B and D are both true statements. I'm not comfortable saying that either one is better than the other one.
The statement that best describes one way that molecules differ from atoms is a molecule can contain two atoms of the same element, and only a molecule can be broken down into two or more different elements. The correct options are b and d.
What are atoms and molecules?According to science, an atom is the smallest component of an element that can exist freely or not. A molecule, on the other hand, is the smallest component of a chemical and is made up of a group of atoms linked together by a bond.
A molecule is the smallest component of a substance that has the chemical properties of the compound.
The term "independent molecule" is not commonly used to refer to atoms and complexes linked by non-covalent interactions such as hydrogen or ionic bonds. Molecules are common constituents of matter.
Therefore, the correct options are b and d.
To learn more about atoms, refer to the link:
https://brainly.com/question/25617532
#SPJ2
A 54.0 kg ice skater is gliding along the ice, heading due north at 4.10 m/s . The ice has a small coefficient of static friction, to prevent the skater from slipping sideways, but Uk = 0. Suddenly, a wind from the northeast exerts a force of 3.70 N on the skater.a) Use work and energy to find the skater's speed after gliding 100 m in this wind.b) What is the minimum value of Ug that allows her to continue moving straight north?
Answer:
a. 2.668 m/s
b. 0.00494
Explanation:
The computation is shown below:
a. As we know that
[tex]W = F\times d[/tex]
[tex]KE = 0.5\times m\times v^2[/tex]
As the wind does not move the skater to the east little work is performed in this direction. All the work goes in the direction of the N-S. And located in that direction the component of the Force.
F = 3.70 cos 45 = 2.62 N
[tex]W = F \times d = 2.62 N \times 100 m[/tex]
[tex]W = 261.6 N\times m[/tex]
We know that
KE1 = Initial kinetic energy
KE2 = kinetic energy following 100 m
The energy following 100 meters equivalent to the initial kinetic energy less the energy lost to the work performed by the wind on the skater.
So, the equation is
KE2 = KE1 - W
[tex]0.5 m\times v2^2 = 0.5 m\ v1^2 - W[/tex]
Now solve for v2
[tex]v2 = \sqrt{v1^2 - {\frac{2W}{M}}}[/tex]
[tex]= \sqrt{4.1 m/s)^2 - \frac{2 \times 261.6 N\times m}{54.0 kg}}[/tex]
= 2.668 m/s
b. Now the minimum value of Ug is
As we know that
Ff = force of friction
Us = coefficient of static friction
N = Normal force = weight of skater
So,
[tex]Ff = Us\times N[/tex]
Now solve for Us
[tex]= \frac{Ff}{N}[/tex]
[tex]= \frac{3.70 N \times cos 45 }{54.0 kg \times 9.81 m/s^2}[/tex]
= 0.00494
I need help physics
A small ball of mass m is aligned above a larger ball of mass M = 0.63kg (with a slight separation) and the two are dropped simultaneously from a height of 1.8m. If the larger ball rebounds elastically from the floor and the small ball rebounds elastically from the larger ball what value of m results in the larger ball stopping when it collides with the small ball?
What is the highest point at which weather will generally occur?
Answer:
At thestratosphere: it 20- 25km
I need someone that knows physics. I have a test in 10 hrs and Im not good at it. Can anyone help me?
Answer:
I can help! What level of physics is it and what are your main topics?
the distance between 2 station is 5400 m find the time taken by a train to cover this distance, if the train travels with speed 60m/s
Answer:
I dont know bro
Explanation:
Ask an expert
Answer:
Time=90s
Explanation:
Speed=distance /time
[tex]60 = \frac{5400}{t} where \: t \: is \: time \\60t = 5400 \\ t = \frac{5400}{60} \\ t =90 \\ hope \: this \: helps..good \: luck [/tex]
A factory worker pushes a 30.0 kg crate a distance of 3.7 m along a level floor at constant velocity by pushing downward at an angle of 30∘ below the horizontal. The coefficient of kinetic friction between the crate and floor is 0.25.
Required:
a. What magnitude of force must the worker apply?
b. How much work is done on the crate by this force?
c. How much work is done on the crate by friction?
d. How much work is done on the crate by the normal force? By gravity?
e. What is the total work done on the crate?
Answer:
a) [tex]F = 210.803\,N[/tex], b) [tex]W_{F} = 779.971\,J[/tex], c) [tex]W_{f} = 235.683\,J[/tex], d) [tex]W_{N} = 0\,J[/tex]; [tex]W_{g} = 544.289\,J[/tex], e) [tex]W_{net} = 0\,J[/tex]
Explanation:
a) The net force exerted on the crate is:
[tex]\Sigma F = F - m\cdot g \cdot \sin \theta - \mu_{k}\cdot m\cdot g \cdot \cos \theta = 0[/tex]
The magnitud of the force that the work must apply to the crate is:
[tex]F = m\cdot g \cdot \sin \theta + \mu_{k}\cdot m\cdot g \cdot \cos \theta[/tex]
[tex]F = (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \sin 30^{\circ} + 0.25 \cdot (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}[/tex]
[tex]F = 210.803\,N[/tex]
b) The work done on the crate due to the external force is:
[tex]W_{F} = (210.803\,N)\cdot (3.7\,m)[/tex]
[tex]W_{F} = 779.971\,J[/tex]
c) The work done on the crate due to the external force is:
[tex]W_{f} = (63.698\,N)\cdot (3.7\,m)[/tex]
[tex]W_{f} = 235.683\,J[/tex]
d) The work done on the crate due the normal force is zero, since such force is perpendicular to the motion direction.
[tex]W_{N} = 0\,J[/tex]
And, the work done by gravity is:
[tex]W_{g} = (147.105\,N)\cdot (3.7\,m)[/tex]
[tex]W_{g} = 544.289\,J[/tex]
e) Lastly, the total work done is:
[tex]W_{net} = W_{F} - W_{f} - W_{g} - W_{N}[/tex]
[tex]W_{net} = 779.971\,J - 235.683\,J - 0\,N - 544.289\,J[/tex]
[tex]W_{net} = 0\,J[/tex]
A CD is spinning on a CD player. In 220 radians, the cd has reached an angular speed of 92 r a d s by accelerating with a constant acceleration of 14 r a d s 2 . What was the initial angular speed of the CD
Answer:
The initial angular speed is [tex]w_i = 48 \ rad/s[/tex]
Explanation:
From the question we are told that
The angular displacement is [tex]\theta = 220 \ rad[/tex]
The angular speed is [tex]w_f = 92 \ rad/s[/tex]
The acceleration is [tex]\alpha = 14 \ rad/s^2[/tex]
Generally the initial angular speed can be evaluated as
[tex]w_f ^2 = w_i ^2 + 2 * \alpha * \theta[/tex]
=> [tex]w_i ^2 = w_f ^2 - 2 * \alpha * \theta[/tex]
substituting values
=> [tex]w_i ^2 = 92 ^2 - 2 * 14 * 220[/tex]
=> [tex]w_i ^2 = 2304[/tex]
=> [tex]w_i = 48 \ rad/s[/tex]
b. A locomotive of a train exerts a constant force of 280KN on a train while pulling
it at 50 km/h along a level track. What is:
[4 marks)
i. Workdone in quarter an hour and
[4 marks]
Answer:
Work-done in quarter an hour = 3.5 × 10⁶ J
Explanation:
Given:
Force (F) = 280 KN = 280,000 N
Velocity (V) = 50 km / h
Time (t) = 1 / 4 = 0.25 hour
Find:
Work-done in quarter an hour
Computation:
⇒ Displacement = Velocity (V) × Time
⇒ Displacement = 50 × 0.25
⇒ Displacement = 12.5 km
⇒ Work-done = Force (F) × Displacement
⇒ Work-done in quarter an hour = 280,000 × 12.5
⇒ Work-done in quarter an hour = 3,500,000
Work-done in quarter an hour = 3.5 × 10⁶ J
If an instalment plan quotes a monthly interest rate of 4%, the effective annual/yearly interest rate would be _____________. 4% Between 4% and 48% 48% More than 48%
Answer:
More than 48%
Explanation:
If the interest is computed monthly on the outstanding balance, it has an effective annual rate of ...
(1 +4%)^12 -1 = 60.1% . . . . more than 48%
The effective annual or yearly interest rate would be=30.56% which is Between 4% and 48%
Calculation of Annual Interest rateThe formula used to calculate annual Interest rate =
[tex](1+ \frac{i}{n} ) {}^{n} - 1[/tex]
where i= nominal interest rate = 4%
n= number of periods= 12 months
Annual Interest rate=
[tex](1 + \frac{4\%}{12} ) {}^{12} - 1[/tex]
= (1+0.333)^12 -1
= (1.333)^12-1
= 31.56 - 1
= 30.56%
Therefore, the effective annual or yearly interest rate would be= 30.56%
Learn more about interest rate here:
https://brainly.com/question/25793394
Michelson and Morley's experiment is widely considered to have been:______
a. a success because it detected a shift in the interference pattern.
b. a failure because it detected a shift in the interference pattern.
c. a success because it did not detect a shift in the interference pattern.
d. a failure because it did not detect a shift in the interference pattern.
e. lacking the necessary precision to determine a shift in the interference pattern.
Answer:
The correct answer is option (c) a success because it did not detect a shift in the interference pattern.
Explanation:
In Michelson and Morley experiment it was considered to be successful.
They both found out that the experiment that was carried out was not a failure since it did not detect any shift in the interference pattern.
With this findings it was widely regarded as correct and precise.
a 15-nC point charge is at the center of a thin spherical shell of radius 10cm, carrying -22nC of charge distributed uniformly over its surface. find the magnitude and direction of the electric field (a) 2.2cm,(b)5.6cm,and (c)14 cm from the point charge.
Answer:
A) E = 278925.62 N/C with direction; radially out.
B) E = 43048.47 N/C with direction radially out.
C) E = -3214.29 N/C with direction radially in.
Explanation:
From Gauss' Law, the Electric field for any spherically symmetric charge or charge distribution is the same as the point charge formula. Thus;
E = kQ/r²
where;
Q is the net charge within the distance r.
We are given the charge Q = 15-nC and
spherical shell of radius 10cm
A) The distance r = 2.2 cm = 0.022 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C
While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²
E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²
E = 278925.62 N/C
This will be radially out ,since the net charge is positive.
B) The distance r = 5.6 cm = 0.056 m is between the surface and the point charge, so only the point charge lies within this distance and Q = 15 nC = 15 x 10^(-9) C
While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²
E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²
E = 43048.47 N/C
This will be radially out ,since the net charge is positive.
C) The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;
Q = 15 nC - 22 nC
Q = -7 nC = -7 x 10^(-9) C
and;
E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²
E = -3214.29 N/C
This will be radially in, since the net charge is negative. You can indicate this with a negative answer.
A) When The distance r is = 2.2 cm = 0.022 m is between the surface and also the point charge, also that so only the point charge lies within this distance and also Q = 15 NC = 15 x 10^(-9) C
Then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.022)²Then E = 278925.62 N/CThen This will be radially out since the net charge is positive.
B) When The distance r = 5.6 cm = 0.056 m is between the surface and also the point charge, so only the point charge lies within this distance and also Q = 15 nC = 15 x 10^(-9) C
then While k is coulombs constant with a value of 9 × 10^(9) N.m²/C²When E = ((9 x 10^(9) × (15 x 10^(-9)))/(0.056)²Then E = 43048.47 N/CAfter that This will be radially out since the net charge is positive.
C) Then when The distance r = 14 cm = 0.14 m is outside the sphere so the "net" charge within this distance is due to both given charges. Thus;
Then Q = 15 nC - 22 nCAfter that Q = -7 nC = -7 x 10^(-9) CWhen E = (9 x 10^(9)*(-7 x 10^(-9))/(0.14)²Then E = -3214.29 N/C Thus, This will be radially in, since the net charge is negative.Find out more information about magnitude here:
https://brainly.com/question/13502329
A car of mass 410 kg travels around a flat, circular race track of radius 83.4 m. The coefficient of static friction between the wheels and the track is 0.286. The acceleration of gravity is 9.8 m/s 2 . What is the maximum speed v that the car can go without flying off the track
Answer:
The maximum speed v that the car can go without flying off the track = 15.29 m/s
Explanation:
let us first lay out the information clearly:
mass of car (m) = 410 kg
radius of race track (r) = 83.4 m
coefficient of friction (μ) = 0.286
acceleration due to gravity (g) = 9.8 m/s²
maximum speed = v m/s
For a body in a constant circular motion, the centripetal for (F) acting on the body is given by:
F = mass × ω
where:
F = maximum centripetal force = mass × μ × g
ω = angular acceleration = [tex]\frac{(velocity)^2}{radius}[/tex]
∴ F = mass × ω
m × μ × g = m × [tex]\frac{v^{2} }{r}[/tex]
410 × 0.286 × 9.8 = 410 × [tex]\frac{v^{2} }{83.4}[/tex]
since 410 is on both sides, they will cancel out:
0.286 × 9.8 = [tex]\frac{v^{2} }{83.4}[/tex]
2.8028 = [tex]\frac{v^{2} }{83.4}[/tex]
now, we cross-multiply the equation
2.8028 × 83.4 = [tex]v^{2}[/tex]
[tex]v^{2}[/tex] = 233.754
∴ v = √(233.754)
v = 15.29 m/s
Therefore, the maximum speed v that the car can go without flying off the track = 15.29 m/s
A rocket blasts off vertically from rest on the launch pad with an upward acceleration of 2.90 m/s2 . At 20.0s after blastoff, the engines suddenly fail, which means that the force they produce instantly stops.
(A) How high above the launch pad will the rocket eventually go?
(B) Find the rocket's velocity at its highest point.
(C) Find the magnitude of the rocket's acceleration at its highest point.
(D) Find the direction of the rocket's acceleration at its highest point.
(E) How long after it was launched will the rocket fall back to the launch pad?
(F) How fast will it be moving when it does so?
Answer:
A) 580m
B) 0 m/s
C) 9.8m/s^2
D) downward
E) 10.87s
F) 106.62 m/s
Explanation:
A) The distance traveled by the rocket is calculated by using the following expression:
[tex]y=\frac{1}{2}at^2[/tex]
a: acceleration of the rocket = 2.90 m/s^2
t: time of the flight = 20.0 s
[tex]y=\frac{1}{2}(2.90\frac{m}{s^2})(20.0s)^2=580m[/tex]
B) In the highest point the rocket has a velocity with magnitude zero v = 0m/s because there the rocket stops.
C) The engines of the rocket suddenly fails in the highest point. There, the acceleration of the rocket is due to the gravitational force, that is 9.8 m/s^2
D) The acceleration points downward
E) The time the rocket takes to return to the ground is given by:
[tex]t=\sqrt{\frac{2y}{g}}=\sqrt{\frac{2(580m)}{9.8m/s^2}}=10.87s[/tex]
10.87 seconds
F) The velocity just before the rocket arrives to the ground is:
[tex]v=\sqrt{2gy}=\sqrt{2(9.8m/s ^2)(580m)}=106.62\frac{m}{s}[/tex]
The International Space Station is about 90 meters across and about 380 kilometers away. One night t appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use serxa to figure out how far away Jupiter is in AU Note: 1 AU= 1.5 x 10-km
a) 6.0 x 10 Au
b) 4.0 AU
c) 9.1 x 1010 AU
d) 4.0 x 10 AU
Complete Question
The complete question is shown on the first uploaded image
Answer:
The distance is [tex]r_2 = 4 \ AU[/tex]
Explanation:
From the question we are told that
The size of Jupiter is [tex]s_2 = 143,000 \ km[/tex]
The length of the International Space Station is [tex]r_1 = 380\ km[/tex]
The size of the International Space Station is [tex]s_1 = 90 \ m =0.09 \ km[/tex]
The angular size where the same one night and this angular size is mathematically represented as
[tex]\theta = \frac{s}{r}[/tex]
Since [tex]\theta[/tex] is constant
[tex]\frac{s_1}{r_1} = \frac{s_2}{r_2}[/tex]
substituting values
[tex]\frac{0.09}{380} = \frac{143000}{r_2}[/tex]
=> [tex]r_2 = 6.04 * 10^{9} \ km[/tex]
Now we are told to convert to AU and 1 AU [tex]= 1.5 * 10^8 \ km[/tex]
So
[tex]r_2 = \frac{6.04 * 10^8}{1.5*10^{8}}[/tex]
[tex]r_2 = 4 \ AU[/tex]
What is the power of a child that has
done work of 50J in 10 seconds.
(a)50W (b)20W (c)30W (d)5W
_____________________________
Solution,
Work=50 Joule
Time=10 seconds
Power=?
Now,
Power=Work/time
= 50/10
= 5 Watt.
So the right answer is 5 W
Hope it helps..
Good luck on your assignment
__________________________
You have just landed on Planet X. You take out a ball of mass 100 gg , release it from rest from a height of 16.0 mm and measure that it takes a time of 2.90 ss to reach the ground. You can ignore any force on the ball from the atmosphere of the planet. How much does the 100-g ball weigh on the surface of Planet X?
Answer:
0.173 N.
Explanation:
We will calculate the mass and then use the following calculations on the surface of planet X that is :
[tex]W=mg[/tex]
We would use the following equation to get the value of g for planet X that is :
[tex]y_f-y_i=v_{yi}t+\frac{1}{2}gt^2[/tex]
Then, put the values in the above equation.
[tex]16=0+\frac{1}{2}\times g\times(2.90)^2[/tex]
[tex]\bf\mathit{g=3.80\;m/s^2}[/tex]
Now, we will measure the ball weight on planet X's surface:
[tex]m=\frac{100}{1000} \;\;\;\;\;\;\;\;\;\;[1kg=1000g][/tex]
Then, we have to put the value in the above equation.
[tex]W=0.1\times 1.73=0.173\:N[/tex]
an aluminium bar 600mm long, with diameter 40mm, has a hole drilled in the center of the bar. the hole is 30mm in diameter and is 30mm and is 100mm long. if modulus of elasticity for the aluminium is 85GN/m2, calculate the total contraction on the bar due to a compressive load of 180KN
Answer:
ΔL = 1.011 mm
Explanation:
Let's begin by listing out the given information:
Length (L) = 600 mm = 0.6 m,
Diameter (D) = 40 mm = 0.04 m ⇒ Radius (r) = 20 mm = 0.2 m,
Area (cross sectional) = πr² = 3.14 x .02² = 0.001256 m²,
Modulus of Elasticity (E) = 85 GN/m²,
Compressive load (F) = 180 KN
Using the formula, Stress = Load ÷ Area
Mathematically,
σ = F ÷ A = 180 x 10³ ÷ 0.001256
σ = 143312.1 KN/m²
Modulus of elasticity = stress ÷ strain
E = σ ÷ ε
ε = ΔL/L
85 x 10⁹ = 143312.1 x 10³ ÷ (ΔL/L)
ΔL = 143312.1 x 10³ ÷ 85 X 10⁹ = 1686.02 * 10⁻⁶
ΔL = L x 1686.02 * 10⁻⁶
ΔL = 0.6 * 1686.02 * 10⁻⁶ = 1011.61 x 10⁻⁶
ΔL = 1.011 x 10⁻³ m
ΔL = 1.011 mm
∴The bar contracts by 1.011 mm
2. If rain is falling vertically downward, and you are running for shelter, should you hold your umbrella
vertically, tilted forward, or tilted backward to keep the driest? Please explain.
Answer:
Tilted forward to keep the driest.
Explanation:
The rain is falling vertically so there is no wind. In these circumstances the umbrella should be tilted vertically forward.
The situation is the same as if you would stand still and the rain would come under an angle from the front.
Countries create quotas and tariffs to increase the volume of trade with their neighbors.
Oooooo, that statement is not true. Countries create quotas and tariffs to LIMIT the volume of trade with other countries, including their neighbors.
Answer:
False
Explanation:
I took the text :)
assume that the initial speed is 25 m/s and the angle of projection is 53 degree above the hroizontal. the cannon ball leaves the uzzel of the cannon at a highet of 200 m.( the cannon is at the edge of the cliff) A: find the horizontal distance the cannon travles. B: when does the cannon ball reach the ground? C: find the maximum highet the cannon ball reaches.
Answer:
A. xmax = 131.49 m
B. t = 8.74 s
C. ymax = 220.33 m
Explanation:
A. In order to find the horizontal distance which cannon travels you first calculate the flight time. The flight time can be calculated by using the following formula:
[tex]y=y_o+v_osin\theta-\frac{1}{2}gt^2[/tex] (1)
yo: height from the projectile is fired = 200m
vo: initial velocity of the projectile = 25m/s
g: gravitational acceleration = 9.8 m/s^2
θ: angle between the direction of the initial motion of the ball and the horizontal = 53°
t: time
You need the value of t when the projectile hits the ground. Then, in th equation (1) you make y = 0m.
When you replace the values of all parameters in the equation (1), you obtain the following quadratic formula:
[tex]0=200+(25)sin53\°t-\frac{1}{2}(9.8)t^2\\\\0=200+19.96t-4.9t^2[/tex] (2)
You use the quadratic formula to obtain the value of t:
[tex]t_{1,2}=\frac{-19.96\pm\sqrt{(19.96)^2-4(-4.9)(200)}}{2(-4.9)}\\\\t_{1,2}=\frac{-19.96\pm65.71}{-9.8}\\\\t_1=8.74s\\\\t_2=-4.66s[/tex]
You use the positive value because it has physical meaning.
Now, you can calculate the horizontal range of the projectile by using the following formula:
[tex]x_{max}=v_ocos\theta t[/tex]
[tex]x_{max}=(25m/s)(cos53\°)(8.74s)=131.49m[/tex]
The cannon ball travels a horizontal distance of 131.49 m
B. The cannon ball reaches the canon for t = 8.74s
C. The maximum height is obtained by using the following formula:
[tex]y_{max}=y_o+\frac{v_o^2sin^2\theta}{2g}[/tex] (3)
By replacing in the equation (3) the values of all parameters you obtain:
[tex]y_{max}=200m+\frac{(25m/s)^2(sin53\°)^2}{2(9.8m/s^2)}\\\\y_{mac}=200m+20.33m=220.33m[/tex]
The maximum height reached by the cannon ball is 220.33m
1. (a) The battery on your car has a rating stated in ampere-minutes which permits you to
estimate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 ampere-minute 12
volt battery?
Answer:
Energy Stored = 36000 J = 36 KJ
Explanation:
The power of a battery is given by the formula:
P = IV
where,
P = Power delivered by the battery
I = Current Supplied to the battery
V = Potential Difference between terminals of battery = 12 volt
Now, we multiply both sides by the time period (t):
Pt = VIt
where,
Pt = (Power)(Time) = Energy Stored = E = ?
It = Battery Current Rating = 50 A.min
Converting this to A.sec;
It = Battery Current Rating = (50 A.min)(60 sec/min) = 3000 A.sec
Therefore,
E = (12 volt)(3000 A.sec)
E = 36000 J = 36 KJ
A ride-sharing car moving along a straight section of road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed of 28.0 m/s. Then the vehicle moves for 41.0 s at constant speed until the brakes are applied, stopping the vehicle in a uniform manner in an additional 5.00 s.
(a) How long is the ride-sharing car in motion (in s)?
(b) What is the average velocity of the ride-sharing car for the motion described? (Enter the magnitude in m/s.)
Answer:
Explanation:
Time taken to accelerate to 28 m /s
= 28 / 2 = 14 s
a ) Total length of time in motion
= 14 + 41 + 5
= 60 s .
b )
Distance covered while accelerating
s = ut + 1/2 at²
= 0 + .5 x 2 x 14²
= 196 m .
Distance covered while moving in uniform motion
= 28 x 41
= 1148 m
distance covered while decelerating
v = u - at
0 = 28 - a x 5
a = 5.6 m / s²
v² = u² - 2 a s
0 = 28² - 2 x 5.6 x s
s = 28² / 2 x 5.6
= 70 m .
Total distance covered
= 196 + 1148 + 70
= 1414 m
total time taken = 60 s
average velocity
= 1414 / 60
= 23.56 m /s .
Plaskett's binary system consists of two stars that revolve In a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal . Assume the orbital speed of each star is |v | = 240 km/s and the orbital period of each is 12.5 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 times 1030 kg Your answer cannot be understood or graded.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The mass is [tex]M =1.43 *10^{32} \ kg[/tex]
Explanation:
From the question we are told that
The mass of the stars are [tex]m_1 = m_2 =M[/tex]
The orbital speed of each star is [tex]v_s = 240 \ km/s =240000 \ m/s[/tex]
The orbital period is [tex]T = 12.5 \ days = 12.5 * 2 4 * 60 *60 = 1080000\ s[/tex]
The centripetal force acting on these stars is mathematically represented as
[tex]F_c = \frac{Mv^2}{r}[/tex]
The gravitational force acting on these stars is mathematically represented as
[tex]F_g = \frac{GM^2 }{d^2}[/tex]
So [tex]F_c = F_g[/tex]
=> [tex]\frac{mv^2}{r} = \frac{Gm_1 * m_2 }{d^2}[/tex]
=> [tex]\frac{v^2}{r} = \frac{GM}{(2r)^2}[/tex]
=> [tex]\frac{v^2}{r} = \frac{GM}{4r^2}[/tex]
=> [tex]M = \frac{v^2*4r}{G}[/tex]
The distance traveled by each sun in one cycle is mathematically represented as
[tex]D = v * T[/tex]
[tex]D = 240000 * 1080000[/tex]
[tex]D = 2.592*10^{11} \ m[/tex]
Now this can also be represented as
[tex]D = 2 \pi r[/tex]
Therefore
[tex]2 \pi r= 2.592*10^{11} \ m[/tex]
=> [tex]r= \frac{2.592*10^{11}}{2 \pi }[/tex]
=> [tex]r= 4.124 *10^{10} \ m[/tex]
So
[tex]M = \frac{v^2*4r}{G}[/tex]
=> [tex]M = \frac{(240000)^2*4*(4.124*10^{10})}{6.67*10^{-11}}[/tex]
=> [tex]M =1.43 *10^{32} \ kg[/tex]
Volume of an block is 5 cm3. If the density of the block is 250 g/cm3, what is the mass of the block ?
Answer:
1.25kg
Explanation:
Simply multiply volume and density together
A uniformly charged conducting sphere of 1.1 m diameter has a surface charge density of 6.2 µC/m2. (a) Find the net charge on the sphere. (b) What is the total electric flux leaving the surface of the sphere?
Answer:
(a) q = 2.357 x 10⁻⁵ C
(b) Φ = 2.66 x 10⁶ N.m²/C
Explanation:
Given;
diameter of the sphere, d = 1.1 m
radius of the sphere, r = 1.1 / 2 = 0.55 m
surface charge density, σ = 6.2 µC/m²
(a) Net charge on the sphere
q = 4πr²σ
where;
4πr² is surface area of the sphere
q is the net charge on the sphere
σ is the surface charge density
q = 4π(0.55)²(6.2 x 10⁻⁶)
q = 2.357 x 10⁻⁵ C
(b) the total electric flux leaving the surface of the sphere
Φ = q / ε
where;
Φ is the total electric flux leaving the surface of the sphere
ε is the permittivity of free space
Φ = (2.357 x 10⁻⁵) / (8.85 x 10⁻¹²)
Φ = 2.66 x 10⁶ N.m²/C
You are on a train traveling east at speed of 19 m/s with respect to the ground. 1)If you walk east toward the front of the train, with a speed of 1.5 m/s with respect to the train, what is your velocity with respect to the ground
Answer:
Vbg = 20.5 m/s
your velocity with respect to the ground Vbg = 20.5 m/s
Explanation:
Relative velocity with respect to the ground is;
Vbg = velocity of train with respect to the ground + your velocity with respect to the train
Vbg = Vtg + Vbt ......1
Given;
velocity of train with respect to the ground;
Vtg = 19 m/s
your velocity with respect to the train;
Vbt = 1.5 m/s
Substituting the given values into the equation 1;
Vbg = 19 m/s + 1.5 m/s
Vbg = 20.5 m/s
your velocity with respect to the ground Vbg = 20.5 m/s
In a 2 dimensional Cartesian system, the x-component of a vector is known, and the angle between vector and x-axis is known. Which operation is used to calculate the magnitude of the vector? (taken with respect to the x-component)
a. dividing by cosine
b. dividing by sine
c. multiplying by cosine
d. multiplying by sine
Answer:
The correct answer is a
Explanation:
The cosine function is
cos θ = ca / H
done ca is the adjacent leg (x-axis) and H is the hypotenuse (vector module)
we clear
H = ca / cos θ
therefore, to find the magnitude of the vector, the cathete is divided into the cosine.
The correct answer is a
A truck has a bed that is 4.50 metres long,and 2.50 metres wide, and 1.50 metres high. What is maximum volume of sand can the truck carry within this dimensions?
Answer:
since the bed is a cuboid, we find the volume by L×W×H
4.50 × 2.50 × 1.50 = 16.875m³
HOPE THIS HELPS
A standing wave on a string that is fixed at both ends has frequency 80.0 Hz. The distance between adjacent antinodes of the standing wave is 12.0 cm. What is the speed of the waves on the string, in m/s
Answer:
v = 19.2 m/s
Explanation:
In order to find the speed of the string you use the following formula:
[tex]f=\frac{v}{2L}[/tex] (1)
f: frequency of the string = 80.0Hz
v: speed of the wave = ?
L: length of the string = 12.0cm = 0.12m
The length of the string coincides with the wavelength of the wave for the fundamental mode.
Then, you solve for v in the equation (1), and replace the values of the other parameters:
[tex]v=2Lf=2(0.12m)(80.0Hz)=19.2\frac{m}{s}[/tex]
The speed of the wave is 19.2 m/s