1. Vectors A and B have equal magnitudes of 22. The sum of A and B is 26.5j. What is the angle between A and B in degrees?

2. a) At a football game, imagine the line of scrimmage is the y-axis. A player, starting at the y-axis, runs 11.5 yards, back (in the −x-direction), then 15.0 yards parallel to the y-axis (in the −y-direction). He then throws the football straight downfield 50.0 yards in a direction perpendicular to the y-axis (in the +x-direction). What is the magnitude of the displacement (in yards) of the ball?

b) What if: The receiver that catches the football travels 65.0 additional yards at an angle of 45.0° counterclockwise from the +x-axis away from the quarterback's position and scores a touchdown. What is the magnitude of the football's total displacement (in yards) from where the quarterback took the ball to the end of the receiver's run?

Answers

Answer 1

The angle between vectors A and B is approximately 78.3 degrees. The magnitude of the displacement of the ball is approximately 52.2 yards. The magnitude of the ball's total displacement is approximately 58.7 yards.

1) The sum of two vectors A and B is given by (A+B).

Let's write the vectors given in the problem as:

Vector A: A

Vector B: B

Now we can calculate their sum and solve the problem: A + B = 26.5j

We also know that the magnitudes of vectors A and B are equal and given as 22. That is: |A| = 22|B| = 22.

We can use this to solve for the angles of vector A and B. Recall that in a two-dimensional vector space, the angle between two vectors can be found using the dot product of those vectors.

Specifically, the dot product is given by: A · B = |A| |B| cos(θ), where θ is the angle between A and B.

Solving for θ, we get:θ = cos⁻¹((A · B) / (|A| |B|))

Plugging in the values we know, we get: θ = cos⁻¹((22*22 + 22*22 - 26.5*26.5) / (2*22*22))≈ 78.3°

Therefore, the angle between vectors A and B is approximately 78.3 degrees.

2a) The player starts at the origin (where the y-axis intersects the x-axis), runs 11.5 yards in the negative x-direction, then runs 15 yards in the negative y-direction, and finally throws the ball 50 yards in the positive x-direction.

We can calculate the displacement of the ball using the Pythagorean theorem.

We know that the ball moves 50 yards in the x-direction and 15 yards in the negative y-direction, so its displacement in the x-direction is 50 yards and its displacement in the y-direction is -15 yards.

Therefore, the total displacement (d) is: d² = 50² + (-15)² = 2500 + 225 = 2725d = sqrt(2725) ≈ 52.2 yards

Therefore, the magnitude of the displacement of the ball is approximately 52.2 yards.

2b) We know that the receiver catches the ball 50 yards downfield from the quarterback's starting position, and then travels an additional 65 yards at an angle of 45 degrees counterclockwise from the positive x-axis.

To calculate the magnitude of the ball's total displacement, we can break it down into its x- and y-components. The x-component of the ball's displacement is simply the 50 yards it travels downfield. The y-component of the ball's displacement is the sum of the y-components of the quarterback's displacement (which is -15 yards) and the receiver's displacement (which is 65 sin(45) = 45.8 yards in the positive y-direction).

Therefore, the total displacement in the y-direction is: dy = -15 + 45.8 = 30.8 yards

The total displacement (d) is: d² = dx² + dy² = 50² + 30.8² = 2500 + 947.04 = 3447.04d = sqrt(3447.04) ≈ 58.7 yards

Therefore, the magnitude of the ball's total displacement is approximately 58.7 yards.

To know more about Pythagorean theorem refer to:

https://brainly.com/question/343682

#SPJ11


Related Questions

Telecommunications line is modelled as series RLC circuit with R = 1 Ohm/km, L = 1 H/km, C =1 F/km. Input = 1V sinusoid at 1kHz. The output is the voltage across the capacitor. At what distance (to the nearest km) will the system have lost half its power?

Answers

The impedance of a series RLC circuit with R = 1 Ohm/km, L = 1 H/km, C = 1 F/km and a sinusoidal input of 1V at 1kHz is given by:

[tex]Z = sqrt(R^2 + (wL - 1/(wC))^2)[/tex]Given:

w is 2πf

= 2π(1kHz)

= 2000π Ohms,

[tex]Z = sqrt(1^2 + (2000π*1 - 1/(2000π))^2)[/tex]

= 2000Ω

Half of the power will be lost when the voltage is divided by sqrt(2). The output voltage of the series RLC circuit is given by:

[tex]Vout = Vin(ZC)/(sqrt(R^2 + (ZC)^2))[/tex]

At half power, the voltage is divided by sqrt(2) = 0.707V. Substituting the known values in the equation:

[tex]0.707 = 1*2000/(sqrt(1^2 + (2000π*C)^2))[/tex]

Solving for C:

C = 1/(2000π*sqrt((1/2000π)^2 - 1/2000^2))

= 2.192e-11 F/km

The impedance of the circuit is given by:

Z = sqrt(R^2 + (wL - 1/(wC))^2)

= sqrt(1^2 + (2000π*1 - 1/(2000π*2.192e-11))^2)

= 2011.6Ω/km

The voltage drops across the series circuit components are:

VR = I*R

VL = I*wL

VC = I/(wC)

The phase angle between the voltage and current is given by:

φ = tan^(-1)((wL - 1/(wC))/R)

Therefore:

φ = tan^(-1)((2000π*1 - 1/(2000π*2.192e-11))/1)

= 86.45 degrees

Power factor, cosφ = cos 86.45

= 0.0529

The power loss at any distance (x) in the circuit is given by:

P = (I^2*R)x + (I^2*wL)x + (I^2/(wC))x

Since the input voltage is 1V, the current is given by:

I = V/Z = 1/2011.6 = 4.97e-4

Half power is reached when the power is half of the total input power, which is 0.5W. The total input power is given by:

[tex]Pin = I^2*R*x[/tex]

Substituting known values in the equation above:

1 = (4.97e-4)^2*1*x

x = 20,082 km

Answer: The system will have lost half its power at a distance of 20,082 km (approximately).

To know more about impedance visit:

https://brainly.com/question/30475674

#SPJ11

For the given circuit, ignoring ro but include substrate effect.
a. Identify the configuration
b. Find the small signal gain
C. For what value of Rs would the gain becomes maximum and what will be the value of maximum gain?
d. Find Rout.

Answers

The configuration of the given circuit is unspecified, making it impossible to identify its specific configuration or calculate small signal gain, maximum gain, or output resistance without additional information. configuration identification, small signal gain calculation, determining maximum gain, and finding the output resistance (Rout).

(a) The configuration of the given circuit is not specified in the question. To determine the configuration, more information or a diagram of the circuit is needed.

(b) Without knowing the configuration of the circuit, it is not possible to calculate the small signal gain. The small signal gain depends on the specific circuit configuration and the values of the components used.

(c) Similarly, without knowledge of the circuit configuration, it is not possible to determine the value of Rs at which the gain becomes maximum, nor the value of the maximum gain. These values would depend on the specific circuit design and the parameters of the components used.

(d) The output resistance (Rout) of the circuit cannot be determined without knowing the specific circuit configuration and the values of the components. The output resistance depends on the arrangement and characteristics of the components in the circuit.

To learn more about configuration, Click here: brainly.com/question/31821559

#SPJ11

An X-ray machine produces X-ray by bombarding a molybdenum ( Z=42 ) target with a beam of electrons. First, free electrons are ejected from a filament by thermionic emission and are accelerated by 25kV of potential difference between the filament and the target. Assume that the initial speed of electrons emitted from the filament is zero. For the calculation of characteristic X-ray, use σ=1 for the electron transition down to K shell (n=1) and σ=7.4 for the electron transition down to L shell (n=2). (a) What is the minimum wavelength of electromagnetic waves produced by bremsstrahlung? (6 pt) (b) What is the energy of the characteristic X-ray photon when an electron in n=4 orbital moves down to n=2 in the molybdenum target? ( 5 pt) (c) What is the frequency of the characteristic X-ray in part (b)? (2 pt) (d) What is the energy the characteristic X-ray photon when an electron in n=2 orbital moves down to n= 1 in the molybdenum target? ( 5 pt) (e) What is the frequency of the characteristic X-ray in part (d)? (2 pt)

Answers

(a) The minimum wavelength of electromagnetic waves produced by bremsstrahlung is 0.491 nm.

Given, Initial speed of the emitted electrons, u = 0 m/s

Potential difference between the filament and target, V = 25 kV = 25,000 V

Charge of an electron, e = 1.6 × 10⁻¹⁹ C

Planck’s constant, h = 6.63 × 10⁻³⁴ Js

Speed of light, c = 3 × 10⁸ m/s

Electrons are accelerated by a potential difference between the filament and the target. The change in kinetic energy of the electron is equal to the work done by the electric field. The expression for the change in kinetic energy of the electron is given by

KE = eV … (1)

where

KE = kinetic energy of electron,

Ve = potential difference between the filament and the target, and e = charge of electron

The maximum kinetic energy of the electron is given by

KEmax = eV … (2)

where

KEmax = maximum kinetic energy of electron

When the accelerated electrons strike the target atoms, they slow down due to Coulombic interaction with the atomic nuclei. The kinetic energy lost by the electrons is emitted as electromagnetic radiation, called bremsstrahlung radiation.

The minimum wavelength of electromagnetic waves produced by bremsstrahlung radiation is given by

λmin = hc/KEmax … (3)

where

hc = Planck’s constant × speed of light

KEmax = maximum kinetic energy of electron

Substituting the given values in equation (2), we get

KEmax = eV= 1.6 × 10⁻¹⁹ C × 25,000

V= 4 × 10⁻¹⁵ J

Substituting the given values in equation (3), we get

λmin = hc/KEmax

= 6.63 × 10⁻³⁴ Js × 3 × 10⁸ m/s/4 × 10⁻¹⁵ J

= 0.491 nm

Therefore, the minimum wavelength of electromagnetic waves produced by bremsstrahlung is 0.491 nm.(b) The energy of the characteristic X-ray photon when an electron in n = 4 orbital moves down to n = 2 in the molybdenum target is 0.63 keV

The minimum wavelength of electromagnetic waves produced by bremsstrahlung is 0.491 nm.

The energy of the characteristic X-ray photon when an electron in n=4 orbital moves down to n=2 in the molybdenum target is 0.63 keV.

The frequency of the characteristic X-ray in part (b) is 2.42 × 10¹⁸ Hz.

The energy the characteristic X-ray photon when an electron in n=2 orbital moves down to n= 1 in the molybdenum target is 17.4 keV.

The frequency of the characteristic X-ray in part (d) is 4.17 × 10¹⁸ Hz.

To know more about electromagnetic waves, visit:

https://brainly.com/question/29774932

#SPJ11

We have a rocket with a mass launched vertically from the ground with a constant upward acceleration a. Upon reaching a height h, it experiences engine failure and the only force acting on it is gravity. For m= 8500 [kg], a = 2.5[m/s²], h= 550[m], solve the (i) maximum height the rocket will reach above the ground, (ii) elapsed time after engine failure before the rocket comes crashing down to the ground, and (iii) velocity just before it crashes. (iv) Sketch the acceleration, velocity, and displacement versus time graphs of its motion from launch to just before it strikes the ground with values. Assume negligible air resistance.

Answers

i) The maximum height the rocket will reach above the ground is 1451.86 m

ii)  The elapsed time after engine failure before the rocket comes crashing down to the ground is 37.196 s

ii) The velocity just before it crashes is 52.27 m/s

iv)  At the point of impact, the velocity is 52.27 m/s.

Given, the mass of the rocket, m = 8500 kg

The acceleration, a = 2.5 m/s²

The height reached by the rocket, h = 550 m

(i) The maximum height the rocket will reach above the ground

The velocity of the rocket when it reaches the maximum height can be obtained as:

v² - u² = 2as

Here, u = 0, since the rocket starts from rest.

v² = 2as

v² = 2 × 2.5 × 550

v² = 2750

v = 52.44 m/s

The time taken to reach the maximum height can be obtained as:

v = u + at

t = v / at

= 52.44 / 2.5

t = 20.976 s

Maximum height reached by the rocket

= h + ut + 1/2 at²

Maximum height reached by the rocket

= 550 + 0 × 20.976 + 1/2 × 2.5 × (20.976)²

Maximum height reached by the rocket = 1451.86 m

Therefore, the maximum height the rocket will reach above the ground is 1451.86 m

(ii) Elapsed time after engine failure before the rocket comes crashing down to the ground

When the engine fails, the rocket moves upward with the initial velocity,

v = 52.44 m/st

= v / gt

= 52.44 / 9.8t

= 5.346 s

The time taken to reach the maximum height is

t = 20.976 s

The time taken to fall back to the ground can be obtained as:

t = √(2 × 1451.86 / 9.8)

t = 16.22 s

Therefore, the elapsed time after engine failure before the rocket comes crashing down to the ground is

20.976 + 16.22 = 37.196 s

(iii) Velocity just before it crashes

Velocity just before it crashes can be obtained as:

v = u + gt

t = v / gt

= 52.44 / 9.8

t = 5.346 s

The velocity just before it crashes can be obtained as:

v = u + gt

= 0 + 9.8 × 5.346

v = 52.27 m/s

Therefore, the velocity just before it crashes is 52.27 m/s

(iv) Sketch the acceleration, velocity, and displacement versus time graphs of its motion from launch to just before it strikes the ground with values
Acceleration versus time graph: [image] Velocity versus time graph: [image] Displacement versus time graph: [image] Here, we can see that when the rocket reaches the maximum height, the velocity becomes zero. At that point, the displacement of the rocket is 1451.86 m. After that, the rocket falls back to the ground and the velocity increases in the downward direction. At the point of impact, the velocity is 52.27 m/s.

To know more about elapsed time visit:

https://brainly.com/question/29775096

#SPJ11

Transmission Line Dispersion
A transmission line with no leakage (Go = 0) is carrying a signal with angular frequency
ω = 105 rad s−1. The capacitance per unit length is Co = 10−7 Fd m−1 and the inductance per
unit length is 10−5 H m−1, and the length of the line is 100 m.
A. If the resistance per unit length Ro = 0, how long does it take the signal to travel from
one end of the line to the other?
B. If there is some resistance per unit length, Ro = 1 Ω m−1, then the propagation constant
γ will be a function of frequency and the line becomes dispersive.
What is the propagation constant in this case?
C. In the case of part B, how long does it take the signal to get from one end of the line to
the other?
D. At what angular frequency, ω, will the time needed to go from one end to the other be
two times the result in part A?

Answers

The angular frequency ω at which the time taken to go from one end to the other is two times the result in part A is 1.65 × 109 rad/s.

A) If the resistance per unit length Ro = 0, then the characteristic impedance and the propagation constant will become

\[{Z_c} = \sqrt {\frac{L}{{C}}}

           = 1000\Omega \& \& {\gamma _o}

           = j\sqrt {\omega LC}  

           = j1\;

{\rm{rad/m}}\]

The velocity of propagation on the line is

v = ω/γo

  = 105/1
  = 105 m/s.

The time taken for the signal to travel from one end of the line to the other can be calculated as

t = L/v

  = 100/105

  = 0.95 s.

B) If Ro = 1 Ωm−1, then the propagation constant becomes

\[\gamma  = \sqrt {j\omega \left( {L + R\Delta x} \right)\left( {C + \frac{\Delta x}{R}} \right)}  

                = j0.9949\;

{\rm{rad/m}}\]

C) The time taken for the signal to travel from one end of the line to the other can be calculated as  

t = L/v

  = L/ωIm[γ]

   = L/ωβ,

where β is the phase constant.

Thus, t = 100/(105 × 0.9949)

           = 0.952 s.

D) The time taken for the signal to travel from one end of the line to the other is 2t = 1.9 s.

Thus, using the relation obtained in part C, we have

\[2t = \frac{2L}{{\omega \beta }}

     = \frac{{2L}}{{\omega \sqrt {{{\left( {L + R\Delta x} \right)}\left( {C + \frac{\Delta x}{R}} \right)}} }}\]

Rearranging the above equation gives

\[{\omega ^2} = \frac{{4{L^2}}}{{{{\left( {2t\sqrt {{\rm{LC}}} } \right)}^2} + {L^2}{\rm{R}}\Delta x}}

                      = 1.65 \times {10^9}\;

{\rm{rad}}{{\rm{s}}^{ - 1}}\]

Therefore, the angular frequency ω at which the time taken to go from one end to the other is two times the result in part A is 1.65 × 109 rad/s.

Learn more about angular frequency from the given link

https://brainly.com/question/3654452

#SPJ11

An unknown liquid flows smoothly through a Part A 6.0−mm-diameter horizontal tube where the pressure gradient is 540 Pa/m. Then the tube What is the pressure gradient in this narrower portion of the tube? diameter gradually shrinks to 3.0 mm. Express your answer in pascals per meter.

Answers

An unknown liquid flows smoothly through a Part A 6.0−mm-diameter horizontal tube where the pressure gradient is 540 Pa/m. Then the tube pressure gradient in this narrower portion of the tube is 43,200 Pa/m.

The pressure gradient, defined as the amount of pressure difference per unit length, changes when an unknown fluid flows smoothly through a tube that decreases in diameter. The formula for pressure gradient is:$$\frac{∆P}{∆x} = \frac{8ηQ}{πr^4}$$. Where ∆P/∆x is the pressure gradient, η is the viscosity, Q is the flow rate, r is the radius of the tube, and π is pi. When a liquid flows smoothly through a 6.0-mm-diameter horizontal tube with a pressure gradient of 540 Pa/m, the pressure gradient is calculated in Pascals per meter.

As the diameter of the tube gradually decreases to 3.0 mm, the pressure gradient changes.

According to the formula,∆P1/∆x1 = (8ηQ) / πr1^4 and ∆P2/∆x2 = (8ηQ) / πr2^4

The radius and flow rate of the fluid are constant, while the viscosity and pressure change.

Therefore, the pressure gradient in the narrower portion of the tube is:$$\frac{∆P2}{∆x2} = \frac{\frac{8ηQ}{πr_1^4}}{\frac{π}{4}(r_2)^2} = \frac{128ηQ}{π^3(r_2)^4}$$

Substituting the given values, we obtain:$$∆P2/∆x2 = 8 (540) × (6/3)^4 = 43,200 Pa/m$$, so the pressure gradient in the narrower part of the tube is 43,200 Pa/m.

Learn more about  Pascals at:

https://brainly.com/question/30777634

#SPJ11

4. A 230 V single phase feeder has resistance and reactance per km= 1.5+j 0.6 Ω. Feeder length is 1.5 km. (a) What is the load it can supply with % VD =5%, if, i. The load is uniformly distributed ii. Located at the feeder end iii. Uniformly decreasing along the length of the feeder (b) If the feeder is 3 phase 3 wire line with balanced 400V supply, find the load for different conditions given in (a).

Answers

a) For the given single-phase feeder, the resistance and reactance per km are 1.5 + j0.6 Ω and the feeder length is 1.5 km.

(i) For a uniformly distributed load, the power loss in the feeder is as follows:

Power loss = I2R (W)

The current flowing in the feeder is given by:

I = V / Z, where Z is the impedance of the feeder. The impedance of the feeder is calculated as follows:

Z = R + jXZ = 1.5 + j0.6 Ω

The voltage drop in the feeder is given by:

Vd = IZ% VD = (Vd / V) × 1005 / 100 = (Vd / 230) × 100

Therefore, the voltage at the load end is:

VL = V - VdVL = V (1 - %VD/100)VL = 230 (1 - 0.05)VL = 230 × 0.95VL = 218.5 V

The current in the feeder is:

I = V / ZI = 218.5 / (1.5 + j0.6)I = 130.91 - j52.36 A

The load that can be supplied is:

PL = VL×ILPL = 218.5 × 130.91PL = 28602.8 Watt

(ii) For a load located at the feeder end, the voltage drop is zero. Hence, the voltage at the load end is 230 V. The current in the feeder is:

I = V / ZI = 230 / (1.5 + j0.6)I = 138.67 - j55.47 A

The load that can be supplied is:

PL = VL×ILPL = 230 × 138.67PL = 31907.1 Watt

(iii) For a uniformly decreasing load along the length of the feeder, let the load at the far end be x times the load at the near end. Then, the voltage at the far end is:

VLf = V - IZL = V (1 - %VD/100)VLf = 230 × 0.95

The current at the far end is:

If = V / ZLIf = VLf / Z

The voltage at the near end is:

VLn = VLf + VdVLn = 230

If the current at the near end is:

In = VLn / Z

The current variation along the feeder is linearly proportional to the variation of load along the length of the feeder.So, the average current can be calculated as follows:

Avg current = (If + In) / 2

The load can be calculated using the average current and voltage as follows:

PL = V(avg) × I(avg)b)

b) If the feeder is a 3-phase 3-wire line with a balanced 400V supply, then for a star-connected load, each phase voltage is 230V. The phase impedance is:

Zp = Z

The line impedance is:

Zl = √3 Z

The line voltage is:

VL = √3 × 230 = 397.96 V

For uniformly distributed load:

VLf = VL = 397.96 VVLn = VL - Vd = 397.96 (1 - 0.05) = 378.06 VIf = VLf / ZlIn = VLn / Zl

Avg current = (If + In) / 2PL = V(avg) × I(avg), Where V(avg) = (VLf + VLn) / 2I(avg) = (If + In) / 2

Similarly, for load located at the feeder end and uniformly decreasing load, the load can be calculated by using the formulas mentioned above for a 3-phase feeder.

Learn more about single-phase feeder from the given link:

https://brainly.com/question/32831235

#SPJ11

Alexander touches an energized tower for 0.3 s and his body weight is 70 kg. The resistivity at the surface layer and at a distance of 0.3 m inside the soil are found to be 70 and 50 Q-m, respectively. Determine the surface layer derating factor, touch and step potential.

Answers

The surface layer derating factor, touch, and step potential for a person who touches an energized tower for 0.3 seconds, has a body weight of 70 kg, and the resistivity at the surface layer and at a distance of 0.3 m inside the soil are found to be 70 and 50 Q-m, respectively, are 0.64, 9.8 kV, and 8.1 kV, respectively.

It is essential to take adequate precautions when working around energized electrical equipment. Touch voltage and step voltage can cause significant electrical injuries or even death. Alexander weighs 70 kg and touches an energized tower for 0.3 seconds. The resistivity at the surface layer and 0.3 m inside the soil is 70 and 50 Q-m, respectively.

The derating factor for the surface layer is given by the formula:

k = (ρ_2/(ρ_1 + ρ_2 ))^0.5

k = (50/(70 + 50 ))^0.5

k = 0.64

The touch potential is given by the formula:

Vt = k × [(Rh+ Rg)/Rh] × Ve

Vt = 0.64 × [(2 + 110)/2] × 11 kV

Vt = 9.8 kV

The step potential is given by the formula:

Vs = k × [(Rh+ Rg)/(Rh+ 2Rg)] × Ve

Vs = 0.64 × [(2 + 110)/(2 + 2 × 110)] × 11 kV

Vs = 8.1 kV

Thus, the surface layer derating factor, touch potential, and step potential for Alexander are 0.64, 9.8 kV, and 8.1 kV, respectively.

Learn more about step voltage here:

https://brainly.com/question/10351636

#SPJ11

The Rubidium-87 isotope has a half-life of 47.5 billion years and it decays to Strontium-87 100% of the time (Strontium-87 is a stable element). The Rubidium-87 isotope is used to determine the age of rocks. The rocks have a ratio of Strontium-87/Rubidium-87 of 0.064. Assuming that there was no Strontium-87 was present when the rocks were formed and assuming that all the Strontium-87 was produced by the radioactive decay of Rubidium-87, what is the age of these rocks?

Answers

The rocks are approximately 1.48 billion years old based on the decay of Rubidium-87 to stable Strontium-87 and the ratio of Strontium-87/Rubidium-87 in the rocks.

The age of the rocks can be determined by using the ratio of Strontium-87 (Sr-87) to Rubidium-87 (Rb-87) and the known half-life of Rb-87. Since Sr-87 is a stable element and does not undergo radioactive decay, any Sr-87 found in the rocks must have been produced from the decay of Rb-87 over time.

The given ratio of Sr-87/Rb-87 in the rocks is 0.064. This means that for every 0.064 atoms of Sr-87, there is 1 atom of Rb-87. By knowing the half-life of Rb-87 (47.5 billion years), we can determine the number of half-lives that have occurred since the rocks were formed.

To calculate the number of half-lives, we can use the following formula:

Number of half-lives = log(base 2) (Sr-87/Rb-87 ratio)

Applying this formula, we get:

Number of half-lives = log(base 2) (0.064) ≈ -4.978

Since we can't have a negative number of half-lives, we take the absolute value:

Number of half-lives ≈ 4.978

Next, we multiply the number of half-lives by the half-life of Rb-87 to determine the age of the rocks:

Age = Number of half-lives * Half-life of Rb-87

Age ≈ 4.978 * 47.5 billion years ≈ 1.48 billion years

Learn more about Rubidium

brainly.com/question/28838867

#SPJ11

Which of the following is the adequate Nyquist frequency for the following signal x(t)? x (t) = 3 cos 50xt + 10 sin 300zt - cos 100t A) 50 Hz B) 100 Hz C) 150 Hz D) 200 Hz E) 300 Hz

Answers

Nyquist rate is defined as the minimum sampling rate necessary for the reconstruction of a signal from its samples without aliasing. The Nyquist rate is double the bandwidth of the signal. The Nyquist rate for a continuous-time signal is half the sampling rate at which it is sampled.

The Nyquist frequency for the given signal x(t) is the half of the minimum sampling rate required to sample the signal without aliasing. The highest frequency present in the signal is 300 Hz. So, the sampling rate for the signal x(t) must be greater than 600 Hz for perfect reconstruction.

Hence, the Nyquist frequency of x(t) must be greater than or equal to 300 Hz. Answer: E) 300 Hz. The Nyquist frequency should be equal to or greater than the highest frequency present in the signal to avoid aliasing. Therefore, E) 300 Hz is the correct answer to the given question.

To know more about signal visit:-

https://brainly.com/question/31746145

#SPJ11

please answer the following as soon as possible.

A) Ahadu is doing the exploding watermelon challenge (*do not try this at home). After wrapping the 10 kg watermelon in elastic bands it explodes into 3 pieces that fly off - a 2.4 kg piece flies to the [N] at 4.00 m/s and a 1.6 kg piece goes 8.49 m/s [S45°W].

Find the velocity of the third piece (round to 2 decimal places, and remember to include a direction).

B) As part of Jayden's aviation training they are practicing jumping from heights. Jayden's 25 m bungee cord stretches to a length of 28 m at the end of his jump when he is suspended (at rest) waiting to be raised up again. Assuming Jayden has a mass of 65 kg, use Hooke's law to find the spring constant of the bungee cord.

C)A 5 kg monkey comes down a slide. The slide is 4 meters high and the 'slide length' is 5 meters long. The slide also has a frictional force of 12 N that acts along the entire length of the slide. Assuming the monkey starts from rest, use Conservation of Energy Equations to determine how fast the monkey is going when they reach the bottom? Round your answer in m/s to 2 decimal places.

Answers

The monkey is going at 6.36 m/s when it reaches the bottom of the slide. Let the velocity of the third piece be v₃. The total momentum before the explosion = Total momentum after the explosion. Therefore, mv = m₁v₁ + m₂v₂ + m₃v₃

A) Given data

Mass of watermelon, m = 10 kg

Velocity of 2.4 kg piece, v₁ = 4 m/s

Velocity of 1.6 kg piece, v₂ = 8.49 m/s [S45°W]

Let the velocity of the third piece be v₃. The total momentum before the explosion = Total momentum after the explosion. Therefore, mv = m₁v₁ + m₂v₂ + m₃v₃

The mass of the third piece = m₃ = m - m₁ - m₂

Substituting the given values and solving for v₃, we get,v₃ = 10.7 m/s [N61.9°W]

Therefore, the velocity of the third piece is 10.7 m/s [N61.9°W].

B) Given data

Length of the bungee cord, L = 25 m

Maximum extension of the cord, x = 28 m

Mass of Jayden, m = 65 kg

Hooke's law is given by, F = kx

where, F is the force applied to the spring

k is the spring constant

x is the extension of the spring

From the given data, the force acting on the bungee cord is,

F = mg

where, g is the acceleration due to gravity. Substituting the values, we get,

F = 65 × 9.8

F = 637 N

From Hooke's law, F = kx

Substituting the given values, we get, 637 = k × (28 - 25)k = 212.33 N/m

Therefore, the spring constant of the bungee cord is 212.33 N/m.

C) Given data

Mass of monkey, m = 5 kg

Height of slide, h = 4 m

Length of slide, l = 5 m

Frictional force, f = 12 N

Initially, the monkey is at rest. Therefore, initial velocity, u = 0.

Let the final velocity of the monkey be v. Using conservation of energy equations, the potential energy at the top of the slide is converted to kinetic energy at the bottom of the slide, and is lost as heat and sound energy due to friction.

mgh = (1/2)mu² + (1/2)mv² + fl

Substituting the given values and solving for v, we get, v = 6.36 m/s

Therefore, the monkey is going at 6.36 m/s when it reaches the bottom of the slide.

To know more about momentum visit:

https://brainly.com/question/30677308

#SPJ11

because of the release of the neurotransmitter dopamine, people who express that they are madly in love are likely to report that they feel

Answers

people who express being madly in love are likely to report feeling intense emotions such as euphoria, happiness, excitement, and a strong desire for closeness. However, it's essential to recognize that the experience of love is complex and involves multiple neurochemical processes.

Because of the release of the neurotransmitter dopamine, people who express that they are madly in love are likely to report feeling a range of intense emotions. Dopamine is associated with feelings of pleasure, reward, and motivation, and its release in the brain can contribute to the euphoric sensations commonly experienced in the early stages of romantic love.

Individuals who are madly in love often describe feeling a sense of exhilaration, happiness, and an overall heightened state of well-being. They may experience increased energy levels, a sense of excitement and anticipation, and a general feeling of being "on top of the world." Additionally, the release of dopamine can enhance feelings of attraction and attachment, leading to an intense desire to be close to the person they love.

However, it is important to note that while dopamine plays a significant role in the initial stages of romantic love, long-term love and attachment involve other neurotransmitters and hormones, such as oxytocin and vasopressin. These chemicals contribute to feelings of trust, bonding, and long-term commitment.

In conclusion, people who express being madly in love are likely to report feeling intense emotions such as euphoria, happiness, excitement, and a strong desire for closeness. However, it's essential to recognize that the experience of love is complex and involves multiple neurochemical processes.

Learn more about neurochemical processes

https://brainly.com/question/20373629

#SPJ11

The cotationaf motionin A.n and \( C \) are at the carge vilirection The rotatienal mation in A.A are the simer and in the opposite direction for \( C \) Question 8 The remote manipulator system (RMS)

Answers

The remote manipulator system (RMS) is a robot system with teleoperation capabilities. It is also known as the Canadarm. It is a space shuttle attachment used to perform tasks in space.

It has two arms, one with a grappling device and one with a long, articulated boom with a camera and other tools on it.

The Canadarm can be controlled remotely by astronauts on the ground or in orbit. The RMS has six joints that allow it to move in many different directions.

The joints are controlled by a computer system that takes input from sensors on the arm. The rotational motion in A and C are in the opposite direction, with the rotational motion in A being clockwise and that in C being counterclockwise.

To learn more about manipulator visit;

https://brainly.com/question/28701456

#SPJ11

2. Consider a design of a Point-to-Point link connecting Local Area Network (LAN) in separate buildings across a freeway for Distance of 25 miles which uses Line of Sight (LOS) communication with unlicensed spectrum 802.11b at 2.4GHz. The Maximum transmit power of 802.11 is P = 24 dBm and the minimum received signal strength (RSS) for 11 Mbps operation is -80 dBm. Calculate the received signal power and verify the result is adequate for communication or not? (15 Marks)

Answers

The received signal power is adequate for communication.

'The link budget equation is used to calculate the received signal strength. It is calculated by subtracting the losses in the path from the transmitter power to the receiver. When designing point-to-point connections, the following factors are usually considered to ensure good link performance:

Antenna heights

Antenna alignment (Horizontal and vertical)

Antenna gain

Frequency  

Bandwidth

Atmospheric conditions

Path Loss

Calculate the Free Space Path Loss (FSPL):

FSPL = 32.4 + 20log (f) + 20log (d)

where:

f = frequency (GHz)d = distance between transmitter and receiver (km)

FSPL = 32.4 + 20log (2.4) + 20log (25) = 32.4 + 28.81 + 14.77 = 76.98 dB

Atmospheric Losses For 2.4GHz, the atmospheric losses are given as:

L_a = 1.33 × (d/1km)⁰°⁵ = 1.33 × (25/1)⁰°⁵  = 6.65 dB

Losses in Connectors and Other Equipment

Assuming that there is a 1 dB connector loss and a 2 dB other equipment loss, the total losses would be 3 dB.

Feedline Losses

Assuming a feedline loss of 2 dB, the total loss will be 5 dB.

Gain of Antennas

Let's assume an antenna gain of 20 dB at both the transmitter and receiver sides.

Total Losses:

Total losses = FSPL + L_a + losses in connectors and other equipment + feedline losses

= 76.98 + 6.65 + 3 + 5 = 91.63 dB

Power Received by the Receiver:

Power received by the receiver (P_r) = P_t - Total losses where P_t is the transmitter power.

Power received by the receiver (P_r) = 24 dBm - 91.63 dB = -67.63 dBm

Therefore, the received signal power is adequate for communication as the minimum received signal strength (RSS) for 11 Mbps operation is -80 dBm and the calculated power is greater than this.

Thus, we can conclude that the received signal power is adequate for communication.

To know more about signal power, visit:

https://brainly.com/question/14699772

#SPJ11

In a PV system, when are batteries generally outputting charge to the loads? Midday Sunny Days Solar Noon Night time, cloudy days Question 43 (1 point) The electrolyte in a Battery refers to the: +ve

Answers

In a PV system, the batteries are generally outputting charge to the loads during night time and cloudy days. This is because during night time and cloudy days, the solar panels are not able to generate enough electricity to fulfill the energy demands of the loads and therefore the batteries are used as a backup to provide electricity to the loads.

The electrolyte in a battery refers to the substance which conducts electricity in a battery. In a lead-acid battery, the electrolyte is made up of a mixture of sulfuric acid and water. The sulfuric acid is used as the conducting medium which allows the flow of electrons between the anode and cathode terminals of the battery.

The electrolyte also helps in the charging and discharging process of the battery by releasing or absorbing hydrogen ions depending on the direction of the current flow.Batteries are an essential component of PV systems as they provide a reliable source of backup power during times when there is not enough sunlight to generate electricity. The batteries store excess energy generated by the solar panels during the day and release it when needed, allowing the PV system to meet the energy demands of the loads even during times of low sunlight.

To know more about batteries visit:

https://brainly.com/question/32201761

#SPJ11

In the design of a cam with the following characteristics

A slide follower moves a total slide height of 2"
At the beginning of the cycle, the follower is at rest between degrees 0° and 120°
Suffers a 2" elevation with cycloidal movement between 120° and 270° degrees
Suffers a 2" return with simple harmonic motion between 270° and 360° degrees
The diameter of the base circle is 2".
What is the height of the follower (from the center of rotation of the cam) at degree 60 of the cam?

Answers

The height of the follower from the center of rotation of the cam at 60 degrees is -0.83 units. A cam is a rotating machine element that imparts a specified motion to a follower or a groove.

In many engineering applications, cams are widely used because they have a simple design, produce motion without gears, and are easy to maintain.

Suffers a 2" return with simple harmonic motion between 270° and 360° degrees. The diameter of the base circle is 2".First of all, the base circle of a cam is to be drawn with a diameter of 2 units.

The follower's maximum height is 2 units, and it goes up 2 units over 150 degrees, from 120 to 270 degrees. From 0 to 120 degrees, the follower remains at 0 units of height.

From 270 to 360 degrees, the follower comes down with simple harmonic motion of 2 units over 90 degrees. This is shown in the diagram below:

The radius of the cam at 60 degrees can be found using the formula: RC = R cosθ + Hsinθ Where: RC is the radius of the cam at any angleθ is the angle H is the height of the cam, R is the radius of the base circle. The angle θ = 60 degrees.

R = 1 (since the diameter of the base circle is 2 units)H = 0 for θ = 0 to 120 degrees.

H = 2sin[(θ - 120)π /150] for θ

= 120 to 270 degrees H

= 2cos[(θ - 270)π /180] for θ

= 270 to 360 degrees

Substitute the values in the formula for the radius of the cam at 60 degrees. RC = R cosθ + HsinθR60

= 1 cos 60° + 2sin[(60 - 120)π /150]R60

= 0.5 + 2sin(240π /150)R60

= 0.5 - 1.33R60

= -0.83 units

Thus, the height of the follower from the center of rotation of the cam at 60 degrees is -0.83 units.

To know more about motion, refer

https://brainly.com/question/25951773

#SPJ11

The electric field phasor of a monochromatic wave in a medium described by = 48. = μ, and o=0 is Ē (F)=[ix₂ + 2x₂]ex [V/m]. What is the polarization of the wave?

Answers

The polarization of the wave is zero.The given electric field phasor of a monochromatic wave in a medium described by ε = 48. ε0 = μ0, and o = 0 is Ē (F) = [ix₂ + 2x₂]ex [V/m].The polarization of the wave can be calculated using the formula given below:Polarization P= Q * E Where,Q is the electric charge, andE is the electric field.

The electric charge and electric field of the wave can be calculated using the given formulae,Electric charge Q= ∫ ρ dV Where,ρ is the charge density, and dV is the volume element.The charge density of the wave is ρ = 0. The integral will be zero. Hence, the electric charge of the wave is zero.Electric field E = ∇ x ĒWhere,Ē is the electric field phasor, and∇ is the gradient operator.The electric field phasor is given as Ē (F) = [ix₂ + 2x₂]ex [V/m].

The gradient of the given electric field phasor can be calculated as follows,∇ Ē(F) = ∂Ēx / ∂x + ∂Ēy / ∂y + ∂Ēz / ∂zwhere Ēx = ix₂ and Ēy = 2x₂, Ēz = 0Thus, ∇ Ē(F) = i(∂x₂ / ∂x)ex + 2(∂x₂ / ∂y)eyThe partial derivatives ∂x₂ / ∂x and ∂x₂ / ∂y are non-zero. Thus, the electric field of the wave is non-zero, and the polarization of the wave can be defined.Polarization P = Q * E = 0 * Ē (F) = 0 Thus, the polarization of the wave is zero.

To know more about electric visit:-

https://brainly.com/question/33513737

#SPJ11

What does it mean by instantaneous value in alternating current? a) The maximum value measured from the mean value of a waveform. b) The maximum variation between the maximum positive value and negative value. c) The magnitude of a waveform at any time, position or rotation. d) The absolute value of voltage or current at the frequency of 50 Hz.

Answers

Instantaneous value in alternating current is the magnitude of a waveform at any time, position or rotation. This implies that it is the value of the voltage or current at a specific moment in time.

It is denoted as i(t) or v(t) and it varies from one moment to the next in the waveform of alternating current.In simple terms, Instantaneous value in alternating current is the value of an alternating current signal at a given point in time. It is the voltage or current reading at a specific point in time within a complete cycle of an AC signal. It changes its value at every point in time.

This is because AC signals continuously alternate between positive and negative cycles. Therefore, instantaneous value varies constantly.For example, if an AC signal is passing through a resistor, the current would be directly proportional to the voltage and it would follow the same waveform. In case the waveform is sinusoidal, the instantaneous value of the current is given as i(t) = Ipeak sin(ωt).  

To know more about  alternating current visit:-

https://brainly.com/question/31609186

#SPJ11


A light that is 3.56 times the distance from its source will
have an intenisty of _______ W/m2. Round your answer to
the thousandths place or three decimal places.

Answers

A light that is 3.56 times the distance from its source will have an intensity of 150.000 W/m2.

To calculate the intensity of a wave, the formula is given as ;

I = P/A

Where P is the power of the wave, and A is the surface area.

If the wave is spherical, then the surface area is given as A = 4πr2

Thus;

I = P/4πr2

The intensity is usually measured in watts per square meter (W/m2).

So, the power is in watts, and the surface area is in meters squared (m2).

Example:

If a spherical wave has a power of 100 W and a radius of 5 m,

Then the intensity can be calculated as;

I = P/4πr2= 100/(4π x 52)= 1 W/m2 (rounded to the nearest thousandth)

Therefore, the intensity of the wave is 1 W/m2.

Round off to the nearest thousandth is a rounding procedure where you round the final result to the third decimal place.

To learn more about intensity of a wave:

https://brainly.com/question/12904883

#SPJ11

The low temperature (T∼4 K) optical absorption spectrum of a very pure direct gap semiconductor, is shown below, where intensity of absorption is plotted as a function of photon energy. Peak energies of the peaks A and B are 1.36eV and 1.465eV, respectively. The threshold of the absorption continuum C is 1.5eV. (a) What are the physical origins of the absorption continuum C and the peaks A and B? (b) The static dielectric constant of the semiconductor is 10, and the hole effective mass is much smaller than the electron effective mass (m
h


≪m
e


). What is the direct band gap energy of this semiconductor? Calculate the hole effective mass. (FYI, the Rydberg unit of energy is 13.6eV.)

Answers

a.The peaks appear as distinct absorption bands in the semiconductor.

b.The direct band gap energy of the semiconductor is approximately 1.44 eV.

It can be explained as follows:

Absorption Continuum C: The absorption continuum C represents the absorption of photons that have energy equal to or greater than the band gap energy of the semiconductor. In this range, electrons in the valence band are excited to the conduction band by absorbing photons with sufficient energy. The absorption continuum is typically broad and continuous because there are various electronic transitions that can occur within the band structure of the semiconductor.

Peaks A and B: Peaks A and B in the absorption spectrum correspond to specific energy levels or transitions within the band structure of the semiconductor. These peaks arise from more well-defined electronic transitions, such as excitonic transitions or transitions involving impurity states.

(b) Given that the static dielectric constant of the semiconductor is 10 and the hole effective mass is much smaller than the electron effective mass (m_h* << m_e*), we can use the effective mass approximation to estimate the direct band gap energy and calculate the hole effective mass.

The direct band gap energy (E_g) of a semiconductor can be related to the Rydberg unit of energy (Ry) as follows:

E_g = (Ry / e)^2

where ε is the static dielectric constant.

Substituting the given values, we have:

E_g = (13.6 eV / 10)^2 = 1.44 eV

To calculate the hole effective mass (m_h*), more information about the semiconductor's band structure or specific characteristics is needed. The given information about the dielectric constant and the ratio of effective masses does not provide sufficient data to determine the hole effective mass.

To learn more about peaks

https://brainly.com/question/30667400

#SPJ11

5. A square boat with a mass of 544 g is placed in a tank of corn syrup. The corn syrup has a density of 1.36 g/mL. The boat has a base that measu How far will the boat sink into the com syrup? A. 4.17 cm B. $25 cm Q. 8.50 cm 0.11.56 cm 1. A motorboat has a mass of 2,300 kg and is floating in a lake. The boat has a rectangular bottom with a length of 3 meters and a width of 2 meters What mass of Water will be displaced by the boat? A. 234 kg E 383 kg C. 2.300 kg D. 13800 kg

Answers

The mass of the square boat is 544 g. The density of corn syrup is 1.36 g/mL. The boat's base measures as 3.6 cm x 3.6 cm. Let the distance the boat sinks be x cm below the surface of the corn syrup.To calculate the height to which the syrup rises on the boat, we may use the following formula:

`V_syrup = m_boat / rho_syrup``V_syrup = (544 g) / (1.36 g/mL)`We will get `V_syrup = 400 mL.`.

The submerged part of the boat displaces 400 mL of corn syrup. The displaced volume of the boat is the volume of the square pyramid with height x and a 3.6 cm square base. We can express it as:`

V_boat = 1/3 × 3.6^2 × x``400 mL = 1/3 × 3.6^2 × x``400 mL = 4.8x``x = 83.3 mL = 0.0833 L`

Therefore, the boat will sink into the corn syrup by 8.33 cm. Hence, option (Q) 8.50 cm is the correct answer.1.

The length of the boat's rectangular bottom is 3 meters, and the width is 2 meters. Let's determine the volume of water displaced by the boat. To do that, we can use the following formula:

`V_boat = l × w × h``V_boat = 3 m × 2 m × h``V_boat = 6 h m^3`

The volume of water displaced by the boat is equal to its volume, which is equal to 6h m³. The weight of this displaced water is equal to the weight of the floating boat, which is 2,300 kg. We can use the following formula to calculate the weight of the displaced water:

`F = mg``m_water × g = m_boat × g``m_water = m_boat = 2,300 kg`Therefore, the mass of the displaced water is 2,300 kg. Hence, option (C) 2,300 kg is the correct answer.

To know more about mass visit:

https://brainly.com/question/11954533

#SPJ11

An ore sample weighs 16.20 N in air. When the sample is suspended by a light cord and totally immersed in water, the tension in the cord is 12.90 N. Find the total volume and the den- sity of the sample.

Answers

The density of the sample is 1249 kg/m³.

Given that an ore sample weighs 16.20 N in air.

When the sample is suspended by a light cord and totally immersed in water, the tension in the cord is 12.90 N.

We are supposed to find the total volume and the density of the sample.

Concept used:

Archimedes' principle states that the weight of the fluid displaced by an object is equal to the weight of the object.

Hence, when an object is completely or partially immersed in a liquid, it experiences a buoyant force that is equal to the weight of the liquid displaced by the object.

Mathematically, we can write the formula as:

Fb=ρgV

where Fb is the buoyant force, ρ is the density of the fluid, V is the volume of the displaced fluid, and g is the acceleration due to gravity.

Using the above formula, let us calculate the volume of the ore sample displaced in the water.

As per the question, the tension in the cord is 12.90 N when the ore sample is totally immersed in water.

So, the buoyant force Fb acting on the ore sample is:

Fb=12.90 N

As the ore sample is totally immersed in the water, it is displacing some amount of water which is equal to the volume of the ore sample.

Let the volume of the ore sample be V.

Then we can use the Archimedes' principle to get:

Fb=ρgV

where ρ is the density of the fluid (water) and g is the acceleration due to gravity.

Substituting the values of Fb, ρ and g in the above equation we get:

12.90=1000×9.8×V

Solving the above equation,

we get the value of V=0.001319 m³

Therefore, the total volume of the ore sample is 0.001319 m³

Density of the ore sample is given by the formula:

Density=mass/volume

Given that the mass of the ore sample is 16.20 N.

Mass m of the sample is equal to its weight w divided by the acceleration due to gravity g.

So we have m=w/g

=16.20/9.8 kg

= 1.653 kg.

Hence the density of the ore sample is given by:

Density=m/volume

= 1.253 / 0.001319 kg/m³

= 1249 kg/m³

Therefore, the density of the sample is 1249 kg/m³.

To know more about density visit:

https://brainly.com/question/29775886

#SPJ11

Question 7 The coldest temperature ever recorded at ground level on Earth Was recorded in 1983 at the Soviet Vostok Station in Antarctica, where a measurement of −128.6

F was taken, If a person having a body temperature of 98.6

F and an emissivity a person taving 0.98 were to stand outside on that day, how much en enssivity of 0.98 to solve this is not being provide - one of the values that is need in the problem or on the equation sheet or reforing provided in the problem or on the with an estimated reence info sheet. I want you to be sure to list and label this with the appropriate variable in your be sure to list and Edit View Insert form frsub=
V
obj


V
sub



=
V
obj


V
ft



=
rho
f


rho
ot



y=
L
F

h=
rhogr
2γcosθ

A
1

v
1

=A
2

v
2

P+
2
1

rhov
2
+rhogy= consta
t
E

=(P+
2
1

rhov
2
+rhogy)Q η=
vA
FL

R=
πr
4

8nl

Q=
R
P
2

−P
1



N
n

=
η
2pvr

N
g


=
η
rhovL

x
rms

=
2Dt

T
X

=T
c

+273.15 Ch. 1 rho=
V
m

P=
A
F

\begin{tabular}{l|l}
A
1


F
1



=
A
2


F
2



& PV=N \\ P=rhogh & n=
N
A


N

\end{tabular}

Answers

The energy(E) emitted by the surroundings can be expressed as, E s = σ × ε∞ × As × (T s⁴ − T∞⁴)As = 1.6 m²The total energy balance(TEB) for the person, E s = Ep E s = Ep = σ × ε∞ × As × (T s⁴ − T∞⁴)σ × ε∞ × As × (T s⁴ − T∞⁴) = 774.17σ = 5.67 × 10⁻⁸ W/m².K⁴, As = 1.6 m²,Ts = (−128.6 − 32) × 5/9 + 273.15 = 145.55 K∴ ε∞ = 0.79.

Answer: ε∞ = 0.79

Given information: The coldest temperature(t) ever recorded at ground level on Earth was recorded in 1983 at the Soviet Vostok Station(SVS) in Antarctica, where a measurement of −128.6∘F was taken, If a person having a body t of 98.6∘F and an emissivity(em) a person having 0.98 were to stand outside on that day, how much em of 0.98 to solve this is not being provide - one of the values that is need in the problem or on the equation sheet or reforing provided in the problem or on the with an estimated reference info sheet. The e emitted by the person and energy absorbed by the surroundings are in balance. Let the temperature of the surroundings be T∞ and the emissivity of the surroundings be ε∞.

For a person having a body temperature of 98.6∘F and an emissivity a person having 0.98, the energy emitted by the person can be calculated as, Ep = σ × εp × Ap × (Tp⁴ − T∞⁴)For the person, A p = 1.6 m², σ = 5.67 × 10⁻⁸ W/m².K⁴, Tp = (98.6 − 32) × 5/9 + 273.15 = 310.95 Kinetic Energy(KE) p = (5.67 × 10⁻⁸) × 0.98 × 1.6 × (310.95⁴ − (−128.6 − 32) × 5/9 + 273.15⁴)= 774.17 W The energy absorbed by the person from the surroundings can be calculated as, Ep = σ × ε∞ × A p × (Tp⁴ − T∞⁴)

To know more about Emissivity visit:

https://brainly.com/question/33283981

#SPJ11

6. A body starts moving in a straight line under the influence of a variable force F. The time after which the initial velocity of the body becomes equal to final velocity of body, for the given F-t graph, will be F(N) 4 →t(sec) 2 0 (1) (2-√√2) s (3) (2+√2) s (2) (2+√3) s (4) (2√2+2) s

Answers

Given the F(t) graph, we can observe that the area under the curve represents the change in momentum or impulse. Let's analyze the graph and calculate the final velocity and the time it takes for the initial velocity to become equal to the final velocity.

1. Impulse Calculation:

The impulse (J) is equal to the area under the graph. In this case, the area can be divided into a triangle (PQR) and a rectangle (QSTU).

Impulse J = area of triangle PQR + area of rectangle QSTU

Impulse J = 1/2(base)(height) + (base)(height) = 1/2(2)(4) + (2)(2) = 6 N s

2. Using the formula of impulse:

mv - mu = J

Since the body is initially at rest (u = 0), the equation simplifies to:

mv = J

3. Final Velocity Calculation:

v = J/m

4. Acceleration Calculation:

a = F/m

Here, F is the sum of the forces F1 and F2.

F = F1 + F2 = 4 + 2√2, where F1 = 4 N and F2 = 2√2 N

5. Time Calculation:

t = J/(am)

t = 6/(4 + 2√2)m

6. Final Velocity Calculation:

v = at = J/m² x 6/(4 + 2√2)

Final velocity v = (2 + √2) m/s

7. Time for Initial Velocity to Match Final Velocity:

The time after which the initial velocity of the body becomes equal to the final velocity of the body, for the given F-t graph, will be (2 + √2) seconds.

To know more about momentum visit:

https://brainly.com/question/30677308

#SPJ11

Two particles are fixed to an x axis: particle 1 of charge q
1

=2.73×10
−8
C at x=24.0 cm and particle 2 of charge q
2

=−4.00q
1

at x=78.0 cm. At what coordinate on the x axis is the electric field produced by the particles equal to zero? Number Units

Answers

The electric field produced by the particles is equal to zero at the point x = 0.788 m or 78.8 cm (correct to two decimal places).

The electric field produced by the two particles are in opposite directions. The electric field at point P due to particle 1 is E1 and that due to particle 2 is E2. Therefore, we can write: E=P + E2where P is the position where the electric field is zero. Then,  P = - E2/E1

Let's calculate E1 and E2, firstly. Electric field E1 at point P due to particle 1 at x = 24.0 cmE1=k * q1 / r1²where k is Coulomb's constant, q1 is the charge of the first particle, and r1 is the distance of the first particle from point P. k=9.0×10^9 N⋅m²/C²  is Coulomb's constant.q1 = 2.73 × 10^-8 C is the charge of the first particle and r1= x - 24 cm  = x - 0.24m is the distance of the first particle from point P.

Then, E1 = k * q1 / r1²  = 9.0×10^9 * 2.73 × 10^-8 / (x - 0.24)²N/C The electric field E2 at point P due to particle 2 at x = 78.0 cm is calculated as follows: E2=k * q2 / r2²where q2 = - 4.00 q1 = -4.00 × 2.73 × 10^-8 = - 1.092 × 10^-7 C  and r2= x - 78 cm = x - 0.78 m is the distance of the second particle from point P. Then, E2=k * q2 / r2² = 9.0×10^9 * (-1.092 × 10^-7) / (x - 0.78)² N/C Now, we will substitute these values in the formula for P: P = - E2 / E1 = - 9.0×10^9 * (-1.092 × 10^-7) / [2.73 × 10^-8 (x - 0.24)]²P = 78.8 cm (correct to two decimal places).

To learn more about electric field:

https://brainly.com/question/30544719

#SPJ11

15. (a) The following data are collected for a modulus of rupture test on a refractory brick (refer to Equation 6.10 and Figure 6.14): F = 5.0 × 10¹N, L = 200 mm, b = 130 mm, and h = 80 mm. Calculate the modulus of rupture. (b) Suppose that you are given a similar refractory with the same strength and same dimensions except that its height, h, is only 60 mm. What would be the load (F) neces- cary to break this thinner refractory? diam

Answers

(a) The modulus of rupture is a strength test that measures the maximum load a material can withstand before it breaks. The formula for calculating the modulus of rupture is given as: MOR = FL / (2bh²)

Where,

MOR = Modulus of Rupture

F = Load applied

L = Span between the supports

b = Width

h = Height

In this case, we have F = 5.0 × 10¹ N, L = 200 mm, b = 130 mm, and h = 80 mm. Therefore, the modulus of rupture of the refractory brick can be calculated as follows:

MOR = (5.0 × 10¹ N)(200) / (2 × 130 × 80²)

MOR = 4.51 MPa

Therefore, the modulus of rupture of the refractory brick is 4.51 MPa.

(b) Suppose the new refractory brick has the same strength and dimensions as the previous one, except that the height, h, is only 60 mm. We can use the same formula to calculate the load necessary to break the thinner refractory brick:

F = (MOR × 2bh²) / L

F = ((4.51 × 10⁶) × 2 × (130) × (60²)) / 200

F = 1.92 × 10⁶ N

The load necessary to break the thinner refractory brick is 1.92 × 10⁶ N.

To know more about modulus of rupture visit:

https://brainly.com/question/30756002

#SPJ11

For a mass hanging from a spring, the maximum displacement the spring is stretched or compresses from its equilibrium position is the system's...

Answers

For a mass hanging from a spring, the maximum displacement spring is stretched or compressed from its equilibrium position is system's amplitude.In a mass-spring system, equilibrium position is position where spring is neither stretched nor compressed, and the mass is at rest.

When the system is disturbed and the mass is displaced from the equilibrium position, the spring exerts a restoring force that tries to bring the mass back to its equilibrium.The amplitude of the system represents the maximum displacement of the mass from the equilibrium position. It is the farthest point reached by the mass during its oscillations.

The amplitude determines the total range of motion of the system. It is directly related to the energy of the system, with larger amplitudes corresponding to higher energy levels. The amplitude also affects the period and frequency of the oscillations, with larger amplitudes leading to longer periods and lower frequencies.

To know more about equilibrium position refer:

https://brainly.com/question/12023115

#SPJ11


A bicycle and rider going 14m/s aproach a hill. Their
total mass is 85kg. what is their kinetic energy.

Answers

The total mass is 85 Kg, so the value of m is 85.4. Velocity v is given 14 m/s.5. The kinetic energy of a body in motion depends on its mass and velocity.

Given that a bicycle and rider going 14 m/s approach a hill and their total mass is 85 kg. We are supposed to find the kinetic energy.

Solution:The formula for kinetic energy (K) is given as;`

K = (1/2) mv²`Where m is the mass of the object and v is the velocity of the object.

So, the kinetic energy of the bicycle and rider is given as;`

K = (1/2) × 85 × (14)²`

K = 8330 Joules

Therefore, the kinetic energy of the bicycle and rider is 8330 Joules.Note:1. 1 Joule = 1 kg.m²/s².2. Units for Kinetic energy are Kg.m²/s².3.  

To know more about  Velocity visit:-

https://brainly.com/question/18084516

#SPJ11

c) Current is the flow of charges in a directed path. When we connect your mobile phone charger to the sockets in your various homes, charges start flowing through. Describe into details where these charges are generated from.

Answers

Electricity is a flow of electric charges in a circuit. In order for current to flow, there must be a source of electric potential difference, such as a battery, a generator, or a solar cell. This source produces the electric field that drives the electric charges through the circuit.

When you connect your mobile phone charger to the sockets in your various homes, charges start flowing through. The source of these charges is the electric power grid, which generates and distributes electricity to homes and businesses across the country. In the United States, this grid is a complex network of power plants, transformers, and transmission lines that spans thousands of miles.

The power plants generate electricity by converting the energy of a fuel, such as coal or natural gas, into electric potential difference, which drives the electric charges through the circuit. This potential difference is transmitted over high-voltage transmission lines to distribution substations, where it is stepped down to a lower voltage and distributed over local distribution lines to homes and businesses.

Therefore, the charges that flow through your mobile phone charger are generated by electric power plants, which convert the energy of a fuel into electric potential difference and transmit it over a complex network of transmission lines to homes and businesses.

To know more about potential difference, visit:

https://brainly.com/question/23716417

#SPJ11

A4. Instead of using jet thrusters to rotate a spacecraft, an engineer proposes using the reaction obtained when using an electric motor, attached to the spacecraft, to rotate a flywheel. Explain, wit

Answers

An engineer proposed using a flywheel and an electric motor to rotate a spacecraft instead of jet thrusters.

When a force is applied to a rotating flywheel, it induces a torque that is proportional to the rate of rotation of the flywheel. This torque causes the spacecraft to rotate in the opposite direction.

To begin the rotation of the flywheel, the electric motor is switched on. The motor spins the flywheel at a very high speed. The initial spin of the flywheel induces a torque that opposes the rotation of the spacecraft. As a result, the spacecraft experiences an equal and opposite torque that causes it to rotate in the direction opposite to that of the flywheel.

The torque induced by the flywheel is much higher than that produced by the jet thrusters. This means that the flywheel can produce a greater torque with less power than the jet thrusters. Additionally, the flywheel can maintain the spacecraft's rotation for a much longer time than jet thrusters can.

Therefore, the use of a flywheel and an electric motor offers a better and more efficient way to rotate a spacecraft.

To know more about torque visit:

https://brainly.com/question/30338175

#SPJ11

Other Questions
d) Wildflower paid \( \$ 3,000 \) owing to suppliers for supplies inventory that had been purchased on account (on credit) the previous menth. e) \( \$ 5,000 \) was paid for salaries. Of this amount, Please help me summarize the Article titled Electrify everything by Rick Smith Write a c++ program where a character string is given , what is the minimum amount of characters your need to change to make the resulting string of similar characters ?Write the program using maps or deque Input : 69pop66 Output : 4// we need to change minimum 4 characters so the string has the same characters ( change pop and 9) D(x)is the price, in dollars per tant, that consumers ate willing to pary forxunits of an atem, and S(x)is the ptice, in dollars per unit, that producers are willing to accept forxunits. Find (a) the equitibrium point, (b) the consursis surphes at the equilibrium point, and (c) the producer surplus at the equilibrium point.D(x)=(x8)2S(x)=x2+2x+10(a) What are the coordinates of the equilibetum point? (Type an ordered pair) Can you please explain Chua's circuit as a partial differentialequation in your field, and write a small report about its usage,classical methods to solve it, and numerical methods for solvingit.T Suppose the marginal cost is given by MC = 2x - 9. What is the minimum cost? a. x = 5b. x = 11/2 c. x = 9/2d. x = 4suppose the marginal revenue is MR = -x^3 + 16x. Find the interval where the revenue is increasing. a. (-4,0) U (4,[infinity])b. (-3,0) U (3,0)c. (-[infinity], -4)U(0,4)d. (-[infinity], -3) U(0,3) Explain why 100.0g of liquid water at 100.0C contains less thermal energy than 100.0g of water vapor at 100.0.C. (1 Mark) 18. What is the thermal energy needed to completely melt 5.67 mol of ice at 0.00.C? (2 Marks) 19. How much heat is required to boil away 75.0 g of H2O that has started at 35.0.C? (Hint: this requires 2 steps) (3 Marks) 20. What is the thermal energy needed to completely vaporize 12.78 g of water at 100.0.C? (2 Marks) the two prior years. During the current year, the corporation declares $288,000 in dividends. The amount paid to common shareholders is: explain how Scarboro Fair proved the Dark Ages was coming to an end. 4.24Audit risk and inventories LO1Bandits Bargains stocks thousands of items that range in value from $1 to $100. The inventories on hand represent a material portion of current assets. The merchandise items change according to the season and the promotional theme adopted by the stores management for the year. Merchandise is ordered up to four months in advance from Chinese and Korean suppliers. These special orders require Bandits Bargains to give the suppliers substantial deposits upon placement of the orders.RequiredIdentify the accounts (balance sheet and income statement) that are at risk of material misstatement for Bandits Bargains. Explain why they are at risk. All of the following can be legally protectable as trade secrets EXCEPTGroup of answer choicesinformation which is accessible by the general public.pricing information.customer lists.information which gives one company a competitive advantage over another.Delightful Toys, Inc., makes EZ Goo, a children's toy. Without Delightful's consent, Fast Adhesives Company begins to use "ezgoo" as part of the URL for Fast's Web site. Fast has likely committedGroup of answer choicestrademark infringement.copyright infringement.patent infringement.none of the above. Consider that you are interested in the commercial production of apples (or any other named fresh produce of your choice). Discuss factors or aspects that you would consider in the production and marketing of apples(or any other named fresh produce of your choice). Under the following headings: Pre-harvest factors (20) Harvesting (10) Precooling (20) Packing operations (8) Packaging (8) Storage (10) Transportation (8) Marketing (8) Retailing (8) NB. Your advice on each one of the above 16. erik erikson: people evolve through 8 stages over the life span. each stage marked by psychological crisis the feature in the photo is an apron of gravel and sand deposited at the mouth of a streambed that is leaving the mountains and entering a flat plain. this type of feature is called the ovary is located near the caudal pole of the __________. your patient has just delivered her baby. the infant is not crying or moving. you should: Consider the floating point system F(10,5,-5,4).Using a calculator that works on this system, indicate thelikely outcome ofw = (x - y) * w * z, where x = 11/7, y =1.5719, w = 1000 and z =379a) -0 Evaluate the magnitude spectrum for an FSK signal with alternating 1 and 0 data. Assume thatthe mark frequency is 50 kHz, the space frequency is 55 kHz, and the bit rate is 2,400 bitss. Findthe first null-to-null bandwidth. Discuss any impacts or drawbacks of bringing compacted garbage to the materials recovery facility..Pls use articles or sites for this question.explain your answers 5) A bird is flying at a velocity of 20 m/s in a direction of 60 north of east. Calculate: A) The velocity of the bird in the x & y direction B) How long does the bird take to go 100m north C) How far did the bird travel east in this amount of time