2: 0.5 kg of a mixture of gases made up of 40% methane, 30% hydrogen and the remaining argon is in a ciliaa?
Equipped with a mobile piston, initially at 40 pcs. If the exterm pressure is constantly monitored at 20 psi. How much heat should be provided to the gas to increase its volume by 30%?

Answers

Answer 1

To increase the volume of the gas mixture by 30%, a certain amount of heat needs to be provided. The exact amount of heat can be calculated using the ideal gas law and the concept of constant pressure.

1. Determine the initial volume of the gas mixture:

Given that the initial pressure (P₁) is 40 psi and the initial volume (V₁) is unknown, we can use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

Since the amount of gas is given in terms of mass, we need to convert it to moles. The molar masses of methane (CH₄), hydrogen (H₂), and argon (Ar) are 16 g/mol, 2 g/mol, and 40 g/mol, respectively.

Let's assume the mass of the gas mixture is 0.5 kg. Therefore, the mass of methane is 0.4 kg (40% of 0.5 kg), the mass of hydrogen is 0.15 kg (30% of 0.5 kg), and the mass of argon is 0.05 kg (remaining mass).

The number of moles of methane (nCH₄) can be calculated as:

nCH₄ = mass of methane / molar mass of methane

nCH₄ = 0.4 kg / 16 g/mol = 25 mol

Similarly, the number of moles of hydrogen (nH₂) is:

nH₂ = mass of hydrogen / molar mass of hydrogen

nH₂ = 0.15 kg / 2 g/mol = 75 mol

The number of moles of argon (nAr) is:

nAr = mass of argon / molar mass of argon

nAr = 0.05 kg / 40 g/mol = 0.00125 mol

2. Calculate the total number of moles and the total initial volume:

The total number of moles of the gas mixture (nTotal) is the sum of the moles of each component:

nTotal = nCH₄ + nH₂ + nAr

nTotal = 25 mol + 75 mol + 0.00125 mol = 100.00125 mol (approximately)

Now, we can use the ideal gas law to find the initial volume (V₁):

P₁V₁ = nTotalRT

V₁ = nTotalRT / P₁

3. Calculate the final volume of the gas:

The final volume (V₂) can be obtained by increasing the initial volume by 30%:

V₂ = V₁ + (0.3 * V₁)

4. Calculate the heat required to increase the volume:

To calculate the heat (Q) required, we use the equation:

Q = nTotalCpΔT, where Cp is the molar heat capacity at constant pressure and ΔT is the change in temperature.

Since the process is at constant pressure, the heat capacity (Cp) can be approximated as the sum of the individual heat capacities of each gas component. The molar heat capacities at constant pressure are as follows: Cp(CH₄) = 35.69 J/mol·K, Cp(H₂) = 28.82 J/mol·K, Cp(Ar) = 20.79 J/mol·K.

ΔT can be calculated using the equation:

ΔT = (V₂ - V₁) / V₁

Finally, we can substitute the values into the heat equation to find the heat required

to increase the volume by 30%.

Note: The specific values for the gas constant (R) and the molar heat capacities (Cp) may vary depending on the units used in the problem.

To know more about hydrogen refer here:

https://brainly.com/question/30623765#

#SPJ11


Related Questions

What is the hybridization of the indicated atom in this molecule? NH 3


Select one: A. SP 2
B. SP C. SSP 3

Answers

We need to consider its electron configuration and the geometry around the atom. The indicated atom in the molecule NH3 has SP3 hybridization.

To determine the hybridization of an atom in a molecule, we need to consider its electron configuration and the geometry around the atom. In the case of NH3 (ammonia), we want to determine the hybridization of the central nitrogen atom.

The electron configuration of nitrogen (N) is 1s2 2s2 2p3. Nitrogen has five valence electrons (2s2 2p3), and in NH3, it forms three sigma (σ) bonds with three hydrogen atoms, leaving one pair of non-bonding electrons (lone pair) on nitrogen.

The molecular geometry of NH3 is trigonal pyramidal, with the three hydrogen atoms surrounding the nitrogen atom in a pyramidal arrangement. The lone pair occupies one of the corners of the pyramid.

To accommodate the electron pair geometry and form the sigma bonds, the nitrogen atom undergoes hybridization. Hybridization involves the mixing of atomic orbitals to form new hybrid orbitals that are oriented in a specific geometry.

In NH3, the nitrogen atom undergoes SP3 hybridization. This means that one 2s orbital and three 2p orbitals (px, py, pz) of nitrogen hybridize to form four new hybrid orbitals called SP3 orbitals. These hybrid orbitals are arranged in a tetrahedral geometry, with one hybrid orbital pointing towards each hydrogen atom and the remaining hybrid orbital containing the lone pair.

The SP3 hybrid orbitals of nitrogen overlap with the 1s orbitals of the hydrogen atoms to form the sigma bonds. The bond angles in NH3 are approximately 107 degrees due to the repulsion between the bonding and lone pair electrons.

To summarize, in the molecule NH3, the central nitrogen atom is SP3 hybridized. This hybridization allows nitrogen to form three sigma bonds with hydrogen and accommodate the molecular geometry of NH3, which is trigonal pyramidal.


To learn more about orbitals click here: brainly.com/question/28117112

#SPJ11

Use the References to access important values if needed for this qua What is the energy change when the temperature of 11.8 grams of gaseous nitrogen is decreased from 38.5 ∘
C to 22.4 ∘
C ?

Answers

The energy change when the temperature of 11.8 grams of gaseous nitrogen is decreased from 38.5 °C to 22.4 °C is approximately -139.35 J (the negative sign indicates a decrease in energy).

To calculate the energy change, we need to consider the specific heat capacity of nitrogen. The specific heat capacity (C) is the amount of heat energy required to raise the temperature of a substance by 1 degree Celsius per unit mass.

Given that the mass of gaseous nitrogen is 11.8 grams, we can use the specific heat capacity of nitrogen to calculate the energy change. The specific heat capacity of nitrogen gas (N₂) at constant volume is approximately 20.8 J/(mol·K).

First, we need to convert the mass of nitrogen to moles. The molar mass of nitrogen (N₂) is approximately 28 g/mol. Using the formula: moles = mass / molar mass, we can calculate the number of moles of nitrogen gas.

moles = 11.8 g / 28 g/mol = 0.4214 mol

Next, we can calculate the temperature change (ΔT) by subtracting the final temperature (22.4 °C) from the initial temperature (38.5 °C):

ΔT = 22.4 °C - 38.5 °C = -16.1 °C

Since the specific heat capacity is given at constant volume, we can use the equation:

ΔE = C × moles × ΔT

Plugging in the values, we have:

ΔE = 20.8 J/(mol·K) × 0.4214 mol × (-16.1 °C)

Finally, we calculate the energy change:

ΔE = -139.35 J

Therefore, the energy change when the temperature of 11.8 grams of gaseous nitrogen is decreased from 38.5 °C to 22.4 °C is approximately -139.35 J (the negative sign indicates a decrease in energy).

To know more about gaseous nitrogen refer here:

https://brainly.com/question/29305873#

#SPJ11

How much benzoic acid is in 75 mL of an aqueous 0.045 M benzoic acid solution?
4. If 25 mL of dichloromethane is used to extract the benzoic acid solution from #3 and 0.213 grams is extracted to the dichloromethane layer, what is the Kd for this extraction

Answers

In 75 mL of an aqueous 0.045 M benzoic acid solution, the benzoic acid is 3.375 mg

How much benzoic acid is in 75 mL of an aqueous 0.045 M benzoic acid solution?

The amount of benzoic acid in 75 mL of an aqueous 0.045 M benzoic acid solution is:

Amount = Concentration * Volume

= 0.045 M * 75 mL

= 3.375 mg

If 25 mL of dichloromethane is used to extract the benzoic acid solution from #3 and 0.213 grams is extracted to the dichloromethane layer, what is the Kd for this extraction?

The Kd for this extraction is:

Kd = (Amount extracted)/(Initial amount) * (Volume 2)/(Volume 1)

= (0.213 g)/(3.375 mg) * (25 mL)/(75 mL)

= 0.19

Therefore, the Kd for this extraction is 0.19.

To learn more about benzoic acid click here; brainly.com/question/3186444

#SPJ11

An electrochemical cell has a standard cell potential of E ∘
=−0.081 V with n=1 (number of electrons in balanced redox reaction). What is the equibrium constant, K, for the electrocherrical cell reaction at 298× ? K=34.2
K=83.2
K=23.4
K=43.2

Answers

The equilibrium constant, K, for the electrochemical cell reaction is K = 43.2. The correct option is D.

The standard cell potential, E°, is related to the equilibrium constant, K, through the Nernst equation:

E = E° - (RT/nF) * ln(K)

In the given question, the standard cell potential, E°, is -0.081 V, and the number of electrons involved in the balanced redox reaction is n = 1. We are asked to determine the equilibrium constant, K.

R represents the gas constant (8.314 J/(mol·K)), T is the temperature in Kelvin (298 K), and F is the Faraday constant (96485 C/mol).

Substituting the given values into the Nernst equation and rearranging, we have:

ln(K) = (E° - E) * (nF/RT)

ln(K) = (-0.081 - E) * (96485/8.314*298)

Simplifying the expression further, we find:

ln(K) = (-0.081 - E) * 39.195

To solve for K, we need to take the exponential of both sides of the equation:

K = e^(ln(K))

Finally, substituting the given values of E and calculating the value of K, we find K ≈ 43.2. Therefore, the equilibrium constant for the electrochemical cell reaction is approximately 43.2. Option D is the correct one.

To know more about Nernst equation refer here:

https://brainly.com/question/31593791#

#SPJ11

And please check and answer the [species formed] section in the
table. I don't know if I wrote correctly.
Questions 1. In Part I (System I) the addition of \( \mathrm{CuSO}_{4} \) solution to produces a colour change. Offer an explanation for the role of \( \mathrm{Cu}^{++} \).
Table \( 1- \) System 1) \

Answers

When [tex]CuSO4[/tex] solution is added to System 1, a color change occurs. Copper(II) ion ([tex]Cu2+[/tex]) is the chemical substance responsible for this alteration.

The Role of Copper(II) Ion ([tex]Cu2+[/tex])When [tex]CuSO4[/tex]  solution is added to System 1, [tex]Cu2+[/tex] ions play a role in the reaction. These ions are used as a catalyst to increase the rate of reaction. They serve as electron acceptors, accepting electrons from molecules of the solution.

The electrons that are taken are then released to the molecules of the solution. The increased electron exchange is one of the main reasons for the colour change.The [tex]Cu2+[/tex] ions in the [tex]CuSO4[/tex]  solution oxidize the iodide ions (I-) in the solution to iodine (I2) when they come into contact with them.

The iodine atoms that are created then react with the starch that is present to create a blue-black colour, causing the colour change.It is the iodine-starch complex that results in the blue-black colour of the solution.

The[tex]Cu2+[/tex] ions serve as catalysts, increasing the rate of the reaction that produces iodine atoms. Hence, the formation of the species is responsible for the colour change.

To know more about Copper(II) here

https://brainly.com/question/29137939

#SPJ11

across that entire time range, in what part of the country are the ph values the lowest (i.e., the most acidic precipitation)? in what part of the country are the ph values the highest (i.e., the least acidic precipitation)?

Answers

Across that entire time range, the part of the country where the pH values are the lowest (most acidic precipitation) is typically found in areas with high industrial activity, such as heavily urbanized regions or areas with significant industrial emissions.

These areas often experience higher levels of air pollution, including sulfur dioxide and nitrogen oxides, which can contribute to acid rain formation.

On the other hand, the part of the country where the pH values are the highest (least acidic precipitation) is typically found in remote or rural areas with minimal industrial activity and lower levels of air pollution. These areas have fewer anthropogenic sources of pollutants and are less impacted by industrial emissions, resulting in less acidic precipitation.

It's important to note that the specific regions with the highest and lowest pH values can vary depending on local atmospheric conditions, prevailing wind patterns, proximity to pollution sources, and other factors. Therefore, a detailed analysis of the data and geographical considerations would be required to determine the exact locations with the highest and lowest pH values across the country.

Learn more about the precipitation:

brainly.com/question/18109776

#SPJ4

What is ΔS sys ​
for a melting phase transition at −8.4 ∘
C for a compound that melts at −8.4 ∘
C and the ΔH sys ​
= 3.11 kJ mol −1
for this process?

Answers

The change in entropy[tex](\( \Delta S_{\text{sys}} \))[/tex] for the melting phase transition at -8.4°C with [tex]\( \Delta H_{\text{sys}[/tex]} = 3.11 [tex]\, \text{kJ/mol} \)[/tex] is 11.7 J/(mol·K).

The change in entropy [tex](\( \Delta S_{\text{sys}} \))[/tex] for a melting phase transition, we can use the equation:

[tex]\( \Delta S_{\text{sys}} = \frac{\Delta H_{\text{sys}}}{T} \)[/tex]

where:

[tex]- \( \Delta S_{\text{sys}} \) is the change in entropy of the system[/tex]

[tex]- \( \Delta H_{\text{sys}} \) is the change in enthalpy of the system[/tex]

[tex]- \( T \) is the temperature in Kelvin (K)[/tex]

Given:

[tex]\( \Delta H_{\text{sys}} = 3.11 \, \text{kJ/mol} \)[/tex]

Temperature [tex](\( T \))[/tex] is -8.4°C. We need to convert it to Kelvin by adding 273.15:[tex]\( T = -8.4 + 273.15 = 264.75 \, \text{K} \)[/tex]

Substituting the values into the equation, we get:

[tex]\( \Delta S_{\text{sys}} = \frac{3.11 \, \text{kJ/mol}}{264.75 \, \text{K}} \)[/tex]

[tex]\( \Delta S_{\text{sys}} = 0.0117 \, \text{kJ/(mol} \cdot \text{K)} \)[/tex]

To convert kJ/(mol·K) to J/(mol·K), we multiply by 1000:

[tex]\( \Delta S_{\text{sys}} = 11.7 \, \text{J/(mol} \cdot \text{K)} \)[/tex]

[tex]Therefore, \( \Delta S_{\text{sys}} \) for the melting phase transition at -8.4°C with \( \Delta H_{\text{sys}} = 3.11 \, \text{kJ/mol} \) is 11.7 J/(mol·K).[/tex]

To know more about entropy refer here

https://brainly.com/question/15044680#

#SPJ11

What is the major product(s) obtained from the acid- catalyzed hydration of each of the following CH 3

CH 2

CH 2

CH=CH

Answers

The major product obtained from the acid-catalyzed hydration of CH3CH2CH2CH=CH2 is 3-pentanol.

Acid-catalyzed hydration is an addition reaction that adds water to an alkene. In this reaction, the double bond of an alkene is broken, and the hydrogen and hydroxyl group are added to the carbons of the double bond, thus forming an alcohol. The major product obtained from the acid-catalyzed hydration of CH3CH2CH2CH=CH2 is 3-pentanol.3-pentanol is obtained when CH3CH2CH2CH=CH2 is treated with an excess of water in the presence of sulfuric acid (H2SO4) or phosphoric acid (H3PO4).

The hydration of the double bond of the compound forms a carbocation intermediate, which is stabilized by the adjacent carbon atoms, thus increasing the rate of reaction.3-pentanol is an alcohol that is commonly used as a solvent. It is a colorless liquid that is soluble in water and has a mild odor. It is also used in the production of plasticizers and other industrial products.3-pentanol can be further converted to other products such as 3-pentyl acetate or 3-pentyl propionate, which are used as flavorings and fragrances in the food and perfume industries.

To know more about major product visit:-

https://brainly.com/question/30667391

#SPJ11

Without performing a calculation, predict which of the following compounds will have the greatest molar solubility in water. AgCl (Ksp=1.8x10-10); AgBr (Ksp=5.0x10-15); Agl (Ksp=8.3x10-17) Agl is most soluble AgBr is most soluble All of the compounds have equal solubility in water AgCl is most soluble

Answers

AgCl (silver chloride) is predicted to have the greatest molar solubility in water among the given compounds.

The molar solubility of a compound is determined by its solubility product constant (Ksp). The higher the Ksp value, the greater the molar solubility in water.

Comparing the Ksp values provided:

- AgCl has a Ksp of 1.8x10⁻¹⁰

- AgBr has a Ksp of 5.0x10⁻¹⁵

- AgI has a Ksp of 8.3x10⁻¹⁷

Since Ksp represents the product of the concentrations of the ions in a saturated solution, a higher Ksp value indicates a greater concentration of ions in the solution, which corresponds to a higher molar solubility.

In this case, AgCl has the highest Ksp value (1.8x10⁻¹⁰), indicating the greatest molar solubility in water among the given compounds. Therefore, AgCl is predicted to have the greatest molar solubility in water.

learn more about molar solubility here:

https://brainly.com/question/28170449

#SPJ11

Calculate the mass of water produced when 5.36 g of butane reacts with excess oxygen Express your answer to three significant figures and include the appropriate units View Available Hints) A 100 L kiln is used for vitrifying ceramics. It is currently operating at 925 ∘
C and the pressure is 0.9750 atm many moles of air molecules are within the confines of the kiln? Express your answer to three significant figures and include the appropriate units.

Answers

Approximately 8.30 g of water are created when 5.36 g of butane combines with too much oxygen.

The mass of water produced when 5.36 g of butane reacts with excess oxygen, we need to determine the balanced chemical equation for the combustion of butane and then use stoichiometry to calculate the amount of water produced.

The balanced chemical equation for the combustion of butane (C₄H₁₀) is:

2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O

From the balanced equation, we can see that 2 moles of butane produce 10 moles of water.

First, let's convert the mass of butane (5.36 g) to moles:

Molar mass of butane (C₄H₁₀) = (4 × atomic mass of carbon) + (10 × atomic mass of hydrogen)

= (4 × 12.01 g/mol) + (10 × 1.01 g/mol)

= 48.04 g/mol + 10.10 g/mol

= 58.14 g/mol

Moles of butane = mass of butane / molar mass of butane

= 5.36 g / 58.14 g/mol

≈ 0.0922 mol (rounded to four significant figures)

According to the balanced equation, 2 moles of butane produce 10 moles of water. Therefore, 0.0922 moles of butane will produce:

Moles of water = (moles of butane) × (moles of water / moles of butane)

= 0.0922 mol × (10 mol water / 2 mol butane)

= 0.461 mol

To calculate the mass of water, we can use the molar mass of water (H₂O):

Molar mass of water (H₂O) = (2 × atomic mass of hydrogen) + (1 × atomic mass of oxygen)

= (2 × 1.01 g/mol) + (1 × 16.00 g/mol)

= 2.02 g/mol + 16.00 g/mol

= 18.02 g/mol

Mass of water = moles of water × molar mass of water

= 0.461 mol × 18.02 g/mol

≈ 8.30 g (rounded to three significant figures)

Therefore, the mass of water produced when 5.36 g of butane reacts with excess oxygen is approximately 8.30 g.

To know more about combustion refer here:

https://brainly.com/question/31123826?#

#SPJ11

Compounds like CCl2​ F2​ are known as chloroffuorocarbons, or CFCs. These compounds were once widely used as refrigerants but are now being replaced by compounds that are believed to be less harmful to the environment. What amount of heat, q, is needed to freeze 200.g of water initially at 15.0%C ? The heat of fusion of water is 334 J/g. Select one: a. 12552 J b. 66800 J c. 79400 J d. 6500 J e. 334 I

Answers

Using the equation q = m × ΔH_f, where m is the mass of the substance and ΔH_f is the heat of fusion, we find that the amount of heat, q, required to freeze 200 g of water initially at 15.0°C is 66800 J. The correct option is b).

Mass of water (m) = 200 g

Heat of fusion of water (ΔH_f) = 334 J/g

Substituting the values into the equation:

q = 200 g × 334 J/g

q = 66800 J

Therefore, the amount of heat required to freeze 200 g of water initially at 15.0°C is 66800 J. The correct option is b).

To know more about heat of fusion, refer to the link:

https://brainly.com/question/30403515#

#SPJ11

the vapor pressure above pure water at 100 c is 760 torr. at the same temperature, what is the mole fraction of water in the vapor above an aqueous solution that is 0.30 mole fraction of the strong electrolyte kcl

Answers

The mole fraction of water in the vapor above the aqueous solution that is 0.30 mole fraction of KCl is 0.70.

To calculate the mole fraction of water in the vapor above the aqueous solution, we need to consider Raoult's law, which states that the vapor pressure of a solvent above a solution will be directly proportional to the mole fraction of solvent.

Given;

Vapor pressure above pure water at 100 °C = 760 torr

Mole fraction of KCl in the solution = 0.30

Since KCl will be the strong electrolyte, it dissociates completely in water. Therefore, we can assume that the mole fraction of KCl is equal to the mole fraction of K⁺ and Cl⁻ ions, as they are the only species present in solution.

Now, let's calculate the mole fraction of water (H₂O) in the vapor above the solution. Since the sum of mole fractions of all components in a solution is equal to 1, we can express it as;

Mole fraction of water + Mole fraction of KCl = 1

Mole fraction of water = 1 - Mole fraction of KCl

Mole fraction of water = 1 - 0.30

Mole fraction of water = 0.70

Therefore, the mole fraction of water in the vapor above the aqueous solution that is 0.30 mole fraction of KCl is 0.70.

To know more about mole fraction here

https://brainly.com/question/30724931

#SPJ4

Determine mass of sodium chloride How to convert between mass units

Answers

If you have the volume of sodium chloride in milliliters (mL), you would first convert it to cubic centimeters (cm³) using the conversion factor of 1 mL = 1 cm³. Then, multiply the resulting volume by the density of sodium chloride to obtain the mass.

To determine the mass of sodium chloride, you can follow these steps:

1. Identify the given quantity: Look for the information provided about the sodium chloride, such as its volume or density.

2. Convert between mass units: If the given quantity is in a different unit, you may need to convert it to the appropriate unit. For example, if the mass is given in grams (g) and you need to convert it to kilograms (kg), divide the given value by 1000.

3. Use the appropriate formula: To calculate the mass of sodium chloride, multiply the given quantity by its density. The density of sodium chloride is approximately 2.16 grams per cubic centimeter (g/cm³).

For example, if you have the volume of sodium chloride in milliliters (mL), you would first convert it to cubic centimeters (cm³) using the conversion factor of 1 mL = 1 cm³. Then, multiply the resulting volume by the density of sodium chloride to obtain the mass.

Remember to always include units in your calculations and final answer to maintain accuracy.

To know more about volume visit-

https://brainly.com/question/28058531

#SPJ11

3. 2C4H₁0+130₂ → 8CO, +10H₂O
a. If 15 moles of C,H₁, (MM-58 g/mol) is burned in the presence of 50 moles of O,
(MM-32 g/mol), how many moles of CO, (MM- 44g/mol) would be produced
according to the equation above? (3 pts)
b. How many moles of the excess reactant will remain after the reaction stops? (3 pts)

Answers

a. 15 moles of C4H₁0 would produce 60 moles of CO according to the equation.

b. After the reaction stops, there would be no moles of excess O₂ remaining.

a. To determine the number of moles of CO produced, we need to compare the stoichiometric coefficients between C4H₁0 and CO in the balanced chemical equation.

From the balanced equation: 2C4H₁0 + 13O₂ → 8CO + 10H₂O

The stoichiometric coefficient ratio between C4H10 and CO is 2:8 or 1:4. This means that for every 1 mole of C4H₁0, we would expect to produce 4 moles of CO.

Given that we have 15 moles of C4H₁0, we can calculate the number of moles of CO produced:

15 moles C4H₁0 * 4 moles CO / 1 mole C4H₁0 = 60 moles CO

Therefore, 15 moles of C4H₁0 would produce 60 moles of CO according to the equation.

b. To determine the amount of excess reactant remaining, we need to compare the stoichiometric coefficients between C4H₁0 and O₂ in the balanced chemical equation.

From the balanced equation: 2C4H₁0 + 13O₂ → 8CO + 10H₂O

The stoichiometric coefficient ratio between C4H10 and O₂ is 2:13 or 1:6.5. This means that for every 1 mole of C4H₁0, we would need 6.5 moles of O₂ for a complete reaction.

Given that we have 15 moles of C4H10 and 50 moles of O₂, we can calculate the amount of O₂ needed for the complete reaction:

15 moles C4H10 * 6.5 moles O2 / 1 mole C4H₁0 = 97.5 moles O₂

Since we have 50 moles of O₂, it is in excess. The amount of excess O₂ remaining after the reaction would be:

50 moles O₂ - 97.5 moles O₂ = -47.5 moles O₂ (negative sign indicates that O₂ is completely consumed)

Therefore, after the reaction stops, there would be no moles of excess O₂ remaining.

know more about stoichiometric here:

https://brainly.com/question/14420683

#SPJ8

Calculate the activation energy in kJ/mol for the following reaction if the rate constant for the reaction increases from 75.3 M-¹s-¹ at 510.9 K to 1556.0 M-¹s1 at 639.6 K. do not include units, but make sure your answer is in kJ/mol! Answer:

Answers

The activation energy for a reaction is calculated using the Arrhenius equation. In this specific case, the activation energy was determined to be approximately 76.15 kJ/mol by comparing the rate constants at two different temperatures.

To calculate the activation energy for the given reaction, we can use the Arrhenius equation, which relates the rate constant (k) to the temperature (T) and the activation energy (Ea):

ln(k₂/k₁) = -Ea/R * (1/T₂ - 1/T₁),

where k₁ and k₂ are the rate constants at temperatures T₁ and T₂, respectively, and R is the gas constant.

Let's substitute the given values:

ln(1556.0/75.3) = -Ea/(8.314 J/mol·K) * (1/639.6 K - 1/510.9 K).

Now, we can solve for the activation energy (Ea). First, let's simplify the equation:

ln(20.65) = -Ea/(8.314 J/mol·K) * (0.001959 K⁻¹).

Dividing both sides by -0.001959 K⁻¹ and converting the units to kJ/mol, we get:

Ea = -ln(20.65) * (-8.314 J/mol·K) / (0.001959 K⁻¹) ≈ 76.15 kJ/mol.

Therefore, the activation energy for the given reaction is approximately 76.15 kJ/mol.

To know more about activation energy refer here:

https://brainly.com/question/33016628#

#SPJ11

which salicylic acid functional group reacts with
sodium carbonate?

Answers

The carboxylic acid functional group (-COOH) in salicylic acid reacts with sodium carbonate.

Salicylic acid has a carboxylic acid functional group (-COOH), which consists of a carbonyl group (C=O) and a hydroxyl group (OH) attached to the same carbon atom. When salicylic acid reacts with sodium carbonate (Na₂CO₃), the carboxylic acid functional group undergoes an acid-base reaction.

In the presence of water, the carboxylic acid group donates a proton (H⁺) to the bicarbonate ion (HCO₃⁻) present in sodium carbonate, resulting in the formation of sodium salicylate (NaC₇H₅O₃), carbon dioxide (CO₂), and water (H₂O). The reaction can be represented by the following equation:

C₇H₆O₃ (salicylic acid) + Na₂CO₃ (sodium carbonate) + H₂O → 2NaC₇H₅O₃ (sodium salicylate) + CO₂ (carbon dioxide) + H₂O

The carboxylic acid group in salicylic acid acts as an acid by donating a proton, while the bicarbonate ion acts as a base by accepting the proton. This acid-base reaction leads to the formation of sodium salicylate and the liberation of carbon dioxide gas.

Therefore, it is the carboxylic acid functional group in salicylic acid that reacts with sodium carbonate during the reaction.

To know more about salicylic acid refer here:

https://brainly.com/question/13650518#

#SPJ11

Calculate the change in free energy of transport of pumping Na+ ions from the extracellular matrix to the cytosol at 37degrees C. The concentration of the Na+ ions in the extracellular matrix is 1.5 x 10-10 M and that in the cytosol is 3.5 x 10-9 M. The standard transmembrane potential is 60 mV (negative on the inside of the cell). Is the transport favorable or unfavorable?

Answers

The given transport is unfavorable

The concentration gradient and the electrical potential gradient are the two major factors that determine whether the Na+ ions transport from the extracellular matrix to the cytosol is favorable or unfavorable. ΔG, the change in Gibbs free energy of the transport, is calculated using the equation given below:

ΔG = ΔH - TΔSWhere ΔH is the enthalpy change, T is the temperature in Kelvin, and ΔS is the entropy change.The equation for the Gibbs free energy change of a solute transfer across a membrane, including changes in concentration and changes in the electrical potential across the membrane, is as follows:Δ

G = RT ln ([Na+]cyt/[Na+]ex) + zFΔΨ

The R stands for the gas constant, T for the absolute temperature in kelvins, [Na+]cyt and [Na+]ex stand for the cytosolic and extracellular sodium ion concentrations, respectively, z for the ion's charge number, F for the Faraday constant, and ΔΨ for the electrical potential across the membrane (in volts).

The electrical potential gradient, ΔΨ, is given by the equation:ΔΨ = -60/1000 V (negative inside)Since the charge on the Na+ ion is +1, z is +1.The change in free energy of transport of pumping Na+ ions from the extracellular matrix to the cytosol can be calculated as follows:

ΔG = (8.314 J/mol-K) (310 K) ln (3.5 × 10⁻⁹ M/1.5 × 10⁻¹⁰ M) + (1)(96485 C/mol) (-60/1000 V)ΔG = 13060 J/mol

The positive value of ΔG indicates that the transport of Na+ ions from the extracellular matrix to the cytosol is unfavorable.

To know more about transport click on below link :

https://brainly.com/question/32579568#

#SPJ11

A certain gas dissolves in water. Its solubility at 25 °C and 4.00 atm is 0.0200 M. Under which conditions listed below would you expect its solubility to be greater than 0.0200 M? a) 25 °C and 1.00 atm. b) 5 °C and 6.00 atm. c) 30 °C and 4.00 atm. d) 50 °C and 2.00 atm. e) None of the answers (a-d) are correct.

Answers

When the temperature of the solvent is lowered, the solubility of a gas in the solvent generally increases since the intermolecular forces between the solvent and gas molecules increases. The correct option is: d) 50 °C and 2.00 atm.

This condition will increase the solubility of gas. The amount of solute that can dissolve in a given amount of solvent at a certain temperature and pressure is known as solubility. The amount of solute that can dissolve in a given amount of solvent is affected by temperature and pressure. The solubility of a gas in a solvent, for example, is inversely proportional to the temperature of the solvent, whereas the solubility of a solid in a solvent is generally directly proportional to the temperature of the solvent. Solubility of a gas in water: Gases are usually less soluble at higher temperatures and more soluble at lower temperatures. This is because the solubility of gases in water is influenced by temperature and pressure.

According to Henry's law, the solubility of a gas in a solvent is proportional to the partial pressure of the gas above the solvent. The greater the partial pressure of a gas above a solvent, the more likely it is to dissolve in the solvent. When the temperature of the solvent rises, the solubility of a gas in the solvent usually decreases because of the reduction of intermolecular forces between the solvent and gas molecules. When the temperature of the solvent is lowered, the solubility of a gas in the solvent generally increases since the intermolecular forces between the solvent and gas molecules increases.

To know more about intermolecular forces visit:-

https://brainly.com/question/31797315

#SPJ11

the isomerization of citrate to isocitrate a) is the reaction of the citric acid cycle that occurs spontaneously without enzymatic catalysis. b) protects cells from the toxic effects of arsenite ion. c) converts a compound, which cannot easily be oxidized, to a secondary alcohol that can be oxidized. d) is one major regulatory step for the citric acid cycle because it functions as a rate limiting step. e) a and b

Answers

The isomerization of citrate to isocitrate is:

e) a and b that is a) is the reaction of the citric acid cycle that occurs spontaneously without enzymatic catalysis and b) protects cells from the toxic effects of arsenite ion.

a) The isomerization of citrate to isocitrate is a reaction in the citric acid cycle, also known as the Krebs cycle or the tricarboxylic acid cycle. This reaction occurs spontaneously without requiring enzymatic catalysis. During this isomerization, the hydroxyl groups on the citrate molecule are rearranged, resulting in the formation of isocitrate. Enzymes are not directly involved in facilitating this conversion, and it occurs as an intrinsic property of the citrate molecule itself.

b) The isomerization of citrate to isocitrate plays a crucial role in protecting cells from the toxic effects of the arsenite ion. Arsenite is a toxic compound that can disrupt cellular processes and contribute to oxidative stress. Isocitrate, which is formed through the isomerization of citrate, has the ability to chelate arsenite. Chelation involves binding the arsenite ion and reducing its toxicity by forming a stable complex. This process helps protect cells from the harmful effects of arsenite.

c) The statement that the isomerization of citrate to isocitrate converts a compound that cannot easily be oxidized to a secondary alcohol that can be oxidized is incorrect. Both citrate and isocitrate are organic acids and contain multiple functional groups, including carboxyl groups and hydroxyl groups. While the conversion from citrate to isocitrate involves rearranging the hydroxyl groups, it does not directly change the oxidation state or the ease of oxidation of the compound.

d) The isomerization of citrate to isocitrate is not a major regulatory step or a rate-limiting step in the citric acid cycle. The rate-limiting step in the citric acid cycle is typically considered to be the conversion of isocitrate to alpha-ketoglutarate, which is catalyzed by the enzyme isocitrate dehydrogenase.

Therefore, the isomerization of citrate to isocitrate in the citric acid cycle occurs spontaneously without enzymatic catalysis (statement a). It also plays a role in protecting cells from the toxic effects of the arsenite ion by chelating it (statement b). However, it does not convert a compound that cannot be easily oxidized to a secondary alcohol (statement c), nor is it a major regulatory or rate-limiting step in the citric acid cycle (statement d). Therefore, the correct answer is (e) a and b.

To know more about isomerization here

https://brainly.com/question/30459757

#SPJ4

If a 500 g sample of water reacted with 10.0 g of Calcium oxide, what would the final temperature be? Assume that the calcium hydroxide solution absorbed all the heat released. Also assume that the initial temperature of both the water and the quicklime was 25°C. The specific heat capacity of calcium hydroxide solution is 1.20 J/g∙°C.CaO(s) + H2O(l) → Ca(OH)2(aq)
ΔH = –65.2

Answers

The initial temperature of both the water and the quicklime was 25°C. the final temperature would be approximately 24.688°C.

To determine the final temperature, we can use the concept of heat transfer and the equation for heat transfer:

q = m * c * ΔT

Where:

q = heat transferred (in joules)

m = mass of the substance (in grams)

c = specific heat capacity of the substance (in J/g∙°C)

ΔT = change in temperature (final temperature - initial temperature)

First, let's calculate the heat released by the reaction of 10.0 g of calcium oxide (CaO):

q_released = m * ΔH

q_released = 10.0 g * (-65.2 J/g)

q_released = -652 J

The negative sign indicates that heat is released by the reaction.

Next, we'll calculate the heat absorbed by the water:

q_absorbed = m * c * ΔT

q_absorbed = 500 g * 4.18 J/g∙°C * ΔT

q_absorbed = 2090 ΔT

Since the heat released by the reaction is equal to the heat absorbed by the water, we can set up the equation:

-652 J = 2090 ΔT

Solving for ΔT:

ΔT = -652 J / 2090 J/°C

ΔT ≈ -0.312 °C

The negative sign indicates a decrease in temperature.

To find the final temperature, we subtract the change in temperature from the initial temperature:

Final temperature = Initial temperature + ΔT

Final temperature = 25°C - 0.312°C

Final temperature ≈ 24.688°C

Therefore, the final temperature would be approximately 24.688°C.

To know more about quicklime refer here:

https://brainly.com/question/31007194#

#SPJ11

Write down the reagent for the below it is Br+___=>CH3

Answers

The reagent for the reaction Br + NaH =>CH₃. is sodium borohydride (NaBH₄). Sodium borohydride is a strong reducing agent that can reduce alkyl halides to alkanes. In this reaction, the bromine atom is reduced to a hydride ion (H⁻), which then combines with hydrogen gas to form methane (CH₄).

The overall reaction can be written as follows:

Br⁻ + NaBH₄ → CH₄ + NaBr

Sodium borohydride is a white, odorless powder that is soluble in water. It is a mild reducing agent and is not explosive or flammable. Sodium borohydride is typically used in organic chemistry reactions to reduce alkyl halides to alkanes.

It is also used in the synthesis of other organic compounds, such as alcohols, amines, and carboxylic acids.

To know more about the Sodium borohydride refer here,

https://brainly.com/question/32559127#

#SPJ11

For each bond, show the direction of polarity by selecting the correct partial charges. I-Cl F−I F⋅Cl The most polar bond is For each bond, show the direction of polarity by selecting the correct partial charges The most polar bond is 9 more grocsp attempts remaining

Answers

The most polar bond is F−I.

To determine the direction of polarity in each bond, we need to consider the electronegativity difference between the atoms involved. The more electronegative atom will have a partial negative charge, while the less electronegative atom will have a partial positive charge.

In the bond I-Cl, chlorine (Cl) is more electronegative than iodine (I), so the partial charges are δ− for Cl and δ+ for I.

In the bond F−I, fluorine (F) is more electronegative than iodine (I), so the partial charges are δ− for F and δ+ for I.

In the bond F⋅Cl, both fluorine (F) and chlorine (Cl) are highly electronegative. However, the dot (⋅) indicates that this bond represents a radical or a single unpaired electron, and it does not have a clear polarity in terms of partial charges.

Comparing the three bonds, F−I has the largest electronegativity difference, making it the most polar bond with the largest separation of partial charges.

To know more about "Electronegativity" refer here:

https://brainly.com/question/10531792#

#SPJ11

The volume of ammonia gas at 1.10 atm of pressure is gradually decreased from 97.0 ml to 43.9 ml. What is the final pressure of ammonia if there is no change in temperature? 

Answers

The final pressure of ammonia gas, when the volume is decreased from 97.0 ml to 43.9 ml at a constant temperature, is approximately 2.42 atm.

According to Boyle's law, for a given amount of gas at a constant temperature, the product of pressure and volume is constant. Mathematically, it can be expressed as P₁V₁ = P₂V₂, where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.

Initial volume, V₁ = 97.0 ml

Final volume, V₂ = 43.9 ml

Initial pressure, P₁ = 1.10 atm

Using the Boyle's law equation, we can solve for the final pressure, P₂:

P₁V₁ = P₂V₂

1.10 atm * 97.0 ml = P₂ * 43.9 ml

P₂ = (1.10 atm * 97.0 ml) / 43.9 ml

P₂ ≈ 2.42 atm

learn more about Boyle's law here:

https://brainly.com/question/30367133

#SPJ11

Sulfuric acid solution is standardized by titrating with 0.678 g of primary standard sodium carbonate (Na 2

CO 3

). It required 36.8 mL of sulfuric acid solution to complete the reaction. Calculate the molarity of H 2

SO 4

solution. Give three (3) problems encountered during storage of sample. Give two (2) advantages of dry ashing.

Answers

The molarity of the sulfuric acid (H₂SO₄) solution can be calculated by using the given mass of sodium carbonate (Na₂CO₃) and the volume of sulfuric acid solution used in the titration.

To calculate the molarity of the sulfuric acid solution, we need to determine the number of moles of sodium carbonate used in the titration. Given that the mass of sodium carbonate used is 0.678 g and it is a primary standard, we can directly convert this mass to moles using the molar mass of sodium carbonate (105.99 g/mol).

moles of Na₂CO₃ = mass of Na₂CO₃ / molar mass of Na₂CO₃

              = 0.678 g / 105.99 g/mol

Next, we use the balanced chemical equation for the reaction between sodium carbonate and sulfuric acid to determine the stoichiometry of the reaction. The balanced equation is:

Na₂CO₃ + H₂SO₄ → Na₂SO₄ + H₂O + CO₂

From the balanced equation, we can see that the ratio of sodium carbonate to sulfuric acid is 1:1. Therefore, the moles of sodium carbonate used in the titration are equal to the moles of sulfuric acid in the solution.

Now, we can calculate the molarity of the sulfuric acid solution:

molarity of H₂SO₄ = moles of H₂SO₄ / volume of H₂SO₄ solution

Given that the volume of sulfuric acid solution used is 36.8 mL (or 0.0368 L), we can substitute the values into the equation:

molarity of H₂SO₄ = moles of Na₂CO₃ / volume of H₂SO₄ solution

                 = (0.678 g / 105.99 g/mol) / 0.0368 L

Finally, calculate the molarity to get the numerical value.

For the second part of the question, regarding the problems encountered during storage of the sample, three common problems are:

1. Contamination: The sample can get contaminated by exposure to air, moisture, or other impurities, which can alter its composition or react with the substance.

2. Decomposition: Some substances may decompose over time due to exposure to heat, light, or chemical reactions, leading to a loss of stability and accurate concentration.

3. Evaporation: If the sample is not stored in a properly sealed container, volatile components may evaporate, resulting in a change in concentration.

For the advantages of dry ashing, two benefits are:

1. Removal of organic matter: Dry ashing involves heating a sample at high temperatures to burn off organic compounds, leaving behind inorganic residues. This process effectively removes organic matter, allowing for more accurate analysis of the inorganic components.

2. Enhanced stability: Dry ashing helps to stabilize the sample by removing volatile compounds that may be prone to evaporation or decomposition. This can improve the storage stability of the sample and maintain its integrity for longer periods.

To know more about stoichiometry refer here:

https://brainly.com/question/28780091#

#SPJ11

Which of the following molecular ions has 7 total valence
electrons?
Which of the following molecular ions has 7 total valence
electrons?
C2+
B2+
H2+
O2−
He2+

Answers

The molecular ion that has 7 total valence electrons is b). B2+.

Valence electrons can be defined as the outermost electrons of an atom. These electrons can participate in the formation of chemical bonds with other atoms.

Valence electrons in molecules are calculated by adding the valence electrons of all the atoms present in the molecule. The charge of an ion must also be considered while counting valence electrons.

Each boron atom in B2+ has 3 valence electrons. Since the ion has a +2 charge, one of the electrons is lost making the total valence electrons to be 3 + 3 - 1 = 5. To represent the charge on the ion, we write 2+ in superscript next to the symbol of B.The correct answer is b). B2+.

To know more about valence electrons  refer here :

https://brainly.com/question/31264554#

#SPJ11

Show the reaction for the reaction of 1-chlorobutane. Draw the structures NEATLY by hand.

Answers

1-chlorobutane reacts with a strong base, such as sodium hydroxide (NaOH), to undergo an elimination reaction 1-chlorobutane + NaOH ⟶ Butene + NaCl

1-chlorobutane reacts with a strong base, such as sodium hydroxide (NaOH), to undergo an elimination reaction known as a dehydrohalogenation. The base abstracts a hydrogen atom from the beta-carbon (adjacent to the chlorine atom), resulting in the formation of an alkene and a chloride ion. The reaction is as follows:

1-chlorobutane + NaOH ⟶ Butene + NaCl

The reaction involves the removal of a hydrogen atom from the beta-carbon and the departure of a chloride ion to form the alkene (in this case, butene) and sodium chloride (NaCl) as a byproduct.

In this structure, the central carbon (marked with a Cl and surrounded by hydrogen atoms) represents the carbon atom to which the chlorine (Cl) atom is attached. The remaining carbon atoms (on the left and right) are also bonded to hydrogen atoms.

Learn more about dehydrohalogenation;

https://brainly.com/question/10093293

#SPJ4

The structure of 1-chlorobutane is given in the attachment.

What is the \( \mathrm{pH} \) of a \( 0.030 \mathrm{MHCl} \) solution? \( 1.73 \) \( 1.52 \) \( 0.03 \) \( 0.06 \) Strin

Answers

The pH of the 0.030 M HCl solution is approximately 1.52.

The pH is a measure of the acidity or alkalinity of a solution. It is defined as the negative logarithm (base 10) of the concentration of H⁺ ions in the solution.

In this case, we have a 0.030 M HCl solution. HCl is a strong acid that completely dissociates in water, producing H⁺ ions. Therefore, the concentration of H⁺ ions in the solution is equal to the concentration of HCl.

To calculate the pH of a 0.030 M HCl solution:

pH = -log[H+]

[H+] is the concentration of H⁺ ions in the solution, which is equal to the concentration of HCl since HCl is a strong acid and completely dissociates in water.

[H+] = 0.030 M

pH = -log(0.030)

≈ 1.52

learn more about pH here:

https://brainly.com/question/26856926

#SPJ11

What is the pH of a 0.40 M solution of K2SO3? Please give
specific detail of each step and calculation (including ice chart
if needed). I can't understand what happens to K2 in this.

Answers

The pH of a 0.40 M solution of K2SO3 is approximately 0.096. The pH of a 0.40 M solution of K2SO3 can be calculated using the following steps:

Step 1: Write the balanced chemical equation of K2SO3K2SO3 dissociates in water to form K+ and SO32- ions.

The balanced chemical equation is:K2SO3(s) → 2K+(aq) + SO32-(aq)

Step 2: Write the ionic equation K+ and SO32- ions are the only ions that are present in solution after dissociation, so the ionic equation is:K2SO3(s) → 2K+(aq) + SO32-(aq)

Step 3: Write the expression for the ionization constant The ionization constant, also known as the acid dissociation constant (Ka), is the product of the concentrations of the ions divided by the concentration of the undissociated compound. For K2SO3, the ionization constant is given by:

Ka = [K+][SO32-] / [K2SO3]

Step 4: Calculate the concentrations of K+ and SO32- ionsThe concentration of K+ and SO32- ions in a 0.40 M solution of K2SO3 can be calculated as follows:

For K+ ions, the concentration is 2 times the concentration of K2SO3:

[K+] = 2 × 0.40 = 0.80 M For SO32- ions, the concentration is also 0.40 M because each mole of K2SO3 dissociates to form one mole of SO32- ions.

Step 5: Calculate the ionization constant Substituting the values for [K+], [SO32-], and [K2SO3] into the expression for the ionization constant gives:

Ka = (0.80 M)(0.40 M) / (0.40 M)Ka

= 0.80

The ionization constant is a measure of the strength of the acid. A strong acid has a large Ka value, while a weak acid has a small Ka value. Since the ionization constant of K2SO3 is relatively small, it can be considered a weak acid.

Step 6: Calculate the pH of the solution  The pH of the solution can be calculated using the following equation:

pH = -log[H+]

The concentration of H+ ions can be calculated from the ionization constant using the following equation:

Ka = [H+][SO32-] / [K2SO3]

Rearranging this equation to solve for [H+] gives:

[H+] = Ka × [K2SO3] / [SO32-]

=[0.80 × 0.40]/[0.40]

= 0.80H+

The pH of the solution is therefore:

pH = -log[H+]

= -log(0.80)

≈ 0.096

To know more about solution visit:-

https://brainly.com/question/1616939

#SPJ11

Draw the skeletal ("line") structure of 3-methylcyclopentanol.

Answers

The skeletal ("line") structure of 3-methylcyclopentanol is CH3-CH2-CH-CH2-OH.

The skeletal ("line") structure of 3-methylcyclopentanol:

       CH3

        |

   CH2-CH-CH2-OH

        |

        CH2

In this structure, the CH3 group represents a methyl group attached to the carbon atom in the third position of the cyclopentane ring, and the OH group represents the hydroxyl group attached to another carbon atom in the ring.

3-Methylcyclopentanol is a compound belonging to the class of alcohols. It consists of a cyclopentane ring with a methyl group (CH3) attached to the carbon atom in the third position and a hydroxyl group (-OH) attached to another carbon atom in the ring.

The hydroxyl group indicates that it is an alcohol. The 3-methylcyclopentanol compound has a five-membered ring and is characterized by its specific arrangement of atoms, which gives it its unique properties and reactivity.

To know more about skeletal ("line") structure refer here

https://brainly.com/question/34301410#

#SPJ11

suppose a student is measuring their burette to determine vcal. the mass of their weighing bottle is 20.1254g. the mass of their weighing bottle and water is 25.1776 g. if the density of the water at 20 degrees c is 0.9982 g/ml, what is vcal?

Answers

The volume of water (Vcal) in the burette is approximately 5.07 ml.

To determine the volume of water (Vcal) in the burette, we can use the mass and density information provided. The difference in mass between the weighing bottle and water will give us the mass of the water.

Mass of water = Mass of weighing bottle and water - Mass of weighing bottle

= 25.1776 g - 20.1254 g

= 5.0522 g

Given the density of water at 20 degrees Celsius as 0.9982 g/ml, we can use the density formula to calculate the volume of water:

Density = Mass / Volume

Volume of water = Mass of water / Density of water

= 5.0522 g / 0.9982 g/ml

≈ 5.07 ml

Therefore, the volume of water (Vcal) in the burette is approximately 5.07 ml.

To know more about density:

https://brainly.com/question/30409818

#SPJ4

Other Questions
In a non-rotating earth, global winds would:1) move straight from areas of H (high) pressure to areas of L (low) pressure.2) move straight from areas of L (low) pressure to areas of H (high) pressure.3) move straight from areas of H pressure to areas of H pressure.4) None of the options offered here. Solve the following LP model using graphical method: Maximize Z=x2y s.t. xy0 x+2y4 x0 y1 What strategies did enslaved people employ to resist, revolt, and sustain their own independent communities and cultures? How did enslaved individuals use White southerners own philosophiespaternalism and Christianity, for exampleto their advantage in these efforts Pen A B C Length (1) 12 m 8 m 6 m Breadth (b) 2 m 3 m 4 m (i) Which pen would take most fencing? (ii) Which pen would you like to minimize the cost of fencing? The pictorial representation of a conceptual data model is called a(n): database entity diagram. relationship systems design entity relationship diagram, database model D Which is not true of indexes? An index is a table containing the key and the address of the records that contain that key value. Indexes are used to improve performance for information retrieval. It is typical that an index would be created for the primary key of each table. Creating any index changes the order in which records are plysically stored on secondary storage: You are considering an investment in Justus Corporation's stock, which is expected to pay a dividend of $2.75 a share at the end of the year (D1=$2.75) and has a beta of 0.9. The risk-free rate is 4.7%, and the market risk premium is 5.5%. Justus currently sells for $47.00 a share, and its dividend is expected to grow at some constant rate, 0 . The data has been collected in the Microsoft Excel Online file below. Open the spreadsheet and perform the required analysis to angwer the question below. Open spreadsheit? Assuming the market is in equilibrium, what does the market believe will be the stock price at the end of 3 years? (That is, what is P3 ?) Round your answer to two decinal places. Do not round your intermediate calculationa. Decide which of the following properties apply to the function. (More than one property may apply to a function. Select all that apply.) y = ln x The function is one-to-one. The domain of the function is (-0, 00). The function is a polynomial function. The graph has an asymptote. The function is increasing on its entire domain. The function is decreasing on its entire domain. The function has a turning point. The range of the function is (-00,00). Now that you have an understanding of the concepts of VLANs and Subnetting, briefly tell me why would you choose one over the other? Are there advantages/disadvantages between Subnetting and VLANs? If you were setting up an Enterprise Level Network today, which would you choose? How did a law passed in 1680 try to prevent rebellions by enslaved people? A customer needs 4-Liter bottles with handles made of HDPE, what technique could be your first choice as a bottle manufacturer?a) Extrusion blow moldingb) Injection blow moldingc) Thermoformingd) Injection molding Which rule of the constitutional convention allow delegates to speak openly? Solve the rational inequality. x4x+3> x+5x([infinity],5)( 45,4) (5,[infinity])(5, 45)(4,[infinity])(4, 45)(5,[infinity])(5,4)( 45,[infinity]) Find the area of the region bounded by the curves y = x(x 0), y = x(x 0) and the line y = 2. [13 marks] Let R be the region bounded by the curve y = x + 1 and the line y = 2x + 4. Find the volume of the solid generated by revolving the region R about the line y = -1. [17 marks] Discuss how scarcity of economic resourcesleads to tradeoffs Two sheets of " plywood are being used to make a 1" thick floor for an orchestra conductor platform. How much stiffer are they if they are glued together to make a "composite" 1" thick floor than if they are just laid one on top of the other? The width of plywood is 48". HelpppReplace the letter \( A \) in the integral \( \int A\left(2 x^{5}-2\right)^{4} d x \) so that the integral evaluates to \( \frac{1}{5}\left(2 x^{5}-2\right)^{5}+C \). \[ A= \] Get Help: What can you tell me about the polarity of the xanthophylls compared to carotene? 8. What are the mobile and stationary phases in the chlorophyll TLC experiment? Why are the mobile and stationary phased named that way? 9. Many kinds of intermolecular forces cause organic molecules to bind to the adsorbent on a TLC plate. Rank the strengths of these interactions (use 1 for the WEAKEST; 4 for the STRONGEST). H-bonding van der Waals salt formation dipole-dipole Euler equations are based on the following assumptions: . The column is perfectly straight, with no initial crookedness. . The load is axial, with no eccentricity. . The column is pinned at both ends. For this reason, what are we doing to correct the calculation? a) Use flange b) Using the effective length c)Use slenderness ratio d)Use buckling A researcher has conducted a market survey to test fuel efficiency performance on different brands of cars. Five cars for each brand were each test-driven in kilometers. The data obtained are as follows: Score (kilometers per liter) Total Mean Brand A 7.6 8.4 8.5 7.8 9.4 41.7 8.3 Brand B 7.8 8.0 9.2 9.5 8.6 43.2 8.6 Brand C 9.6 10.4 8.2 8.7 10.3 47.2 9.4a) Indicate the null and alternative hypotheses. b) Compute test statistics using ANOVA (including the SST, SSA, SSW and F test). c) Identify the ANOVA procedure of whether there is enough decision to say that the means are equal (= 0.05) Why are there 2-bonds and 1-bond in the p-orbital (MOT)?