical reaction.
To know more about alkene refer to
https://brainly.com/question/31033378
#SPJ11
Read the following claim.
Sixty-six million years ago an asteroid impact on Earth caused cataclysmic changes.
What evidence from the article supports this claim? Explain why the evidence supports the claim.
"Scientists study Earth's darkest day at the 'Crater of Doom' "
The evidence from the article that supports the claim is the fact that the article is about scientists studying the "Crater of Doom," which is the Chicxulub crater in Mexico.
What is the evidence?This crater is thought to have been formed by an asteroid impact that occurred 66 million years ago, and it is connected to the extinction of the dinosaurs and many other species. In order to understand more about how the impact has impacted Earth's climate and ecosystems, the article outlines how researchers are analyzing the impact crater.
This evidence implies that there is consensus among scientists regarding the connection between the Chicxulub impact and the extinction event, and ongoing study is being done to understand the size and breadth of the impact, which supports the notion that an asteroid impact resulted in catastrophic changes to the Earth.
Learn more about the evidence:https://brainly.com/question/14240621
#SPJ1
How can we obtain even lower temperatures than with Ice-salt baths?
While ice-salt baths can produce temperatures as low as -18°C (0°F), it is possible to obtain even lower temperatures using other cooling methods. Here are a few examples:
1. Dry ice-acetone bath: A dry ice-acetone bath can produce temperatures as low as -78°C (-109°F). To create this bath, place dry ice pellets in a container and add acetone until the pellets are submerged. The acetone will evaporate quickly, so it is important to add more acetone as needed to maintain the desired temperature.
2. Liquid nitrogen: Liquid nitrogen has a boiling point of -196°C (-321°F) and can be used to achieve very low temperatures. However, it is important to handle liquid nitrogen with extreme caution, as it can be dangerous if mishandled.
3. Cryogenic fluids: Other cryogenic fluids, such as helium, hydrogen, and neon, can be used to achieve very low temperatures. These fluids have boiling points below -200°C (-328°F) and can be used for specialized applications.
4. Ultra-low temperature freezers: Ultra-low temperature freezers are designed to maintain temperatures below -80°C (-112°F) and are commonly used in laboratories to store biological samples. These freezers use a combination of refrigeration and insulation to achieve and maintain these low temperatures.
It is important to note that extreme caution should be exercised when handling and working with extremely low temperatures, as these can pose risks to health and safety.
To know more about ice-salt baths, please click on:
https://brainly.com/question/30926619
#SPJ11
The acid catalyzed dehydration of a secondary alcohol proceeds through e1 and e2 mechanisms. In both mechanisms, the first step is the protonation of the alcohol oxygen to form an oxonium ion. Complete the two boxes according the directions in the boxes.
The formation of the oxonium ion, the E1 mechanism proceeds through carbocation formation and proton elimination, while the E2 mechanism involves a concerted elimination step.
The acid-catalyzed dehydration of a secondary alcohol proceeding through E1 and E2 mechanisms, let's break down the steps for each mechanism after the formation of the oxonium ion.
1. Formation of oxonium ion: In both E1 and E2 mechanisms, the first step is the protonation of the alcohol oxygen to form an oxonium ion. The secondary alcohol reacts with a strong acid (e.g., H2SO4) which protonates the alcohol oxygen, creating a positive charge on the oxygen atom.
E1 mechanism:
2. Formation of carbocation: The oxonium ion then undergoes a heterolytic cleavage, leading to the departure of the water molecule as a leaving group. This forms a carbocation, an intermediate with a positive charge on the carbon atom.
3. Elimination of a proton: In the final step, a base (usually a weak one, such as the conjugate base of the acid used) removes a proton from an adjacent carbon, resulting in a double bond formation and the formation of the alkene product.
E2 mechanism:
2. Concerted elimination: In the E2 mechanism, the elimination of the proton and the departure of the leaving group (water) occur in a single, concerted step. A strong base abstracts a proton from an adjacent carbon atom while the oxonium ion's C-O bond breaks, and the water molecule leaves simultaneously. This results in the formation of a double bond and the alkene product.
So, in summary, after the formation of the oxonium ion, the E1 mechanism proceeds through carbocation formation and proton elimination, while the E2 mechanism involves a concerted elimination step.
Learn more about carbocation formation
brainly.com/question/31029000
#SPJ11
Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.5 x 10^-4
0.342
0.0450
1.12 × 10-4
5.53
4.25
The percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid is 0.342
The equation for the ionization of nitrous acid is
[tex]HNO_2 ⇌ H^{ + } + NO2-[/tex]
The acid dissociation constant expression for this reaction is
[tex]K_a = [H+][NO_{2-}]/[HNO_2][/tex]
We are given the initial concentration of nitrous acid, [tex][HNO_2] = 0.249 M[/tex] and the acid dissociation constant,
[tex]K_a = 4.5 × 10^{-4}[/tex]
We can assume that x is the concentration of H+ and [tex]NO_2^-[/tex] ions that are formed when nitrous acid dissociates.
Therefore, the equilibrium concentrations of [tex]H^+, NO_2^- \: and \: HNO_2 [/tex]will be
[tex][H^+] = x \: M \\ [NO_2^-] = x \: M \\ [HNO_2] = (0.249 - x) \: M[/tex]
Substituting these concentrations into the expression for the acid dissociation constant gives [tex]4.5 × 10^{-4} = (x)(x)/(0.249 - x)[/tex]
Solving for x, we get:
x = 0.0159 M
The percent ionization of nitrous acid can be calculated as follows:
% ionization = (moles of H+ formed / initial moles of [tex]HNO_2[/tex]) × 100
The initial moles of [tex]HNO_2[/tex] are moles of [tex]HNO_2[/tex] = (0.249 M) × (1 L/1000 mL) × (1000 mL/1 L) = 0.249 moles
The moles of [tex]H^+[/tex] formed are equal to x because [tex]HNO_2[/tex] dissociates into [tex]H^+[/tex] and [tex]NO_2^{ - } [/tex] in a 1:1 ratio:
moles of H+ formed = x = 0.0159 moles
Therefore, the percent ionization of nitrous acid is % ionization = (0.0159 moles / 0.249 moles) × 100 = 6.39%
Rounding to two significant figures, the answer is 6.4%.
Therefore, the correct option is 0.342.
Learn more about ionization here,
https://brainly.com/question/20658080
#SPJ4
is the reaction shown here esterification, hydrogenation, hydrolysis, saponification, or substitution?
However, a brief description of each term esterification, hydrogenation, hydrolysis, saponification, or substitution is
1. Esterification: A reaction between an acid and an alcohol to form an ester and water.
2. Hydrogenation: A reaction where hydrogen is added to a molecule, typically involving the reduction of double or triple bonds in an unsaturated compound.
3. Hydrolysis: A reaction involving the breakdown of a compound by adding water.
4. Saponification: A process in which a fat or oil reacts with an alkali to produce soap and glycerol.
5. Substitution: A reaction in which an atom or a group of atoms in a molecule is replaced by another atom or group of atoms.
To know more about esterification visit:
https://brainly.com/question/16010744
#SPJ11
what is the strongest type of intermolecular force to be overcome when ethanol is converted from a liquid to a gas
The strongest type of intermolecular force to be overcome when ethanol is converted from a liquid to a gas is hydrogen bonding.
Ethanol molecules contain a hydroxyl (-OH) group, which allows them to form hydrogen bonds with each other.
These hydrogen bonds are stronger than the other intermolecular forces present, such as dipole-dipole interactions and London dispersion forces.
To convert ethanol from a liquid to a gas, energy must be supplied to break these hydrogen bonds between the ethanol molecules.
As a result, ethanol has a relatively high boiling point compared to other molecules of similar size and shape that do not form hydrogen bonds.
To know more about hydrogen bonding, refer here:
https://brainly.com/question/30885458#
#SPJ11
Select the answer that best describes an aqueous solution made from each of the following substances:
solid sodium carbonate (Na 2CO 3)
acidic
basic
neutral
cannot tell
none of these (A-D)
An aqueous solution made from solid sodium carbonate (Na2CO3) would be basic.
The best description for an aqueous solution made from solid sodium carbonate (Na2CO3) is:
Your answer: basic
Sodium carbonate is a salt of a strong base (sodium hydroxide) and a weak acid (carbonic acid). When it dissolves in water, it undergoes hydrolysis and forms sodium hydroxide (NaOH) and carbonic acid (H2CO3). Since sodium hydroxide is a strong base and carbonic acid is a weak acid, the resulting solution will be more basic than acidic, making the aqueous solution basic.
To know about basic visit:
https://brainly.com/question/15347758
#SPJ11
The specific heat for liquid argon and gaseous argon is 25. 0 j/mol·°c and 20. 8 j/mol·°c, respectively. The enthalpy of vaporization of argon is 6506 j/mol. How much energy is required to convert 1 mole of liquid ar from 5°c below its boiling point to 1 mole of gaseous ar at 5°c above its boiling point?.
the energy required to convert 1 mole of liquid argon from 5°C below its boiling point to 1 mole of gaseous argon at 5°C above its boiling point is 6735 J/mol.
To calculate the energy required to convert 1 mole of liquid argon from 5°C below its boiling point to 1 mole of gaseous argon at 5°C above its boiling point, we need to consider two steps:
Heating the liquid argon from 5°C below its boiling point to its boiling point and converting it to gaseous argon at its boiling point.
Heating the gaseous argon from its boiling point to 5°C above its boiling point.
Step 1: To heat the liquid argon from 5°C below its boiling point to its boiling point, we need to supply energy equal to the heat of vaporization of argon, which is 6506 J/mol. This energy is used to overcome the intermolecular forces between the argon molecules and convert the liquid to gaseous state. Since the specific heat of liquid argon is 25.0 J/mol·°C, the energy required to heat 1 mole of liquid argon from 5°C below its boiling point to its boiling point is:
q1 = (25.0 J/mol·°C) x (5°C) = 125 J/mol
Adding the energy required for vaporization, the total energy required for step 1 is:
q1_total = 6506 J/mol + 125 J/mol = 6631 J/mol
Step 2: To heat the gaseous argon from its boiling point to 5°C above its boiling point, we need to supply energy equal to the product of its specific heat and the temperature change. Since the specific heat of gaseous argon is 20.8 J/mol·°C, the energy required to heat 1 mole of gaseous argon from its boiling point to 5°C above its boiling point is:
q2 = (20.8 J/mol·°C) x (5°C) = 104 J/mol
The total energy required to convert 1 mole of liquid argon from 5°C below its boiling point to 1 mole of gaseous argon at 5°C above its boiling point is the sum of the energies required for step 1 and step 2:
q_total = q1_total + q2 = 6631 J/mol + 104 J/mol = 6735 J/mol
To learn more about argon visit:
brainly.com/question/133359
#SPJ11
*Why can't HCl hydrogen bond?
HCl cannot make hydrogen bond which is not polarized.
Why does Hydrogen bond happen?
Hydrogen bonding happens when a hydrogen atom bonded to a highly electronegative atom (For example oxygen, nitrogen, or fluorine) is attracted to another highly electronegative atom in a nearby molecule. The attraction is just because of partial negative charge on the electronegative atom that is caused by its higher electron density.
For the case of HCl (hydrogen chloride),
the hydrogen atom is covalently bonded to chlorine that is moderately electronegative but not highly electronegative like oxygen or nitrogen.
So, the H-Cl bond is not polarized enough to create a significant partial positive charge on the hydrogen atom which is required for hydrogen bonding. Therefore, HCl cannot hydrogen bond.
Learn more about Hydrogen bond here,https://brainly.com/question/1420470
#SPJ4
when aqueous 2 m hcl is added to an organic phase inside a separatory funnel, a new layer forms at the bottom of the funnel as the organic phase rises to the top. which of the following can be concluded based on this observation?
It can be concluded that the hydrochloric acid and the organic phase are immiscible, meaning they do not mix and form a homogeneous solution.
What is homogeneous ?Homogeneous is a term used to describe when all components of a mixture are the same or similar in composition, properties, or characteristics. It is the opposite of heterogeneous, which describes when components of a mixture are different from one another. Homogeneous mixtures are uniform throughout and have a consistent composition, while heterogeneous mixtures are not uniform and have varying compositions. Examples of homogeneous mixtures include air, salt water, and sugar water.
To learn more about homogeneous
https://brainly.com/question/16938448
#SPJ4
How many bonding electrons are in the lewis structure of n2?.
The Lewis structure of N2 shows a triple bond between the two nitrogen atoms. A triple bond consists of one sigma bond and two pi bonds. Each bond is formed by the sharing of two electrons. Therefore, in the Lewis structure of N2, there are a total of 6 bonding electrons.
To determine the number of bonding electrons in the Lewis structure of N2, follow these steps:
1. Identify the elements in the molecule: N2 consists of two nitrogen atoms (N).
2. Calculate the total number of valence electrons: Nitrogen has 5 valence electrons, and since there are two nitrogen atoms, the total valence electrons are 5 x 2 = 10.
3. Create the Lewis structure: Place the two nitrogen atoms next to each other and distribute the valence electrons as bonding and non-bonding pairs. To form a stable molecule, each nitrogen atom needs to have a complete octet (8 electrons).
The Lewis structure of N2 is:
N ≡ N
In this structure, there is a triple bond between the two nitrogen atoms, which means there are 3 bonding pairs of electrons. Since each bonding pair consists of 2 electrons, the total number of bonding electrons in the Lewis structure of N2 is 3 x 2 = 6.
Your answer: There are 6 bonding electrons in the Lewis structure of N2.
To know more about lewis structure visit:
https://brainly.com/question/30259926
#SPJ11
Which of the following elements have 1 unpaired electron and consequently are paramagnetic? select one or more: a. na b. mg c. al d. si e. p f. s g. cl h. ar
The elements that have 1 unpaired electron and are paramagnetic are: p and s. The answer is options e and f.
Paramagnetism is a property of some elements or compounds where they are weakly attracted to an external magnetic field due to the presence of unpaired electrons. In order for an element to be paramagnetic, it must have at least one unpaired electron in its outermost electron shell.
Out of the given elements, phosphorus (P) and sulfur (S) both have 1 unpaired electron in their outermost shell, making them paramagnetic.
The other elements (Na, Mg, Al, Si, Cl, and Ar) all have filled outermost electron shells, meaning they do not have any unpaired electrons and are not paramagnetic.
The electronic configurations of P and S are as follows:
P: 1s²2s²2p⁶3s²3p³ (1 unpaired electron in the 3p orbital)
S: 1s²2s²2p⁶3s²3p⁴ (1 unpaired electron in the 3p orbital)
To know more about unpaired electron, refer here:
https://brainly.com/question/29853110#
#SPJ11
determine the concentration of the sugar standards in g/100 ml of solution. the first two have been done for you. note: 1 sugar packet contains 3.5 g of sugar number of packs of sugar dissolved in 100 ml of solution 0 1 2 3 4 g sugar/100 ml (% w/v) 0 3.5 ? ? ? concentration of solution 2 ( g sugar/100 ml): concentration of solution 3 ( g sugar/100 ml): concentation of solution 4 ( g sugar/100 ml):
By using the information provided in the table and the amount of sugar packets added to 100 ml of solution, we can determine the concentration of sugar standards in g/100 ml.
To determine the concentration of the sugar standards in g/100 ml of solution, we can use the information provided in the table. The sugar standards are solutions with varying amounts of sugar dissolved in 100 ml of solution. The sugar concentration is expressed as g sugar/100 ml or % w/v.
According to the table, the first two sugar standards have been done for us. The first standard has 0 g sugar/100 ml, which means no sugar was added to the solution. The second standard has 3.5 g sugar/100 ml, which means one sugar packet was dissolved in the solution.
To determine the concentration of the third sugar standard, we need to know how many sugar packets were dissolved in 100 ml of solution. Since the second standard has 3.5 g sugar/100 ml, we can assume that one sugar packet was used. Therefore, to make the third standard, we need to add two sugar packets to 100 ml of solution, which gives us a concentration of 7 g sugar/100 ml.
Similarly, to determine the concentration of the fourth sugar standard, we need to add three sugar packets to 100 ml of solution, which gives us a concentration of 10.5 g sugar/100 ml.
Therefore, the concentrations of the sugar standards in g/100 ml of solution are:
- Standard 1: 0 g sugar/100 ml
- Standard 2: 3.5 g sugar/100 ml
- Standard 3: 7 g sugar/100 ml
- Standard 4: 10.5 g sugar/100 ml
In summary, by using the information provided in the table and the amount of sugar packets added to 100 ml of solution, we can determine the concentration of sugar standards in g/100 ml.
To know more about concentration, visit:
https://brainly.com/question/10725862#
#SPJ11
What will the concentration of pcl5 be when equilibrium is reestablished after addition of 1. 31 g cl2?.
At equilibrium, the concentration of PCl5 is:
[tex][PCl_5] = (0.006298 - 0.0328) / 2.50 = 0.00165 M[/tex]
First, we need to convert mass of [tex]PCl_5[/tex] added to moles.
[tex]moles of PCl_5 = 1.31 g / 208.24 g/mol = 0.006298 mol[/tex]
Next, we need to use the ideal gas law to calculate initial pressure of [tex]PCl_5[/tex] in the container.
Assuming that the container is at a temperature of 25°C, we have:
[tex]PV = nRT[/tex]
Solving for P, we get:
[tex]P = nRT/V \\ = (0.006298 mol)(0.08206 L.atm/(mol.K))(298.15 K)/(2.50 L) = 0.0750\ atm[/tex]
Let x be the change in the number of moles of [tex]PCl_5[/tex] when the reaction reaches equilibrium.
[tex][PCl_5] = (0.006298 - x) / 2.50 \\ \\[/tex]
[tex][PCl_3] = x / 2.50[/tex]
[tex][Cl_2] = x / 2.50[/tex]
The equilibrium constant expression for the reaction is:
[tex]Kc = [PCl_3][Cl_2]/[PCl_5] = (x/2.50)^2 / [(0.006298 - x)/2.50][/tex]
Substituting the values :
[tex]0.019 = (x/2.50)^2 / [(0.006298 - x)/2.50] \\0.019(0.006298 - x) = (x/2.50)^2 \\0.00011962 - 0.019x = x^{2/6.25} \\x^2 + 0.11875x - 0.00074763 = 0[/tex]
Solving this quadratic equation, we get:
x = 0.0328 mol
[tex][PCl_5] = (0.006298 - 0.0328) / 2.50 = 0.00165 M[/tex]
Concentration of [tex]PCl_5[/tex] when equilibrium is reestablished after adding 1.31 g of [tex]PCl_5[/tex] to a 2.50 L container at a temperature of 25°C and allowing the reaction to reach equilibrium is 0.00165 M.
To know more about equilibrium, here
brainly.com/question/30807709
#SPJ1
--The complete Question is, What is the concentration of PCl5 when equilibrium is reestablished after adding 1.31 g of PCl5 to a 2.50 L container at a temperature of 25°C and allowing the reaction to reach equilibrium? The balanced chemical equation for the reaction is:
PCl5 (g) ⇌ PCl3 (g) + Cl2 (g)
The equilibrium constant (Kc) for this reaction at 25°C is 0.019. --
What temperature is 35.5 g chlorine gas that exerts a pressure of 70.0 KPa and occupies a volume of 15.0 L?
Using the Ideal Gas Law, the temperature of 35.5 g of chlorine gas at a pressure of 70.0 KPa and a volume of 15.0 L is approximately 291 K.
The ideal gas law, PV = nRT, can be used to calculate the temperature of chlorine gas given its pressure, volume, and the amount of substance present. Rearranging the equation to solve for temperature, we get T = PV/nR, where P is the pressure, V is the volume, n is the amount of substance (in moles), R is the gas constant, and T is the temperature in Kelvin.
First, we need to calculate the amount of substance using the molar mass of chlorine gas (70.9 g/mol) and the given mass of 35.5 g. This gives us 0.5 moles of chlorine gas.
Next, we can substitute the values into the equation T = PV/nR. Using units of KPa, L, and mol, we get T = (70.0 KPa) x (15.0 L) / (0.5 mol x 8.31 L⋅kPa/mol⋅K) = 511 K.
Therefore, the temperature of the chlorine gas is 511 K.
Learn more about chlorine gas here:
https://brainly.com/question/13123721
#SPJ11
Calculate the ph during the titration of 30. 00 ml of 0. 1000.
It's also worth noting that the pH will change rapidly near the equivalence point, where the moles of acid and base are equal, due to the sudden change in the concentration of the acid and its conjugate base. This is important to keep in mind when performing titrations and interpreting the resulting data.
To calculate the pH during the titration of 30.00 ml of 0.1000 M acid, we need to know what the acid is being titrated with. Assuming it is being titrated with a strong base, such as NaOH, we can use the following formula:
moles of acid = moles of base
M1V1 = M2V2
In this case, we don't have enough information to solve for the pH during the titration. We need to know the volume and concentration of the base being added, as well as the acid dissociation constant (Ka) of the acid being titrated. Once we have this information, we can use the Henderson-Hasselbalch equation to calculate the pH at any point during the titration.
It's also worth noting that the pH will change rapidly near the equivalence point, where the moles of acid and base are equal, due to the sudden change in the concentration of the acid and its conjugate base. This is important to keep in mind when performing titrations and interpreting the resulting data.
To know more about pH visit:
https://brainly.com/question/15289741
#SPJ11
6. Which one is not a derivative of carboxylic acids?
a. esters b. carboxylic acid anhydrides c. acid chlorides d. amides e. Schiff's base
E. Schiff's base is not a derivative of carboxylic acids. It is a derivative of aldehydes or ketones.
What is aldehydes?Aldehydes are a class of organic compounds made up of a carbonyl group attached to at least one hydrogen atom. The carbonyl group is a carbon double bonded to an oxygen atom, while the hydrogen atom is single bonded to the same carbon atom. Aldehydes are highly reactive molecules and can easily react with other organic molecules, such as alcohols, to form new compounds. Aldehydes are also important in many biological processes and are even used as food additives. In addition, aldehydes are used in the production of many industrial products, such as plastics and pharmaceuticals. Aldehydes can also be used to make fragrances, as well as many types of dyes.
Therefore the correct option is E.
To learn more about aldehydes
https://brainly.com/question/31520675
#SPJ4
A 100. 0 ml sample of 0. 180 m hclo4 is titrated with 0. 270 m lioh. Determine the ph of the solution after the addition of 75. 0 ml of lioh.
The pH of the solution after the addition of 75.0 mL of LiOH is 1.92.
What is LiOH ?LiOH is the chemical formula for lithium hydroxide, a white solid inorganic compound. It is a strong base and is often used in a variety of industrial and scientific applications. LiOH is typically produced by reacting lithium carbonate with calcium hydroxide, and is used in a variety of products, including batteries, fertilizers, air purification systems, and even in the manufacture of glass and ceramics.
The pH of the solution after the addition of 75.0 mL of LiOH can be calculated by using the following equation: pH = -log[H+] = -log[H3O+] .The H3O+ concentration can be calculated using the following equation: H3O+ = (C1*V1)/(C2*V2) .Therefore, the H3O+ concentration can be calculated as follows:H3O+ = (0.180 M * 100 mL)/(0.270 M * 75.0 mL) = 0.120 M .The pH of the solution after the addition of 75.0 mL of LiOH is then calculated as follows:pH = -log[H3O+] = -log(0.120) = 1.92
To learn more about LiOH
https://brainly.com/question/30372358
#SPJ4
The pH of the solution after the addition of 75.0 mL of LiOH is 13.064.
This is a neutralization reaction between a strong acid and a strong base (LiOH). The balanced chemical equation for the reaction is:
[tex]HClO_4 + LiOH \rightarrow LiClO_4 + H_2O[/tex]
Before any LiOH is added, we have 0.180 M [tex]HClO_4[/tex] in 100.0 mL, which gives us 0.0180 moles of [tex]HClO_4[/tex] in the solution. The LiOH added reacts with the [tex]HClO_4[/tex] in a 1:1 mole ratio, so 0.0180 moles of LiOH are needed to completely neutralize the acid. This amount of LiOH corresponds to:
0.0180 moles LiOH × (1 L / 0.270 moles) = 0.0667 L LiOH
So, adding 75.0 mL of 0.270 M LiOH solution will provide:
0.0750 L LiOH × 0.270 moles / L = 0.0203 moles LiOH
Since this is less than the amount needed to neutralize the acid, we know that not all of the [tex]HClO_4[/tex] will react, and we need to calculate the amount of excess [tex]HClO_4[/tex] left in the solution.
The initial moles of [tex]HClO_4[/tex] are:
0.0180 moles [tex]HClO_4[/tex]
After the addition of 0.0203 moles of LiOH, the remaining moles of [tex]HClO_4[/tex] are:
0.0180 moles [tex]HClO_4[/tex] - 0.0203 moles LiOH = -0.0023 moles [tex]HClO_4[/tex]
Note that the negative value indicates that all the [tex]HClO_4[/tex] has been neutralized, and there is an excess of LiOH. Therefore, the solution is a basic solution, and we can calculate the concentration of OH- ions present in the solution using the moles of excess LiOH:
0.0203 moles LiOH × (1 L / 0.175 L) = 0.116 M LiOH
Since LiOH is a strong base, it dissociates completely in water, so the concentration of OH- ions in the solution is also 0.116 M. Therefore, the pOH of the solution is:
pOH = -log[OH-] = -log(0.116) = 0.936
Finally, we can calculate the pH of the solution:
pH + pOH = 14.00
pH = 14.00 - pOH = 14.00 - 0.936 = 13.064
To learn more about neutralization reaction
https://brainly.com/question/20038776
#SPJ4
What occurs when the sequence of amino acids are linked by hydrogen bonds.
Determine the molar solubility of PbSO 4 in pure water. K sp (PbSO 4) = 1.82 × 10 -8.
9.1 × 10-9 M
4.48 × 10-4 M
1.35 × 10-4 M
3.31 × 10-16 M
1.82 × 10-8 M
Required molar solubility of [tex]PbSO_4[/tex] in pure water is [tex]1.35 * 10^{-4}[/tex] M.
What is molar solubility?The amount of moles of a solute that may dissolve in one litre of solvent before the solution becomes saturated is known as its molar solubility. Moles per litre (M or mol/L) is the unit of measurement.
The solubility product constant expression for lead(II) sulfate is [tex]Ksp = [Pb ^{2+}][SO_4^{2-}][/tex]
Let's assume that x is the molar solubility of [tex]PbSO_4[/tex] in pure water, then we can write the equilibrium concentrations of [tex]Pb^{2+} \: and \: SO_4^{2-}[/tex]
as follows:
[tex][Pb_2^+] = x \\ [SO_4^{2-}] = x[/tex]
Substituting these concentrations into the Ksp expression gives:
Ksp = x² * x = x³
Now we can solve for x:
[tex]x^3 = Ksp = 1.82 × 10^{ -8} \\ x = (1.82 × 10^{ -8})^{(1/3)} \\ x = 1.35 × 10^{-4} M[/tex]
Therefore, the molar solubility of [tex]PbSO_4[/tex] in pure water is [tex]1.35 × 10^{-4} M[/tex]
The answer is option (C)
Learn more about molar solubility here,
https://brainly.com/question/28202068
#SPJ4
____ is probably closest in chemical composition to the upper mantle.
D. Peridotite is probably closest in chemical composition to the upper mantle.
Peridotite, a coarse-grained, darkish-coloured, heavy, intrusive igneous rock that carries as a minimum 10 percentage olivine, different iron- and magnesia-wealthy minerals (normally pyroxenes), and now no longer greater than 10 percentage feldspar. Uses - as a supply of precious ores and minerals, inclusive of chromite, platinum, nickel and valuable garnet; diamonds are acquired from mica-wealthy peridotite (kimberlite) in South Africa. Peridotite is the overall call for the ultrabasic or ultramafic intrusive rocks, darkish inexperienced to black in color, dense and coarse-grained texture, frequently as layered igneous complex.
To learn more about minerals check the link below-
https://brainly.com/question/15844293
#SPJ4
Complete question-
_____________ is probably closest in chemical composition to the upper mantle.
A. Granite
B. Shale
C. Andesite
D. Peridotite
What are the two general rules of heating in the laboratory?
The two general rules of heating in the laboratory are to always use a heating source that is appropriate for the task at hand, and to never leave the heating source unattended.
Using the appropriate heating source means selecting the type of heat that is best suited for the particular task. For example, if the task involves heating a small amount of liquid, a hot plate may be appropriate. However, if the task involves heating a larger volume of liquid or a solid, a Bunsen burner or other open flame heating source may be necessary. It is important to use the correct type of heating source to prevent accidents and to ensure that the task is completed efficiently.
The second rule, to never leave the heating source unattended, is critical for laboratory safety. Leaving a heating source unattended can lead to accidents such as fires or explosions, especially if the heating source is being used with flammable or explosive materials. It is important to monitor the heating source at all times and to turn it off when it is no longer needed.
In summary, the two general rules of heating in the laboratory are to use the appropriate heating source for the task and to never leave the heating source unattended. These rules are important for ensuring laboratory safety and for completing tasks efficiently.
learn more about laboratory here
https://brainly.com/question/17272339
#SPJ11
A beaker is filled with 225.0 mL of a sodium hydroxide solution with an unknown concentration. A 0.0100 M solution of HCl is used in the titration. The equivalence point is reached when 16.4 mL of HCl have been added. What is the initial concentration of NaOH in the beaker?
The initial concentration of NaOH in the beaker is approximately 0.0007289 M.
- Volume of NaOH solution: 225.0 mL
- Concentration of HCl: 0.0100 M
- Volume of HCl needed to reach equivalence point: 16.4 mL
Step 1: Convert the volumes from mL to L.
- 225.0 mL NaOH = 0.225 L NaOH
- 16.4 mL HCl = 0.0164 L HCl
Step 2: Calculate the moles of HCl using its concentration and volume.
Moles of HCl = Concentration × Volume
Moles of HCl = 0.0100 M × 0.0164 L = 0.000164 mol
Step 3: At the equivalence point, the moles of HCl and NaOH are equal.
Moles of NaOH = Moles of HCl = 0.000164 mol
Step 4: Calculate the initial concentration of NaOH using its moles and volume.
Concentration of NaOH = Moles of NaOH / Volume of NaOH
Concentration of NaOH = 0.000164 mol / 0.225 L = 0.0007289 M
So, the initial concentration of NaOH in the beaker is approximately 0.0007289 M.
To learn more about titration https://brainly.com/question/186765
#SPJ11
if temperature and pressure are held constant, the volume and number of moles of a gas are group of answer choices independent of each other directly proportional inversely proportional equal not enough information given
If temperature and pressure are held constant, the volume and number of moles of a gas are directly proportional.
This relationship is described by Avogadro's Law, which states that the volume of a gas is directly proportional to the number of moles when temperature and pressure are constant.
Mathematically, it is represented as V = k*n, where V is the volume, n is the number of moles, and k is a constant.
Summary: When temperature and pressure are constant, the volume and number of moles of a gas are directly proportional according to Avogadro's Law.
Learn more about temperature click here:
https://brainly.com/question/24746268
#SPJ11
2. if you or one of your laboratory partners misread the procedure and added 100 ml of distilled water to the solid khp rather than 50 ml of water (procedure 1.5), how would this affect the concentration of sodium hydroxide solution that you measured? explain briefly. (10 points)
If 100 ml of distilled water was added to the solid khp instead of 50 ml (as stated in procedure 1.5), the concentration of the sodium hydroxide solution that was measured would be lower than the actual concentration.
The concentration of the sodium hydroxide solution is determined by titrating it with the khp solution. The khp solution is prepared by dissolving solid khp in water, and the concentration of the khp solution is dependent on the amount of water added to the solid khp. If more water than required is added, the resulting khp solution would be more dilute, which would lead to a lower concentration of the sodium hydroxide solution when titrated.
Therefore, adding 100 ml of distilled water instead of 50 ml to the solid khp would dilute the khp solution, resulting in a lower concentration of the sodium hydroxide solution that was measured during titration. It is important to carefully follow the procedures to obtain accurate results in the laboratory.
To know more about titration, visit:
https://brainly.com/question/29590776
#SPJ11
what is the importance of a closed container in a chemical reaction? group of answer choices to observe the mass before and after the reaction occurs to observe the loss of mass after the reaction occurs to keep any materials from interfering with the reaction none of these
The importance of a closed container in a chemical reaction is to keep any materials from interfering with the reaction, option C.
Chemical reaction, the transformation of one or more chemicals (the reactants) into one or more distinct compounds (the products). Chemical elements or chemical compounds make up substances. In a chemical reaction, the atoms that make up the reactants are rearranged to produce various products.
Chemical reactions are a fundamental component of life itself, as well as technology and culture. Burning fuels, smelting iron, creating glass and pottery, brewing beer, producing wine, and making cheese are just a few examples of ancient processes that involved chemical reactions. The Earth's geology, the atmosphere, the seas, and a wide variety of intricate processes that take place in all living systems are rife with chemical reactions.
Learn more about Chemical reaction:
https://brainly.com/question/25769000
#SPJ4
use lewis structures to show the electron transfer that enables these ionic compounds to form: (a) k2s (b) ca3n2
(a) K₂S: Each potassium atom donates one electron to sulfur, forming K⁺ and S₂⁻ ions, which then attract each other to form K₂S via electrostatic forces.
(b) Ca₃N₂: Each calcium atom donates two electrons to one nitrogen atom, forming Ca²⁺ and N³⁻ ions. Three nitrogen atoms then bond with two calcium ions each to form Ca³N².
(a) The Lewis structure of K₂S can be shown as follows:
K K
\ /
S²⁻
K K
| |
S₂- + 2 K+ → K₂S
The sulfur atom gains two electrons from two potassium atoms to form S²⁻on while each potassium atom loses one electron to form K⁺ ion. The two K+ ions combine with the S²⁻ ion to form K₂S.
(b) [tex]Ca_3N_2[/tex]:
The Lewis structure for [tex]Ca_3N_2[/tex] can be written as:
:N≡C:
/ \
Ca Ca
| |
Ca Ca
The electron transfer occurs as follows:
3 Ca + N₂ → Ca₃N₂
Each nitrogen atom shares its three valence electrons with three calcium atoms. Each calcium atom gives two electrons to the nitrogen atom to form the Ca₃N2 ionic compound.
To learn about Lewis's structure:
https://brainly.com/question/31509183
#SPJ4
which of the following molecules will have a tetrahedral electron-domain geometry? group of answer choices
a. ccl2br2 b. xef4 c. ph3 d. cbr4
XeF₄ molecules will have a tetrahedral electron-domain geometry.
What is molecules?Molecules are the smallest particles of any substance that can still be identified as that particular substance. They are made up of two or more atoms that are chemically bonded together. All matter is made up of molecules, including gases, liquids and solids. Some molecules, such as water, are made up of only two atoms while others, such as proteins, are made up of hundreds of atoms. The properties of a molecule are determined by its structure, composition, and arrangement of its atoms. Molecules are constantly in motion and interact with each other, forming new molecules and breaking down existing ones. Many everyday substances are actually composed of molecules, such as sugar, salt, and carbon dioxide.
To learn more about molecules
brainly.com/question/26556885
#SPJ4
Of the species, _____ is not an electrolyte
A. KBr
B. LiOH
C. RbNO3
D. He
E. HCl
D. He is not an electrolyte.
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dissolving, the substance separates into cations and anions, which disperse uniformly throughout the solvent. Solid-state electrolytes also exist. In medicine and sometimes in chemistry, the term electrolyte refers to the substance that is dissolved. Electrically, such a solution is neutral. If an electric potential is applied to such a solution, the cations of the solution are drawn to the electrode that has an abundance of electrons, while the anions are drawn to the electrode that has a deficit of electrons. The movement of anions and cations in opposite directions within the solution amounts to a current. Some gases, such as hydrogen chloride (HCl), under conditions of high temperature or low pressure can also function as electrolytes.[clarification needed] Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) or synthetic polymers (e.g., polystyrene sulfonate), termed "polyelectrolytes", which contain charged functional groups. A substance that dissociates into ions in solution or in the melt acquires the capacity to conduct electricity. Sodium, potassium, chloride, calcium, magnesium, and phosphate in a liquid phase are examples of electrolytes.
To know more about electrolyte please visit
https://brainly.com/question/31839783
#SPJ11