Answer:
[tex]F=133N[/tex]
Explanation:
From the question we are told that:
Length [tex]l=3.0m[/tex]
Mass [tex]m=24kg[/tex]
Distance from Tip [tex]d=35cm[/tex]
Generally, the equation for Torque Balance is mathematically given by
[tex]mg(l/2)=F(l-d)[/tex]
[tex]2*9.81(3/2)=F(3-35*10^-2)[/tex]
Therefore
[tex]F=133N[/tex]
find the upward force in Newton when each of these is under water(density of 1g/cm3) a lump of iron of volume 2000cm3
Answer:
Upthrust = 19.6 N
Explanation:
When an object is immersed under water, the upward force it experience is called an upthrust. An upthrust is a force which is applied on any object in a fluid which acts in an opposite direction to the direction of the weight of the object.
Upthrust = density of liquid x gravitational force x volume of object
i.e U = ρ x g x vol
Given: ρ = 1g/[tex]cm^{3}[/tex] (1000 kg/[tex]m^{3}[/tex]), volume = 2000 c[tex]m^{3}[/tex] (0.002 [tex]m^{3}[/tex]) and g = 9.8 m/[tex]s^{2}[/tex]
So that;
U = 1000 x 9.8 x 0.002 (kg/[tex]m^{3}[/tex] x [tex]m^{3}[/tex] x m/[tex]s^{2}[/tex])
= 19.6 Kg m/[tex]s^{2}[/tex]
U = 19.6 Newtons
The upthrust on the iron is 19.6 N.
Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect. If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be
The question is incomplete, the complete question is;
Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect.
Part A If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be
K/2.
K.
2K.
greater than 2K.
Answer:
2K
Explanation:
Given that the kinetic energy of photo electrons is given by;
K= E -Wo
Where;
K = kinetic energy
E= energy of incident photon
Wo = work function
But;
E= hf
Wo = fo
h= Plank's constant
f= frequency of incident photon
fo= Threshold frequency
So:
K= hf - hfo
Where the frequency of incident light is doubled;
K= 2hf - hfo
Hence, maximum kinetic energy of the emitted electrons in this case will be 2K
HELP FAST PLS asappppp
Answer:
(A) Series and Parallel
Explanation:
Circuit Component: These are electrical devices that makes up the circuit. They include, resistors, capacitors, inductors, voltmeters, ammeters, cell/batteries, earth connection, bulb, switch, connecting wire etc.
These component can either be connected in series or in parallel.
(1) Series Connection: This can be refered as end to end connection of electric component.
(2) Paralel Connection: This can be refered as the side to side connection of electric component.
From the question above,
A electric component in a circuit can be combined in series and in parallel.
The right option is (A) Series and Parallel
Describe how you could whether sound travels best through wood, plastic, or metal.
Answer:
metal
Explanation:
sound can travel best in materials with higher elastic properties like metal than it can through other solids like plastic or rubber which have lower elastic properties
I hope this helps
The Michelson-Morley experiment was designed to measure Group of answer choices the velocity of the Earth relative to the ether. the relativistic momentum of the electron. the relativistic mass of the electron. the acceleration of gravity on the Earth's surface. the relativistic energy of the electron.
Answer:
The Michelson-Morley was designed to detect the motion of the earth through the ether.
No such relation was found and the speed of light is assumed to be the same in all reference frames.
The Michelson-Morley experiment was designed to measure: A. the velocity of the Earth relative to the ether.
Michelson-Morley experiment is an experiment which was first performed in Germany by the American physicist named, Albert Abraham Michelson between 1880 to 1881.
However, the experiment was later modified and refined by Michelson and Edward W. in 1887.
The main purpose of the Michelson-Morley experiment was to measure the velocity of planet Earth relative to the luminiferous ether, which is a medium in space that is hypothetically said to carry light waves.
In conclusion, the Michelson-Morley experiment was designed to measure the velocity of the Earth relative to the hypothetical luminiferous ether.
Read more: https://brainly.com/question/13187705
A person runs up the stairs elevating his 102 kg body a vertical distance of 2.29 meters in a time of 1.32 seconds at a constant speed.
Determine the work done by the person climbing the stair case.
Answer:
Work done = 2289.084 Joules
Explanation:
Given the following data;
Mass = 102 Kg
Height = 2.29
Time = 1.32 seconds
We know that acceleration due to gravity, g = 9.8 m/s²
a. To find the work done by the person;
Here, work would be done in the form of gravitational potential energy.
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;
G.P.E = mgh
Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Substituting into the formula, we have;
Work done = 102 * 2.29 * 9.8
Work done = 2289.084 Joules
A bullet 2cm log is fired at 420m/s and passes straight a 10cm thick board exiting at 280m/s
Complete question:
A bullet 2 cm long is fired at 420m/s and passes straight through a 10.0 cm thick board, exiting at 280m/s? What is the average acceleration of the bullet through the board?
Answer:
The average acceleration of the bullet through the board is -4.083 x 10⁵ m/s²
Explanation:
Given;
initial velocity of the bullet, u = 420 m/s
final velocity of the bullet, v = 280 m/s
length of the bullet, d₁ = 2 cm
thickness of the board, d₂ = 10 cm
total distance penetrated by the bullet through the board;
d = d₁ + d₂ = 2 cm + 10 cm = 12 cm = 0.12 m
The average acceleration of the bullet through the board is calculated as;
[tex]v^2 = u^2 + 2ad\\\\2ad = v^2 - u^2\\\\a = \frac{v^2 - u^2}{2d} \\\\a = \frac{(280^2) - (420^2)}{2(0.12)} = -4.083 \times 10^{5} \ m/s^2[/tex]
Therefore, the average acceleration of the bullet through the board is -4.083 x 10⁵ m/s²
A car is traveling at 104 km/h when the driver sees an accident 50 m ahead and slams on the brakes. What minimum constant deceleration is required to stop the car in time to avoid a pileup
a = - 8.34 m/sec² ( deceleration or negative)
Equations for UAM ( uniformly accelerated motion) are:
vf = v₀ ± a*t and s = s₀ + v₀*t + (1/2)*a*t²
In our case, the motion is with deceleration, then
vf = v₀ - a*t and s = s₀ + v₀*t - (1/2)*a*t²
working on these equatios we get:
vf = v₀ - a*t (1) s - s₀ = v₀*t - (1/2)*a*t² (2)
v₀ - vf = a*t
t = (v₀ - vf)/a
By substitution of (1) in equation (2)
s - s₀ = v₀ * (v₀ - vf)/a - (1/2) * a* [(v₀ - vf)/a]²
s - s₀ = (v₀² - v₀*vf)/a - (1/2) * a* (1/a²)* (v₀ - vf)²
s - s₀ = 1/a * ( v₀² - v₀*vf ) - 1/a* (1/2) * (v₀ - vf)²
s - s₀ = 1/a* [ ( v₀² - v₀*vf ) - (1/2) * (v₀ - vf)²]
a * (s - s₀ ) = v₀² - v₀*vf - v₀²/2 - vf²/2 + v₀*vf
a * (s - s₀ ) = (1/2) * v₀² - (1/2)*vf²
a * (s - s₀ ) = (1/2) * ( v₀² - vf²)
We find an expression to calculate the minimum deceleration to stop the car in time to avoid crashing
s₀ = 50 meters s = 0 v₀ = 104 Km/h vf = 0
1 Km = 1000 m and 1 h = 3600 sec
v₀ = 104 Km/h = 28.88 m/sec
a = (1/2) [ (28.88)² - 0 ] / 0 - 50
a = - 8.34 m/sec² ( deceleration or negative)
The water evaporated. How did that help ?
Answer:
hellooooo. hi hellooooo and programming laptops
Answer:
The molecules move and vibrate so quickly that they escape into the atmosphere as molecules of water vapor. Evaporation is a very important part of the water cycle. The Heat from the sun, or solar energy, powers the evaporation process. ... Once the water evaporates, it also helps form clouds.
Explanation:
A capacitor consists of two metal surfaces separated by an electrical insulator with no electrically conductive path through it. Why does a current flow in a resistor-capacitor circuit when the switch is closed?
Answer:
Displacement current flows in the dielectric material(insulated region)
Explanation:
Firstly a capacitor stores charge when a capacitor is charging (or discharging), current flows in the circuit. Also, there is no charge transfer in the dielectric material in the capacitor which is contradictory to the flow of current. Hence, displacement current is the current in the insulated region due to the changing electric flux.
Which one of the following physical quantities has its S.I. unit m/s?
(i) Acceleration
(ii) Velocity
(iii) Force
(iv) Density
Answer:
velocity is the answer of this question.
Answer:
Velocity is the right answer ok
In a single-slit diffraction pattern, the central fringe is 360 times as wide as the slit. The screen is 14,000 times farther from the slit than the slit is wide. What is the ratio /W, where is the wavelength of the light shining through the slit and W is the width of the slit
Answer:
0.01286
Explanation:
In a given single-slit, the central fringe (Y) is 360 times as wide as the slit (a). Then
2Y₁ = 360a
Y₁ = 360a/2
= 180a
The distance D = 14000a
In a given single-slit diffraction, the ratio = [tex]\dfrac{\lambda }{W}[/tex]
and since the angle is infinitesimally small;
sin θ ≅ tan θ = [tex]\dfrac{Y}{D}[/tex]
∴
For the first dark fringe;
Suppose: [tex]\dfrac{a}{2}sin \theta = \dfrac{\lambda }{2}[/tex]
then,
[tex]\dfrac{a}{2} \ \dfrac{Y_1}{D} = \dfrac{\lambda }{2}[/tex]
[tex]aY_1 = \lambda D[/tex]
[tex]\dfrac{\lambda }{a} = \dfrac{Y_1}{D}\\ \\ \\ \implies \dfrac{180\ a}{14000 \ a} \\ \\ \mathbf{\dfrac{\lambda }{a} = 0.01286}[/tex]
Your physics TA has a far point of 0.759 m from her eyes and is able to see distant objects in focus when wearing glasses with a refractive power of −1.35 D. Determine the distance between her glasses and eyes.
Answer:
[tex]d=0.019m[/tex]
Explanation:
From the question we are told that:
Far point [tex]x=0.759m[/tex]
Refractive power [tex]P=-1.35 D.[/tex]
Generally, the equation for Focal length is mathematically given by
[tex]F=\frac{1}{P}[/tex]
[tex]F=\frac{1}{-1.35}[/tex]
[tex]F=-0.74m[/tex]
Therefore
[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}[/tex]
Where
[tex]u=o[/tex]
[tex]\frac{1}{-0.74}=\frac{1}{0}+\frac{1}{v}[/tex]
[tex]v=-0.74m[/tex]
Therefore,The between her glasses and eyes
[tex]d=x-v[/tex]
[tex]d=0.759-0.74m[/tex]
[tex]d=0.019m[/tex]
A stone with a mass of 0.100kg rests on a frictionless, horizontal surface. A bullet of mass 2.50g traveling horizontally at 500m/s strikes the stone and rebounds horizontally at right angles to its original direction with a speed of 300m/s.
A) Compute the magnitude of the velocity of the stone after it is struck.
B) Compute the direction of the velocity of the stone after it is struck. (degrees from the initial direction of the bullet)
Answer:
Explanation:
Given that:
mass of stone (M) = 0.100 kg
mass of bullet (m) = 2.50 g = 2.5 ×10 ⁻³ kg
initial velocity of stone ([tex]u_{stone}[/tex]) = 0 m/s
Initial velocity of bullet ([tex]u_{bullet}[/tex]) = (500 m/s)i
Speed of the bullet after collision ([tex]v_{bullet}[/tex]) = (300 m/s) j
Suppose we represent [tex](v_{stone})[/tex] to be the velocity of the stone after the truck, then:
From linear momentum, the law of conservation can be applied which is expressed as:
[tex]m*u_{bullet} + M*{u_{stone}}= mv_{bullet}+Mv_{stone}[/tex]
[tex](2.50*10^{-3} \ kg) (500)i+0 = (2.50*10^{-3} \ kg)(300 \ m/s)j + (0.100 \ kg)v_{stone}[/tex]
[tex](2.50*10^{-3} \ kg) (500)i- (2.50*10^{-3} \ kg)(300 \ m/s)j= (0.100 \ kg)v_{stone}[/tex]
[tex]v_{stone}= (1.25\ kg.m/s)i-(0.75\ kg m/s)j[/tex]
[tex]v_{stone}= (12.5\ m/s)i-(7.5\ m/s)j[/tex]
∴
The magnitude now is:
[tex]v_{stone}=\sqrt{ (12.5\ m/s)^2-(7.5\ m/s)^2}[/tex]
[tex]\mathbf{v_{stone}= 14.6 \ m/s}[/tex]
Using the tangent of an angle to determine the direction of the velocity after the struck;
Let θ represent the direction:
[tex]\theta = tan^{-1} (\dfrac{-7.5}{12.5})[/tex]
[tex]\mathbf{\theta = 30.96^0 \ below \ the \ horizontal\ level}[/tex]
g A thin uniform film of oil that can be varied in thickness covers a sheet of glass of refractive index 1.52. The refractive index of the oil is 1.64. Light of wavelength 555 nm is shone from air at normal incidence on the film. Starting with no oil on the glass, you gradually increase the thickness of the oil film until the first interference maximum in the reflected light occurs. What is the thickness of the oil film at that instant
Answer:
The right solution is "84.09 nm".
Explanation:
The given values are:
Refractive index of glass,
= 1.52
Refractive index of oil (n),
= 1.64
Wavelength (λ),
= 555 nm
Now,
The thickness of the film (t) will be:
= [tex]\frac{\lambda}{4n}[/tex]
= [tex]\frac{555}{4\times 1.65}[/tex]
= [tex]\frac{555}{6.6}[/tex]
= [tex]84.09 \ nm[/tex]
what are the two main types of sound like soundwave
Answer:
acoustic energy and mechanical energy
Explanation:
each type of sounds has to be tackled in their own way.
You want to swim from one side of a river to another side. Assume your speed is three miles per hour in the west direction, with negligible water velocity. When you reach a certain point, you will encounter water flow with a velocity of 6.2 miles per hour in the north direction. What is your resultant speed and direction
Answer:
speed = 6.71 mph and angle is 71.2 degree.
Explanation:
speed of person, u = 3 miles per hour
speed of water, v = 6 miles per hour
Resultant speed
[tex]V =\sqrt{v^2 + u^2}\\\\V = \sqrt{3^2 + 6^2}\\\\V = 6.71 mph[/tex]
The angle from the west is
tan A = 6/2 = 3
A = 71.6 degree
describe four energy changes that happen in the process.
Driving a motor........
chemical energy is converted into kinetic energy.
Falling off of cliff
.........gravitational potential energy is converted into kinetic energy.
Hydroelectric energy generation
.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.
Nuclear power generation
.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.
What is the mass of the diver in (Figure 1) if she exerts a torque of 2200 N⋅m on the board, relative to the left (A) support post?
A-->B = 1.0m
B--> end of board = 3.0m
Answer:
56.1 kg
Explanation:
Given
[tex]T = 2200Nm[/tex] -- torque
[tex]d_1 = 1.0m[/tex]
[tex]d_2 = 3.0m[/tex]
Required
The mass of the diver
From the question, we understand that the diver is at the extreme of the board.
So, we make use of the following torque equation
[tex]T = F * (d_1 + d_2)[/tex]
Where:
[tex]F \to Force[/tex]
So, we have:
[tex]2200 = F * (1.0 + 3.0)[/tex]
[tex]2200 = F * 4.0[/tex]
Divide both sides by 4.0
[tex]550 = F[/tex]
[tex]F = 550 N[/tex] --- This is the force exerted by the diver (in other words, the weight).
To calculate the mass, we use:
[tex]F = mg[/tex]
Make m the subject
[tex]m = \frac{F}{g}[/tex]
This gives:
[tex]m = \frac{550}{9.8}[/tex]
[tex]m = 56.1kg[/tex]
What is a measure between the difference in start and end positions?
Answer:
Displacement
General Formulas and Concepts:
Kinematics
Displacement vs Total DistanceExplanation:
Displacement is the difference between the start position and end position.
Total Distance is the entire distance traveled between the start and end position.
Topic: AP Physics 1 Algebra-Based
Unit: Kinematics
A solenoid has a length , a radius , and turns. The solenoid has a net resistance . A circular loop with radius is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance . At a time , the solenoid is connected to a battery that supplies a potential . At a time , what current flows through the outer loop
This question is incomplete, the complete question is;
A solenoid has a length 11.34 cm , a radius 1.85 cm , and 1627 turns. The solenoid has a net resistance of 144.9 Ω . A circular loop with radius of 3.77 cm is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance of 1651.6 Ω. At a time of 0 s , the solenoid is connected to a battery that supplies a potential 34.95 V. At a time 2.58 μs , what current flows through the outer loop?
Answer:
the current flows through the outer loop is 1.3 × 10⁻⁵ A
Explanation:
Given the data in the question;
Length [tex]l[/tex] = 11.34 cm = 0.1134 m
radius a = 1.85 cm = 0.0185 m
turns N = 1627
Net resistance [tex]R_{sol[/tex] = 144.9 Ω
radius b = 3.77 cm = 0.0377 m
[tex]R_o[/tex] = 1651.6 Ω
ε = 34.95 V
t = 2.58 μs = 2.58 × 10⁻⁶ s
Now, Inductance; L = μ₀N²πa² / [tex]l[/tex]
so
L = [ ( 4π × 10⁻⁷ ) × ( 1627 )² × π( 0.0185 )² ] / 0.1134
L = 0.003576665 / 0.1134
L = 0.03154
Now,
ε = d∅/dt = [tex]\frac{d}{dt}[/tex]( BA ) = [tex]\frac{d}{dt}[/tex][ (μ₀In)πa² ]
so
ε = μ₀n [tex]\frac{dI}{dt}[/tex]( πa² )
ε = [ μ₀Nπa² / [tex]l[/tex] ] [tex]\frac{dI}{dt}[/tex]
ε = [ μ₀Nπa² / [tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
I = ε/[tex]R_o[/tex] = [ μ₀Nπa² / [tex]R_o[/tex][tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
so we substitute in our values;
I = [ (( 4π × 10⁻⁷ ) × 1627 × π(0.0185)²) / (1651.6 ×0.1134) ] [ ( 34.95 / 0.03154)e^( -2.58 × 10⁻⁶ / 144.9 ) ]
I = [ 2.198319 × 10⁻⁶ / 187.29144 ] [ 1108.116677 × e^( -1.7805 × 10⁻⁸ )
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.116677 × 0.99999998 ]
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.11665 ]
I = 1.3 × 10⁻⁵ A
Therefore, the current flows through the outer loop is 1.3 × 10⁻⁵ A
Answer:
1.28 *10^-5 A
Explanation:
Same work as above answer. Needs to be more precise
A space ship has four thrusters positioned on the top and bottom, and left and right as shown below. The thrusters can be operated independently or together to help the ship navigate in all directions.
Initially, the Space Probe is floating towards the East, as shown below, with a velocity, v. The pilot then turns on thruster #2.
Select one:
a.
Space ship will have a velocity to the West and will be speeding up.
b.
Space ship will have a velocity to the East and will be speeding up.
c.
Space ship will have a velocity to the East and will be slowing down.
d.
Space ship will have a velocity to the West and will be slowing down.
e.
Ship experiences no change in motion.
Answer:
The correct answer is - c. Spaceship will have a velocity to the East and will be slowing down.
Explanation:
In this case, if turned on thruster #2 then it will exert force on the west side as thruster 2 is on the east side and it can be understood by Newton's third law that says each action has the same but opposite reaction.
As the spaceship engine applies force on the east side then according to the law the exhauster gas applies on towards west direction. It will try to decrease the velocity of the spaceship however, the direction of floating still be east side initally.
A car is traveling at 118 km/h when the driver sees an accident 85 m ahead and slams on the brakes. What minimum constant deceleration is required to stop the car in time to avoid a pileup
Answer:
The constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
Explanation:
From the question, the car is traveling at 118 km/h, that is the initial velocity, u = 118km/h
The distance between the car and the accident at the moment when the driver sees the accident is 85 m, that is s = 85 ,
Since the driver slams on the brakes and the car will come to a stop, then the final velocity, v = 0 km/h = 0 m/s
First, convert 118 km/h to m/s
118 km/h = (118 × 1000) /3600 = 32.7778 m/s
∴ u = 32.7778 m/s
Now, to determine the deceleration, a, required to stop,
From one of the equations of motion for linear motion,
v² = u² + 2as
Then
0² = (32.7778)² + 2×a×85
0 = 1074.3841 + 170a
∴ 170a = - 1074.3841
a = - 1074.3841 / 170
a = - 6.3199
a ≅ - 6.32 m/s²
Hence, the constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²
Vặt nhỏ được ném lên từ điểm A trên mặt đất với vận tốc đầu 20m/s theo phương thẳng đứng. Xác định độ cao của điểm O mà vật đạt được. Bỏ qua ma sát
Explanation:
mặt đất với vận tốc ban đầu 20m/s. Bỏ qua mọi ma sát, lấy g = 10 m/s2. Độ cao cực đại mà vật đạt được là.
What distance do I cover if I travel at 10 m/s E for 10s?
Answer:
100m
Explanation:
i think this is the answer because the formula for distance is
d=speed×time in this case the speed is 10m/s and the time is 10s therefore the distance will be
10m/s×10s
=100m
I hope this helps
Answer:
100 m
Explanation: this is when you need to find velocity and the formula for velocity is displacement by time taken.
A rock is suspended by a light string. When the rock is in air, the tension in the string is 37.8 N. When the rock is totally immersed in water, the tension is 32.0 N. When the rock is totally immersed in an unknown liquid, the tension is 20.2 N. What is the Density of the unknown liquid?
When the rock is suspended in the air, the net force on it is
∑ F₁ = T₁ - m₁g = 0
where T₁ is the magnitude of tension in the string and m₁g is the rock's weight. So
T₁ = m₁g = 37.8 N
When immersed in water, the tension reduces to T₂ = 32.0 N. The net force on the rock is then
∑ F₂ = T₂ + B₂ - m₁g = 0
where B₂ is the magnitude of the buoyant force. Then
B₂ = m₁g - T₂ = 37.8 N - 32.0 N = 5.8 N
B₂ is also the weight of the water that was displaced by submerging the rock. Let m₂ be the mass of the displaced water; then
5.8 N = m₂g ==> m₂ ≈ 0.592 kg
If one takes the density of water to be 1.00 g/cm³ = 1.00 × 10³ kg/m³, then the volume of water V that was displaced was
1.00 × 10³ kg/m³ = m₂/V ==> V ≈ 0.000592 m³ = 592 cm³
and this is also the volume of the rock.
When immersed in the unknown liquid, the tension reduces further to T₃ = 20.2 N, and so the net force on the rock is
∑ F₃ = T₃ + B₃ - m₁g = 0
which means the buoyant force is
B₃ = m₁g - T₃ = 37.8 N - 20.2 N = 17.6 N
The mass m₃ of the liquid displaced is then
17.6 N = m₃g ==> m₃ ≈ 1.80 kg
Then the density ρ of the unknown liquid is
ρ = m₃/V ≈ (1.80 kg)/(0.000592 m³) ≈ 3040 kg/m³ = 3.04 g/cm³
A skateboarder travels on a horizontal surface with an initial velocity of 3.6 m/s toward the south and a constant acceleration of 1.8 m/s^2 toward the east. Let the x direction be eastward and the y direction be northward, and let the skateboarder be at the origin at t=0.
a. What is her x position at t=0.60s?
b. What is her y position at t=0.60s?
c. What is her x velocity component at t=0.60s?
d. What is her y velocity component at t=0.60s?
Answer:
a) The x-position of the skateboarder is 0.324 meters.
b) The y-position of the skateboarder is -2.16 meters.
c) The x-velocity of the skateboard is 1.08 meters per second.
d) The y-velocity of the skateboard is -3.6 meters per second.
Explanation:
a) The x-position of the skateboarder is determined by the following expression:
[tex]x(t) = x_{o} + v_{o,x}\cdot t + \frac{1}{2}\cdot a_{x} \cdot t^{2}[/tex] (1)
Where:
[tex]x_{o}[/tex] - Initial x-position, in meters.
[tex]v_{o,x}[/tex] - Initial x-velocity, in meters per second.
[tex]t[/tex] - Time, in seconds.
[tex]a_{x}[/tex] - x-acceleration, in meters per second.
If we know that [tex]x_{o} = 0\,m[/tex], [tex]v_{o,x} = 0\,\frac{m}{s}[/tex], [tex]t = 0.60\,s[/tex] and [tex]a_{x} = 1.8\,\frac{m}{s^{2}}[/tex], then the x-position of the skateboarder is:
[tex]x(t) = 0\,m + \left(0\,\frac{m}{s} \right)\cdot (0.60\,s) + \frac{1}{2}\cdot \left(1.8\,\frac{m}{s^{2}} \right) \cdot (0.60\,s)^{2}[/tex]
[tex]x(t) = 0.324\,m[/tex]
The x-position of the skateboarder is 0.324 meters.
b) The y-position of the skateboarder is determined by the following expression:
[tex]y(t) = y_{o} + v_{o,y}\cdot t + \frac{1}{2}\cdot a_{y} \cdot t^{2}[/tex] (2)
Where:
[tex]y_{o}[/tex] - Initial y-position, in meters.
[tex]v_{o,y}[/tex] - Initial y-velocity, in meters per second.
[tex]t[/tex] - Time, in seconds.
[tex]a_{y}[/tex] - y-acceleration, in meters per second.
If we know that [tex]y_{o} = 0\,m[/tex], [tex]v_{o,y} = -3.6\,\frac{m}{s}[/tex], [tex]t = 0.60\,s[/tex] and [tex]a_{y} = 0\,\frac{m}{s^{2}}[/tex], then the x-position of the skateboarder is:
[tex]y(t) = 0\,m + \left(-3.6\,\frac{m}{s} \right)\cdot (0.60\,s) + \frac{1}{2}\cdot \left(0\,\frac{m}{s^{2}}\right)\cdot (0.60\,s)^{2}[/tex]
[tex]y(t) = -2.16\,m[/tex]
The y-position of the skateboarder is -2.16 meters.
c) The x-velocity of the skateboarder ([tex]v_{x}[/tex]), in meters per second, is calculated by this kinematic formula:
[tex]v_{x}(t) = v_{o,x} + a_{x}\cdot t[/tex] (3)
If we know that [tex]v_{o,x} = 0\,\frac{m}{s}[/tex], [tex]t = 0.60\,s[/tex] and [tex]a_{x} = 1.8\,\frac{m}{s^{2}}[/tex], then the x-velocity of the skateboarder is:
[tex]v_{x}(t) = \left(0\,\frac{m}{s} \right) + \left(1.8\,\frac{m}{s} \right)\cdot (0.60\,s)[/tex]
[tex]v_{x}(t) = 1.08\,\frac{m}{s}[/tex]
The x-velocity of the skateboard is 1.08 meters per second.
d) As the skateboarder has a constant y-velocity, then we have the following answer:
[tex]v_{y} = -3.6\,\frac{m}{s}[/tex]
The y-velocity of the skateboard is -3.6 meters per second.
b. Block on an incline
A block of mass mı = 3.9 kg on a smooth inclined plane of angle 38° is connected by a cord over a small frictionless
pulley to a second block of mass m2 = 2.6 kg hanging vertically. Take the positive direction up the incline and use 9.81
m/s2 for g.
What is the tension in the cord to the nearest whole number?
Block on the incline:
• net force parallel to the incline
∑ F (para.) = m₁ g sin(38°) - T = m₁ a
where T is the magnitude of tension in the cord.
Notice that we take down-the-incline to be the positive direction, so that if the 3.9-kg block pulls the 2.6-kg block upwards, then the acceleration of the system is positive.
Suspended block:
• net vertical force
∑ F (vert.) = T - m₂ g = m₂ a
Solve both equations for the acceleration a, set the results equal to one another, and solve for T :
a = g sin(38°) - T/m₁
a = T/m₂ - g
==> g sin(38°) - T/m₁ = T/m₂ - g
==> T (1/m₂ + 1/m₁) = g (sin(38°) + 1)
==> T = g (sin(38°) + 1) / (1/m₂ + 1/m₁)
==> T = (9.81 m/s²) (sin(38°) + 1) / (1/(2.6 kg) + 1/(3.9 kg)) ≈ 25 N
An electron is moving through a magnetic field whose magnitude is 83 x 10-5 T. The electron experiences only a magnetic force and has an acceleration of magnitude 34 x 10+13 m/s2. At a certain instant, it has a speed of 72 x 10+5 m/s. Determine the angle (less than 90°) between the electron's velocity and the magnetic field.
Answer:
the angle between the electron's velocity and the magnetic field is 19⁰
Explanation:
Given;
magnitude of the magnetic field, B = 83 x 10⁻⁵ T
acceleration of the electron, a = 34 x 10¹³ m/s²
speed of the electron, v = 72 x 10⁵ m/s
mass of electron, m = 9.11 x 10⁻³¹ kg
The magnetic force experienced by the electron is calculated as;
F = ma = qvB sinθ
where;
q is charge of electron = 1.602 x 10⁻¹⁹ C
θ is the angle between the electron's velocity and the magnetic field.
[tex]sin(\theta ) = \frac{ma}{qvB} \\\\sin(\theta ) = \frac{(9.11\times 10^{-31})(34\times 10^{13})}{(1.602\times 10^{-19})\times (72\times 10^5) \times (83 \times 10^{-5})} \\\\sin(\theta ) = 0.3235\\\\\theta =sin^{-1}(0.3235)\\\\\theta =18.9^0[/tex]
[tex]\theta \approx 19^ 0[/tex]
Therefore, the angle between the electron's velocity and the magnetic field is 19⁰
1. A body moving with uniform acceleration of 10 m/s2 covers a distance of 320 m. if its initial velocity was 60 m/s. Calculate its final velocity.
Answer:
v² = u² + 2as
v² = 3600 + 6400
v² = 10000
v = 100
Explanation:
final velocity is 100 m/s
According to third equation of kinematics
[tex]\boxed{\sf v^2-u^2=2as}[/tex]
[tex]\\ \sf\longmapsto v^2=u^2+2as[/tex]
[tex]\\ \sf\longmapsto v^2=(60)^2+2(10)(320)[/tex]
[tex]\\ \sf\longmapsto v^2=3600+3400[/tex]
[tex]\\ \sf\longmapsto v^2=10000[/tex]
[tex]\\ \sf\longmapsto v=\sqrt{10000}[/tex]
[tex]\\ \sf\longmapsto v=100m/s[/tex]