Answer:
Explanation:
The specific rotation of the sample is -2 degrees/0.2 g/mL of mixture
This equals -10 degrees/g/mL of sample.
let the proportion of the R (+) enantiomer be x. The proportion of the S (-) enantiomer in the mixture will be given by (1-x).
specific rotation of the mixture = proportion of R enantiomer* its specific rotation + proportion of S enantiome * its specific rotation
i.e.
-10 = x *(+20) + (1-x)*(-20)
-10 = 20x-20 + 20x
-10+20 = 40x
+10 = 40 x
x=10/40 = 25%
Since the proportion of the other enantiomer is 1-x, it is 0.75 or 75%
So the mixture contains 25% R, 75% S, giving you an excess of 50%.
Answer:
10%
Explanation:
Enantiomeric excess is a way of describing how optically pure a mixture is by calculating the purity of the major enantiomer. It can range from 0%-100%. Enantiomeric excess ( ee ) can also be defined as the absolute difference between the mole fractions of two enantiomers.
Enantiomeric excess is also called optical purity. This is because chiral molecules cause the rotation of plane-polarized light and are said to be optically active. An enantiomerically pure sample has an enantiomeric excess of 100 percent
Enantiomeric excess = observed specific rotation/specific rotation of the pure enantiomer x 100
From the data given in the question;
observed specific rotation= -2°
specific rotation of the pure enantiomer = +20°
Therefore;
ee= 2/20 ×100
ee= 10%
What is the molar mass of CH2O2 ? ( C= 12.01 g/mol, H=1.008 g/mol, O=16.00)
Answer:
Molar Mass of CH2O2 is 46.026
Explanation:
What is the molar mass of CH2O2 ? ( C= 12.01 g/mol, H=1.008 g/mol, O=16.00)
C = 12.01g/mol
H = 1.008g/mol
O = 16g/mol
CH2O2 = 12.01+1.008x2+16x2 = 46.026g/mole
Which of the following is a property of matter?
The major properties of matter are volume, mass, and shape.
All matter however too is made up of tiny particles known as atoms.
Other characteristics properties of matter which can be measured include object's density, color, length, malleability, melting point, hardness, odor, temperature, and others
Learn more about matter:
https://brainly.com/question/11987405
The property of matter should be volume, mass, and shape.
The following information should be considered:
The matter should be made up of small & tiny particles that we called as the atoms. It involved the density of an object, length, temperature, melting point, etc.Learn more: https://brainly.com/question/1979431?referrer=searchResults
the reaction between aluminum and iron(iii) oxide can generate temperatures approaching 3000c and is used in welding metals. In one process, 268g of Al are reacted with 501g of Fe2O3. identify the limiting reagent and calculate the theoretical mass
Answer:
- Iron (III) oxide is the limiting reactant.
- [tex]m_{Al_2O_3}=319.9gAl_2O_3[/tex]
- [tex]m_{Fe}=350.4gFe[/tex]
Explanation:
Hello,
In this case, we consider the following reaction:
[tex]2Al + Fe_2O_3 \rightarrow Al_2O_3 +2Fe[/tex]
Thus, for identifying the limiting reactant we should compute the available moles of aluminium in 268 g:
[tex]n_{Al}=268gAl*\frac{1molAl}{26.98gAl} =9.93molAl[/tex]
Next, we compute the moles of aluminium that are consumed by 501 grams of iron (III) oxide via their 2:1 molar ratio:
[tex]n_{Al}^{consumed}=501gFe_2O_3*\frac{1molFe_2O_3}{159.69gFe_2O_30}*\frac{2molAl}{1molFe_2O_3}=6.27molAl[/tex]
Thus, we notice there are less consumed moles of aluminium than available, for that reason, it is in excess; therefore, the iron (III) oxide is the limiting reactant.
Moreover, the theoretical mass of aluminium oxide is:
[tex]m_{Al_2O_3}=6.27molAl*\frac{1molAl_2O_3}{2molAl} *\frac{101.96gAl_2O_3}{1molAl_2O_3} =319.9gAl_2O_3[/tex]
And the theoretical mass of iron is:
[tex]m_{Fe}=6.27molAl*\frac{2molFe}{2molAl} *\frac{55.845 gFe}{1molFe} =350.4gFe[/tex]
Best regards.
List three ways the rate of solvation of sodium chloride in water may be
increased
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
Ni
Express your answer in condensed form in the order of orbital filling as a string without blank space between orbitals. For example, [He]2s22p2 should be entered as [He]2s^22p^2.
Answer:
[Ar]3d^84s^2
Explanation:
From the question given, we are asked to write the condensed form of electronic configuration of nickel, Ni.
To do this, we simply write the symbol of the noble gas element before Ni in a squared bracket followed by the remaining electrons to make up the atomic number of Ni.
This is illustrated below:
The atomic number of Ni is 28.
The noble gas before Ni is Argon, Ar.
Therefore, the condensed electronic configuration of Ni is written as:
Ni(28) => [Ar]3d^84s^2
Answer:
[Ar] 4s^23d^8
Explanation:
How many grams of 02 are needed to react with 7.50g of ethanol
g Reduction involves the A) loss of neutrons, gain of electrons, and an increase in oxidation state. B) loss of neutrons. C) increase in oxidation state. D) gain of electrons and an increase in oxidation state. E) gain of electrons.
Answer:
E. Gain of electrons
Explanation:
A reduction reaction is one part of the two concurrent reactions that take place in a redox (reduction-oxidation) reaction.
During reduction, an atom gains electrons from a donor atom, and it's oxidation number becomes smaller.
Option A is wrong because reduction does not increase oxidation state nor are neutrons involved
Option B is wrong because reduction is not a nuclear reaction (does not involve the nucleons)
Option C is wrong because reduction leads to reduction in oxidation state
Option D is wrong leads to a reduction in oxidation state when electrons are gained
Option E is correct because reduction involves gain of electrons
How many protons are in an ion with 36 electrons and a -1 charge
Answer:
Explanation:
There are 35 protons.
The number of electrons = 36 electrons gives a -1 charge.
Where did all the other minus charges go?
They must be balanced by 35 protons.
Which accurately labels the lysosome?
Answer:
One of the organelles in eukaryotic cells that carry out digestion and waste removal.
Answer:
It's X
Explanation:
ultraviolet photon (λ = 58.4nm) from a helium gas discharge tube is absorbed by a hydrogen molecule which is at rest. Since momentum is conserved, what is the velocity of the hydrogen molecule after absorbing the photon? What is the translational energy of the hydrogen molecule in Jmol-1.
[h = 6.626 x 10-34 Js; NA = 6.022 x 1023 mol-1]
Answer:
Translation energy of 1 mole of H2 molecules = KE x Avogadros number
[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]
Explanation:
Photon wavelength [tex]= 58.4 nm = 58.4 * 10^{-9} m[/tex]
Photon momentum = h/wavelength
[tex]= (6.626 * 10^{-34})/(58.4 * 10^{-9})\\\\ = 1.1346 * 10^{-26} \ kg.m/s[/tex]
Mass of H2 molecule m = molar mass/Avogadros number
[tex]= (2.016)/(6.022 * 10^{23})\\\\= 3.3477 * 10^{-24} \ g = 3.3477 * 10^{-27} \ kg[/tex]
Since momentum is conserved:
Photon momentum = H2 molecule momentum = mass x velocity of H2
[tex]1.1346 * 10^{-26} = 3.3477 * 10^{-27} * v[/tex]
velocity [tex]v = 3.389 m/s = 3.39 m/s[/tex]
Translation energy of 1 H2 molecule = kinectic energy (KE) = (1/2)mv^2
[tex]= 1/2 * 3.3477 * 10^{-27} * 3.389^2\\\\= 1.923 * 10^{-26} J[/tex]
Translation energy of 1 mole of H2 molecules = KE x Avogadros number
[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]
The cryosphere is part of which sphere of the Earth system?
atmosphere
biosphere
geosphere
hydrosphere
Answer:
Ice (frozen water) is part of the hydrosphere, but it's given its own name, the cryosphere.
The cryosphere is part of the hydrosphere of the Earth system. The correct option is D.
What is the cryosphere?The cryosphere contains all the frozen parts of the earth. The term is made up of the Greek word “krios” which means cold. All the frozen water of the oceans and snow comes under the cryosphere.
The atmosphere contains all spheres, it is an envelope of gases. The geosphere is the land part of the earth, and the biosphere is the part where the living part is present.
The cryosphere is h habitat of many living creatures, and the climate of the earth is highly dependent on this sphere. The warmth of the earth is increasing and the cryosphere part is decreasing day by day, which is having problems for many animals.
Thus, the correct option is D, hydrosphere.
To learn more about the cryosphere, refer to the link:
https://brainly.com/question/16912577
#SPJ6
The modern view of an electron orbital in an atom can best be described as
Answer:
An orbital is a region in space where there is a high probability of finding an electron.
Explanation:
The orbital is a concept that developed in quantum mechanics. Recall that Neils Bohr postulated that the electron occupied stationary states which he called energy levels. Electrons emit radiation when the move from a higher to a lower energy level. Similarly, energy is absorbed by an electron to move from a lower to a higher orbit.
This idea was upturned by the Heisenberg uncertainty principle. This principle state that the momentum and position of a particle can not be simultaneously measured with precision.
Instead of defining a 'fixed position' for the electron, we define a region in space where there is a possibility of finding an electron with a certain amount of energy. This orbital is identified by a set of quantum numbers.
Answer:
three - dimensional space that shows the probability where an electron is most likely to be found
A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the final number of microstates is 0.842 times that of the initial number of microstates
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)
Precision can be defined as the?
Answer:Precision can be defined as the. reproducibility of a measured value. Precision is how close the measured values are to each others. In contrast with accuracy, accuracy is the agreement between a measured value and an accepted value.
Explanation:
If you have 101 g of hydrogen gas (H2) and excess amount of nitrogen gas (N2), how many grams of ammonia gas (NH3) can you make?
Answer:
572. 3 g of NH3
Explanation:
Equation of the reaction: 3H2 + N2 ----> 2NH3
From the equation of reaction, 3 moles of H2 reacts with 1 mole of N2 to produce 2 moles of NH3.
Since N2 is in excess in the given reaction, H2 is the limiting reactant.
Molar mass of H2 = 2 g/mol
Molar mass of NH3 = 17 g/mol
Therefore 3 * 2 g of H2 reacts to produce 2 * 17 g of NH3
6 g of H2 produces 34 g of NH3
101 g of H2 will produce (34 * 101)/6 g of NH3 = 572.3 g of NH3
Therefore, 572.3 g of NH3 are produced
Answer:
572.33g of NH3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
N2 + 3H2 —> 2NH3
Next, we shall determine the mass of the H2 that reacted and the mass of NH3 produced from the balanced equation. This is illustrated below:
Molar Mass of H2 = 2x1 = 2g/mol
Mass of H2 from the balanced equation = 3 x 2 = 6g
Molar Mass of NH3 = 14 + (3x1) = 17g/mol
Mass of NH3 from the balanced equation = 2 x 17 = 34g.
From the balanced equation above,
6g of H2 reacted to produce 34g of NH3.
Finally, we can determine the mass of ammonia (NH3) produced by reacting 101g of H2 as follow:
From the balanced equation above,
6g of H2 reacted to produce 34g of NH3.
Therefore, 101g of H2 will react to produce = ( 101 x 34) / 6 = 572.33g of NH3.
Therefore, 572.33g of NH3 is produced from the reaction.
Indicate whether each of the following indicates that a physical or chemical change has taken place when a piece of magnesium metal is studied: (a) Can be cut into tiny pieces (b) Fizzling occurs when placed water (c) Light is emitted when burned (d) Turns to ash
Answer:
a) Can be cut into tiny pieces - Physical Change
b) Fizzling occurs when placed water -Chemical Change
c) Light is emitted when burned -Chemical Change
d) Turns to ash -Chemical Change
Explanation:
Question 8
1 pts
A closed flask contains a 0.25 moles of O2 which exerts a pressure of
0.50 atm. If 0.75 moles of CO, is added to the container what is the
total pressure in the flask?
Answer:
\large \boxed{\text{2.0 atm}}
Explanation:
We can use Dalton's Law of Partial Pressures:
Each gas in a mixture of gases exerts its pressure separately from the other gases.
0.25 mol of O₂ exerts 0.50 atm.
If you add 0.75 mol of CO, the total amount of gas is
0.25 mol + 0.75 mol = 1.00 mol
[tex]p_{\text{total}} = \text{1.00 mol} \times \dfrac{\text{0.50 atm}}{\text{0.25 mol}}= \textbf{2.0 atm}\\\\\text{The total pressure in the flask is $\large \boxed{\textbf{2.0 atm}}$}[/tex]
The pressure of the closed flask after the addition of 0.75 moles of CO has been 2 atm.
Partial pressure can be defined as the pressure exerted by each gas in a given solution.
The total moles of gas in the container by the addition of CO has been:
Total moles = moles of oxygen + moles of CO
Total moles = 0.25 + 0.75
Total moles = 1 mol.
By using Dalton's law of partial pressure:
Total pressure = total moles [tex]\rm \times\;\dfrac{pressure\;of\;oxygen}{moles\;of\;oxygen}[/tex]
Total pressure = 1 [tex]\rm \times\;\dfrac{0.50}{0.25}[/tex]
Total pressure = 2 atm.
The pressure of the closed flask after the addition of 0.75 moles of CO has been 2 atm.
For more information about partial pressure, refer to the link:
https://brainly.com/question/14281129
What did John Dalton publish?
Answer:
An early theory describing properties of atoms.
Explanation:
Apex
iron oxide + oxygen equals to ?
Answer:
It's ferric oxide Fe2O3
Explanation:
I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thank me plz...
The equilibrium constant for the reaction NO2(g)+NO3(g)→N2O5(g) is 2.1x10-20 , therefore: a. At equilibrium, the concentration of products and reactants is about the same. b. At equilibrium, the concentration of products is greater than the reactants. c. At equilibrium, the concentration of reactants is greater than the products
Answer: c. At equilibrium, the concentration of reactants is greater than the products
Explanation:
Equilibrium constant for a reaction is the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
For the reaction:
[tex]NO_2(g)+NO_3(g)\rightleftharpoons N_2O_5(g)[/tex]
Equilibrium constant is given as:
[tex]K_{eq}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}[/tex]
[tex]2.1\times 10^{-20}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}[/tex]
When
a) K > 1, the concentration of products is greater than the concentration of reactants
b) K < 1, the concentration of reactants is greater than the concentration of products
c) K= 1, the reaction is at equilibrium, the concentration of reactants is equal to the concentration of products
Thus as [tex]K_{eq}[/tex] is [tex]2.1\times 10^{-20}[/tex] which is less than 1,
the concentration of reactants is greater than the concentration of products
When researchers need to prepare many reactions for polymerase chain reaction (PCR) amplification, they often create a "master mix" solution. A master mix contains the reagents common to all the planned PCR amplifications, regardless of the target DNA. Making a master mix is a way to minimize the number of pipetting steps.Suppose a researcher needs to PCR amplify seven different genes of interest from different organisms. The researcher prepares a master mix and dispenses it to seven different PCR tubes, one for each gene of interest.Select the PCR components the researcher must add to each of the seven tubes of master mix to selectively amplify each gene of interest.dNTPsMg2+-Mg2+-based bufferprimersDNA polymeraseDNA template
Answer:
The master mix contains the following reagents: dNTPs, DNA Polymerase, PCR buffer and MgCl2.
Explanation:
The DNA templates are the gene fragments to amplify by PCR, thereby they have to be added separately in each tube. Moreover, the primer pairs are specific for each gene, thereby they have to be added separately in each tube.
Deoxynucleotide triphosphates (dNTPs) are the building blocks of the DNA molecules: dGTP, dATP, TTP, and dCTP.
The PCR buffer provides a suitable medium for the activity of the DNA polymerase, often it contains Tris-Hcl and KCl.
MgCl2 is a cofactor for the activity of the DNA Polymerase.
The DNA Polymerase is an enzyme that amplifies DNA by adding nucleotides to the 3' end.
One compound in the list below is a gas at room conditions, while all of the others are liquids or solids. For each compound, indicate whether it is the gas or the force most responsible for it being a liquid or solid.
First list:
A. CH3OH
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsB. CH4
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsC. CaCO3
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsD. C6H14
1. a gas2. dispersion forces 3. dipolar forces4. hydrogen bonds5. ionic bonds6. covalent bondsSecond list:
A. H2O
B. C2H2
C. CCl4
D. KCl
Answer:
First list
A. CH3OH----hydrogen bonds
CH4----dispersion forces
CaCO3---ionic bonds
C6H14----dispersion forces
Second list
H2O------ liquid----hydrogen bonds
C2H2----gas---dispersion forces
CCl4---liquid---dispersion forces
KCl----solid---ionic bonds
Explanation:
For every compound, the intermolecular forces decide whether the substance will be solid liquid or gas. Molecules are known to associate with each other in any particular state of matter. These molecules are held together by different intermolecular interactions with varying degrees of strength. The strength of the intermolecular interaction between the molecules of a substance will decide if the substance will be a solid, liquid or gas.
When the intermolecular forces are very strong such as in ionic solids and covalent network solids, the substance exists as a solid. When the intermolecular forces are not so strong such as dispersion forces and hydrogen bonds, the substance exists as a liquid. However, very weak intermolecular dispersion forces are found in gases hence the molecules are relatively free when compared to molecules of liquids and solids.
Which of the following is a chemical property of iron? It
Answer:
is capable of combining with oxygen to form iron oxide
Mass is:
measured in kilograms
measured using a scale
affected by gravity
all of the above
Consider a cobalt-silver voltaic cell that is constructed such that one half-cell consists of the cobalt, Co, electrode immersed in a Co(NO3)3 solution, and the other half-cell consists of the silver, Ag, electrode immersed in a AgNO3 solution. The two electrodes are connected by a copper wire. The Co electrode acts as the anode, and the Ag electrode acts as the cathode. To maintain electric neutrality, you add a KNO3 salt bridge separating the two half-cells. Use this information to solve Parts B, C, and D.
A. The half-cell is a chamber in the voltaic cell where one half-cell is the site of the oxidation reaction and the other half-cell is the site of the reduction reaction.
Type the half-cell reaction that takes place at the anode for the cobalt-silver voltaic cell. Indicate the physical states using the abbreviation (s), (l), or (g) for solid, liquid, or gas, respectively. Use (aq) for an aqueous solution. Do not forget to add electrons in your reaction.
B. The half-cell is a chamber in the voltaic cell where one half-cell is the site of an oxidation reaction and the other half-cell is the site of a reduction reaction.
Type the half-cell reaction that takes place at the cathode for the cobalt-silver voltaic cell. Indicate physical states using the abbreviation (s), (l), or (g) for solid, liquid, or gas, respectively. Use (aq) for an aqueous solution. Do not forget to add electrons in your reaction.
Answer:
Anode half reaction;
Co(s) ----> Co^2+(aq) + 2e
Cathode half reaction;
2Ag^+(aq) + 2e-------> 2Ag(s)
Explanation:
A voltaic cell is an electrochemical cell that spontaneously produces electrical energy from chemical reactions. A voltaic cell comprises of an anode (where oxidation occurs) and a cathode (where reduction occurs). The both electrodes are connected with a wire . A salt bridge ensures charge neutrality in the anode and cathode compartments. Electrons flow from anode to cathode.
For the cell referred to in the question;
Anode half reaction;
Co(s) ----> Co^2+(aq) + 2e
Cathode half reaction;
2Ag^+(aq) + 2e-------> 2Ag(s)
Calculate the mass of CaCl2•2H2O required to make 100.0 mL of a 0.100 M solution. Each of the calculations below will take you through the necessary steps. You will be asked to show your answer and calculations for each. Calculate the moles of CaCl2•2H2O in 100.0 mL of a 0.100 M solution Enter your answer:
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
The mass should be considered as the 1.4701 grams and the moles should be 0.01.
Calculation of the mass and moles:Since we know that
Molarity = moles of solute/volume of solution in liters
So,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
Now The mass should be
Moles = mass/molar mass
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
hence, The mass should be considered as the 1.4701 grams and the moles should be 0.01.
Learn more about moles here: https://brainly.com/question/24817060
Suppose the amount of a certain radioactive substance in a sample decays from to over a period of days. Calculate the half life of the substance. Round your answer to significant digit.
The given question is incomplete, the complete question is:
Suppose the amount of a certain radioactive substance in a sample decays from 1.30 mg to 100. ug over a period of 29.5 days. Calculate the half life of the substance Round your answer to 2 significant digits.
Answer:
The correct answer is 7.974 days.
Explanation:
Based on the given question, the concentration of a radioactive substance present in a sample get decays to 100 micro grams from 1.30 milligrams in 29.5 days. There is a need to find the half-life of the substance.
Radioactive decay is an illustration of first order reaction.
K = (2.303 / t) log [a/(a-x)]
Here a is 1.30 mg and (a-x) is 100 micrograms = 100 * 10^-3 mg or 0.1 mg, and t is 29.5 days. Now putting the values we get,
K = (2.303 /29.5)log (1.30/0.1)
= 2.303/29.5 log13
= 2.303/29.5 * 1.1139
K = 0.0869
The half-life or t1/2 is calculated by using the formula, 0.693 / K
= 0.693 / 0.0869
= 7.974 days.
Consider the following reaction. I– 2 H2O2 (l) 2 H2O (l) + O2 (g) A solution contains 15 mL 0.1 M KI, 15 mL of DI water and 5 mL of 3% H2O2. After the decomposition of H2O2 is complete, you titrate the solution with 0.1 M AgNO3. If the catalyst, I–, is not consumed in the reaction and is completely recovered, what volume of the 0.1 M AgNO3 is required to reach the end point?
Answer:
Explanation:
The given chemical reaction is:
[tex]2H_2O_{(l)} \to^{I^-}} 2H_2O_{(l)}+O_2_{(g)}[/tex]
From above equation [tex]I^-[/tex] serves as catalyst which is not consumed by the reaction and also it is completely recovered; as a result to that , the full volume of KI will definitely react with AgNO₃.
Given that :
the volume of potassium iodide [tex]V_{KI} = 15 \ ml[/tex]
the molarity of potassium [tex]M_{KI} = 0.1 \ M[/tex]
the volume of distilled water [tex]V_W = 15 \ mL[/tex]
The volume of 3% [tex]H_2O_2 \ \ V_{H_2O_2} = 5 \ mL[/tex]
Molarity of AgNO₃ [tex]M_{AgNO_3} = 0.1 \ M[/tex]
Let take an integral look with the reaction between KI and AgNO₃; we have
[tex]KI + AgNO_3 \to KNO_3 + AgI[/tex]
At the end point; the moles of KI will definitely be equal to the moles of AgNO₃
So;
[tex]M_{KI}V_{KI}= M_{AgNO_3}V_{AgNO_3} \\ \\ V_{AgNO_3} = \dfrac{M_{KI}V_{KI}}{M_{AgNO_3}} \\ \\ \\ V_{AgNO_3} = \dfrac{ 0.1*15}{0.1}[/tex]
[tex]V_{AgNO_3} = 15 \ ml[/tex]
Thus; the volume of 0.1 M AgNO₃ needed to reach the end point is 15 mL
Phosphofructokinase is a four‑subunit protein with four active sites. Phosphofructokinase catalyzes step 3 of glycolysis, converting fructose‑6‑phosphate to fructose‑1,6‑bisphosphate. Phosphoenolpyruvate (PEP) is the product of step 9 of glycolysis. The PEP concentration in the cell affects phosphofructokinase activity.Select the true statements about PEP regulation of phosphofructokinase.
1. PEP is a feedback inhibitor of phosphofructokinase.
2. The apparent affinity of phosphofructokinase for its substrate increases when PEP binds.
3. PEP is a positive effector of phosphofructokinase.
4. PEP inhibition of phosphofructokinase yields a sigmoidal velocity versus substrate curve.
5. PEP competes with fructose-6-phosphate for the active site of phosphofructokinase.
6. The binding of PEP to one phosphofructokinase subunit causes a conformation change that affects the ability of the substrate to bind to the other subunits.
Answer:
1. PEP is a feedback inhibitor of phosphofructokinase.
4. PEP inhibition of phosphofructokinase yields a sigmoidal velocity versus substrate curve.
6. The binding of PEP to one phosphofructokinase subunit causes a conformation change that affects the ability of the substrate to bind to the other subunits.
Explanation:
Phosphofructokinase-1, PFK-1, is an allosteric enzymes composed of four protein subunits.
Allosteric enzymes are enzymes that function through non-covalent binding of allosteric modulators which may be activators or inhibitors. They produce a characteristic velocity versus substrate sigmoidal curve. PFK-1 has a separate binding site for its substrate, fructose-6-phosphate and it's allosteric modulators: ATP, ADP or phosphoenolpyruvate, PEP.
The enzyme can exist in two conformations, the T-state (tense) or the R-state (resting). Binding of substrate causes a conformational change from T-state to R-state, whereas binding of allosteric inhibitors returns it to the T-state.
PEP, the product of step 9 in glycolysis, is an allosteric inhibitor of PFK-1. When it binds to the the allosteric site, it leads to conformational changes in PFK-1 from the R-state to the T-state which reduces the enzymes ability to bind the substrate. These changes are responsible for the sigmoidal velocity/substrate curve in allosteric enzymes.
Therefore, the true statements from the options above are 1, 4, 6.
Options 2,3 and 5 are wrong because PEP is a negative effector of PFK-1, thus its binding reduces the affinity of PFK-1 for its substrate. Also, PFK-1 being an allosteric enzyme has separate binding sites for its substrate and its modulators. Thus, there is no competition for active site binding by substrate and modulators.
Photochromic lenses contain Group of answer choices both AgCl and CuCl embedded in the glass. only AgCl embedded in the glass. neither AgCl nor CuCl embedded in the glass. only CuCl embedded in the glass.
Answer:
both AgCl and CuCl embedded in the glass
Explanation:
Photochromic lenses contain both AgCl and CuCl embedded in the glass.
They are light-sensitive lenses that adapt to environmental changes. They appear clear when in an apartment or a building and automatically darken when outside as a result of exposure to sunlight. The darkening is activated by the UV component of the sunlight.
Photochromic lenses are otherwise known as light-adaptive or intelligent lenses and they are formed by coating lenses with silver chloride compounds whose concentration ranges from 0.01 to 0.001 %. Copper (I) chloride is also included in addition to the silver halide.
In summary, photochromic lenses contain both AgCl and CuCl.