a) the standard error of the mean is $4.49.
b) the standard error would increase from $4.49 to $8.98 if the sample size were decreased from 20 to 5.
a) The standard error of the mean (SEM) is defined as the standard deviation of the sample mean's distribution.
Standard error of the mean (SEM) can be calculated using the formula;
SEM = s/√n
Where;s = Standard deviation
n = Sample size
So, using the given data;
Sample standard deviation = s = $20.08
Sample size = n = 20
Therefore,SEM = s/√n= $20.08/√20= $4.49
So, the standard error of the mean is $4.49.
b) When the sample size is reduced from 20 to 5, then the standard error will increase. Because, the sample size is inversely proportional to the standard error. So, if the sample size decreases then the standard error will increase.
Let's see, how much the standard error will increase when the sample size decreases from 20 to 5.Using the given data,Sample standard deviation = s = $20.08
Sample size = n = 5
Therefore,SEM = s/√n= $20.08/√5= $8.98
So, the standard error of the mean is $8.98.
Hence, we can conclude that the standard error would increase from $4.49 to $8.98 if the sample size were decreased from 20 to 5.
Learn more about standard deviation (SD) at:
https://brainly.com/question/30845346
#SPJ11
A rocket is propelled vertically upward from a launching pad 300 metres away from an observation station. Let h be the height of the rocket in metres and θ be the angle of elevation of a tracking instrument in the station at time t in seconds, as shown in the diagram below.
In this scenario, a rocket is launched vertically upward from a launching pad that is 300 meters away from an observation station. We are interested in tracking the height of the rocket (h) and the angle of elevation (θ) of a tracking instrument at a given time (t) in seconds.
To track the rocket's height, we can use basic trigonometry. The angle of elevation (θ) can be measured by the tracking instrument at the observation station. By knowing the distance between the launching pad and the observation station (300 meters), we can establish a right-angled triangle. The height of the rocket (h) is the opposite side, the distance (300 meters) is the adjacent side, and the angle of elevation (θ) is the angle opposite the height side. We can then use trigonometric functions such as tangent (tan) to relate the angle (θ) and the height (h) in the triangle. This relationship allows us to calculate the height of the rocket as a function of the angle of elevation at any given time (t) in seconds.
To learn more about trigonometry click here:
brainly.com/question/11016599
#SPJ11
In this scenario, a rocket is launched vertically upward from a launching pad that is 300 meters away from an observation station. We are interested in tracking the height of the rocket (h) and the angle of elevation (θ) of a tracking instrument at a given time (t) in seconds.
To track the rocket's height, we can use basic trigonometry. The angle of elevation (θ) can be measured by the tracking instrument at the observation station. By knowing the distance between the launching pad and the observation station (300 meters), we can establish a right-angled triangle. The height of the rocket (h) is the opposite side, the distance (300 meters) is the adjacent side, and the angle of elevation (θ) is the angle opposite the height side. We can then use trigonometric functions such as tangent (tan) to relate the angle (θ) and the height (h) in the triangle. This relationship allows us to calculate the height of the rocket as a function of the angle of elevation at any given time (t) in seconds.
To learn more about trigonometry click here:
brainly.com/question/11016599
#SPJ11
. A company has a manufacturing plant that is producing quality canisters. They find that in order to produce 110 canisters in a month, it will cost $4180. Also, to produce 500 canisters in a month, it will cost $15100. Find an equation in the form y = mx + b, where x is the number of canisters produced in a month and y is the monthly cost to do SO. Answer: y =
According to the statement the number of canisters produced in a month and y is the monthly cost is y = 28x + 1180.
Given: A company produces quality canisters.For producing 110 canisters in a month, it will cost $4180.For producing 500 canisters in a month, it will cost $15100.The cost of manufacturing canisters increases as the production quantity increases.So, the cost of producing x canisters is y.Then, the equation for the cost of manufacturing canisters is y = mx + b, where m and b are constants to be found.Let the cost per unit canister is c.Then, the equation can be written for 110 canisters:4180 = 110c + bAlso, the equation can be written for 500 canisters:15100 = 500c + b Subtracting equation (1) from equation (2), we get:10920 = 390c, or c = 28.Substituting c = 28 and b = 1180 in equation (1), we get:y = 28x + 1180, where x is the number of canisters produced in a month and y is the monthly cost to do so.Answer:y = 28x + 1180.
To know more about canisters visit :
https://brainly.com/question/14203661
#SPJ11
Question 8 (3 points) What are the different ways to solve a quadratic equation? Provide a diagram with your explanation.
This gives us the solutions x = -2 + √11 and x = -2 - √11. A diagram to represent the different methods of solving a quadratic equation is not necessary.
There are different ways to solve a quadratic equation: factoring, using the square root property, completing the square, and using the quadratic formula. A quadratic equation is an equation that can be written in the standard form ax² + bx + c = 0, where a, b, and c are real numbers.
1. Factoring: This is the simplest method of solving a quadratic equation. We factor the quadratic equation into a product of two binomials. For example, let's solve the equation x² + 7x + 10 = 0.
We can factor the quadratic equation as (x + 5)(x + 2) = 0. We can then solve for x by setting each factor to zero and solving for x.
Therefore, x + 5 = 0 or x + 2 = 0. This gives us the solutions x = -5 and x = -2.
2. Using the square root property: This method can be used to solve a quadratic equation of the form x² = a. For example, let's solve the equation x² = 25.
We take the square root of both sides of the equation: x = ±√25. This gives us the solutions x = 5 and x = -5.
3. Completing the square: This method involves rewriting the quadratic equation in the form (x + p)² = q, where p and q are constants. For example, let's solve the equation x² + 4x - 5 = 0.
We add 5 to both sides of the equation: x² + 4x = 5. We then complete the square by adding (4/2)² = 4 to both sides of the equation: x² + 4x + 4 = 9.
We can then rewrite the left-hand side of the equation as (x + 2)² = 9. Taking the square root of both sides of the equation gives us x + 2 = ±3.
This gives us the solutions x = 1 and x = -5.
4. Using the quadratic formula: This method involves using the quadratic formula to solve the quadratic equation. The quadratic formula is given by: x = (-b ± √(b² - 4ac))/2a.
For example, let's solve the equation x² + 4x - 5 = 0 using the quadratic formula. We have a = 1, b = 4, and c = -5.
Substituting these values into the quadratic formula, we get:
x = (-4 ± √(4² - 4(1)(-5)))/2(1)
= (-4 ± √44)/2
Simplifying, we get x = (-4 ± 2√11)/2.
Dividing both sides of the equation by 2, we get:
x = -2 ± √11.
This gives us the solutions x = -2 + √11 and x = -2 - √11.
A diagram to represent the different methods of solving a quadratic equation is not necessary.
Learn more about quadratic equation
brainly.com/question/30098550
#SPJ11
Use the position function s(t)= 96t/√t^2+3 to find the velocity at time t=2 Enter an exact answer, do not
use decimal approximation. (Assume units of meters and seconds.)
V(2) = m/s
The velocity at time t = 2 is (96√7 - 768) / 7 m/s.
What is the velocity at time t = 2?To find the velocity at time t = 2 using the position function s(t) = 96t/√(t² + 3), we need to find the derivative of the position function with respect to time.
The derivative of s(t) with respect to t gives us the velocity function v(t).
Let's differentiate s(t) using the quotient rule and chain rule:
s(t) = 96t/√(t² + 3)
Using the quotient rule:
v(t) = [96(√(t² + 3))(1) - 96t(1/2)(2t)] / (t² + 3)
Simplifying:
v(t) = (96√(t² + 3) - 192t²) / (t² + 3)
Now we can find the velocity at t = 2 by substituting t = 2 into the velocity function:
v(2) = (96√(2² + 3) - 192(2)²) / (2² + 3)
v(2) = (96√(4 + 3) - 192(4)) / (4 + 3)
v(2) = (96√7 - 768) / 7
learn more on position function here;
https://brainly.com/question/7807573
#SPJ4
A random variable X has a normal probability distribution with mean 30 and (12 mark standard deviation 1.5. Find the probability that P(27
To find the probability that [tex]\(P(27 < X < 33)\)[/tex], where [tex]\(X\)[/tex] is a normally distributed random variable with mean 30 and standard deviation 1.5, we can use the properties of the standard normal distribution.
First, we need to standardize the values 27 and 33. We can do this by subtracting the mean and dividing by the standard deviation:
[tex]\(z_1 = \frac{{27 - \mu}}{{\sigma}} = \frac{{27 - 30}}{{1.5}} = -2\)\(z_2 = \frac{{33 - \mu}}{{\sigma}} = \frac{{33 - 30}}{{1.5}} = 2\)[/tex]
Next, we can use a standard normal distribution table or a calculator to find the corresponding probabilities for these standardized values.
Using a standard normal distribution table, the probability of a standard normal random variable falling between -2 and 2 is approximately 0.9545.
Therefore, the probability that [tex]\(27 < X < 33\)[/tex] is approximately 0.9545.
Learn more about standard deviation here:
https://brainly.com/question/29115611
#SPJ11
determine whether the series is convergent or divergent. [infinity] n sqrt2 n = 1
The given series, ∑ (n = 1 to ∞) sqrt(2)^n, is divergent.
To determine the convergence or divergence of the series, we need to analyze the behavior of the general term. In this case, the general term is given by n√(2n).
We can use the limit comparison test to examine the convergence of the series. Let's consider the series ∑n√(2n) and compare it with a known series that has a known convergence behavior. We'll choose the harmonic series ∑1/n as our comparison series.
By taking the limit of the ratio of the two series as n approaches infinity, we have:
lim(n→∞) (n√(2n))/(1/n)
Applying algebraic simplification and simplifying the expression inside the limit, we get:
lim(n→∞) (n√(2n))/(1/n) = lim(n→∞) (n√(2n)) * (n/1)
= lim(n→∞) n^2 * √(2n)
= lim(n→∞) √(2n^3)
Now, as n approaches infinity, √(2n^3) also approaches infinity. Thus, the limit of the ratio is infinity.
According to the limit comparison test, if the limit of the ratio is a positive finite number, the two series have the same convergence behavior. If the limit is zero, the series are both convergent or both divergent. However, if the limit is infinity, the series diverge.
In this case, the limit is infinity, indicating that the series ∑n√(2n) diverges. Therefore, the given series is divergent.
To know more about harmonic series, refer here:
https://brainly.com/question/32338941#
#SPJ11
Un recipiente contiene 3/4 de litro de líquido. ¿Cuántos mililitros hay
en el recipiente?
Given statement solution is :- Por lo tanto, there are 750 milliliters in the container.
Milliliter definition, a unit of capacity equal to one thousandth of a liter, and equivalent to 0.033815 fluid ounce, or 0.061025 cubic inch.
A milliliter is a metric unit of volume equal to a thousandth of a liter.
To convert liters to milliliters, we must remember that 1 liter is equivalent to 1000 milliliters.
Given that the container contains 3/4 of a liter, we can calculate the milliliters by multiplying 3/4 by 1000:
(3/4) * 1000 = (3 * 1000) / 4 = 3000 / 4 = 750
Por lo tanto, there are 750 milliliters in the container.
For such more questions on Litros a milliliters
https://brainly.com/question/30813917
#SPJ8
4) Create a maths problem and model solution corresponding to the following question: "Evaluate the following integral using trigonometric substitution" he integral should make use of the substitution x = atanθ, and also require a second substitution to solve. The square root component should be multiplied by a polynomial.
We will evaluate an integral using trigonometric substitution and a second substitution. The integral will involve the substitution x = atanθ and a square root component multiplied by a polynomial.
Let's consider the integral ∫ √(x^2 + 1) * (x^3 + 2x) dx. We will evaluate this integral using trigonometric substitution x = atanθ.
First, we substitute x = atanθ. Then, we have dx = sec²θ dθ and x^2 = (tanθ)^2.
Substituting these values into the integral, we have:
∫ √((tanθ)^2 + 1) * ((tanθ)^3 + 2tanθ) * sec²θ dθ.
Simplifying the expression, we get:
∫ √(tan²θ + 1) * (tan³θ + 2tanθ) * sec²θ dθ.
Next, we use the trigonometric identity sec²θ = 1 + tan²θ to rewrite the integral as:
∫ √(tan²θ + 1) * (tan³θ + 2tanθ) * (1 + tan²θ) dθ.
Expanding the expression further, we obtain:
∫ (√(tan²θ + 1) * tan³θ + 2√(tan²θ + 1) * tanθ + √(tan²θ + 1) * tan⁵θ + 2√(tan²θ + 1) * tan³θ) dθ.
At this point, we can simplify the integral by using a second substitution. Let's substitute tanθ = u. Then, sec²θ dθ = du.
Now, the integral becomes:
∫ (√(u² + 1) * u³ + 2√(u² + 1) * u + √(u² + 1) * u⁵ + 2√(u² + 1) * u³) du.
Integrating this expression, we obtain the antiderivative F(u).
Finally, we substitute back u = tanθ and replace θ with the inverse tangent to obtain the antiderivative in terms of x.
To learn more about trigonometric substitution click here : brainly.com/question/32150541
#SPJ11
Lett be the 7th digit of your Student ID. Answer each of the following questions: (a) [5 MARKS] Find the limit of the following sequence: et n³ In = t² + 3n+ (t+1)n³ (yn) ². Define the sequences yn = en [in(1)-In(t+2)] and qn = (b) [4 MARKS] If yn converges to I, where does qn converge to? Write your answer in terms of 1. (c) [5 MARKS] Define a subsequence an by choosing every second element of yn (i.e. ak = y2k). Write down the first 4 elements of an. Where does this subsequence converge to if yn converges to ? Write your answer in terms of 1. (d) [8 MARKS] Prove the following statement: A sequence can have at-most one limit. (e) [8 MARKS] Argue whether ak and qn can converge to two different limits. Using your conclusion, calculate the value of the limit 1.
The required answers are:
a. The limit of the sequence [tex]x_n[/tex] is [tex](e^t) / (t + 1)[/tex].
b. [tex]q_n[/tex] converges to [tex]l^2[/tex].
c. If [tex]y_n[/tex] converges to I, then the subsequence [tex]a_n[/tex] will also converge to I, as it consists of every second element of [tex]y_n[/tex].
d. The given sequence can have at most one limit.
e, The value of the limit for the sequence 1 is 1
To find the limit of the sequence[tex]x_n = (e^t * n^3) / (t^2+ 3n + (t + 1)n^3)[/tex], we need to analyze its behavior as n approaches infinity. Let's consider the expression inside the sequence:
[tex]x_n = (e^t * n^3) / (t^2+ 3n + (t + 1)n^3)[/tex],
As n tends to infinity, the highest power term in the numerator and denominator dominates the expression. In this case, the dominant term is n³ in both the numerator and denominator.
Dividing both the numerator and denominator by n³, we have:
[tex]x_n = (e^t * (n^3/n^3)) / (t^2/n^3 + 3n/n^3 + (t + 1)n^3/n^3)[/tex]
[tex]= (e^t) / (t^2/n^3 + 3/n^2 + (t + 1))[/tex]
As n approaches infinity, the terms [tex]t^2/n^3[/tex] and [tex]3/n^2[/tex] tend to zero since the denominator grows faster than the numerator. Therefore, simplify the expression further:
[tex]\lim_(n\to\infty) x_n = (e^t) / (0 + 0 + (t + 1))[/tex]
[tex]= (e^t) / (t + 1)[/tex]
Hence, the limit of the sequence [tex]x_n[/tex] is [tex](e^t) / (t + 1).[/tex]
(b) If [tex]y_n[/tex] converges to l, the limit of [tex]y_n[/tex] , then [tex]q_n[/tex], which is [tex](y_n)^2[/tex], will converge to [tex]l^2[/tex].
Therefore, [tex]q_n[/tex] converges to [tex]l^2[/tex].
(c) The subsequence [tex]a_n[/tex] consists of every second element of[tex]y_n[/tex], i.e., [tex]a_k = y_{2k}[/tex]. Let's write down the first four elements of an:
[tex]a_1 = y_2(1) = y_2 = e^{2 [2(1) - 2(t + 2)]} = e^{-4(t + 2)}[/tex]
[tex]a_2 = y_2(2) = y_4 = e^{2 [2(2) - 2(t + 2)]} = e^{-8(t + 2)}[/tex]
[tex]a_3 = y_2(3) = y_6 = e^{2 [2(3) - 2(t + 2)]} = e^{-12(t + 2)}[/tex]
[tex]a_4 = y_2(4) = y_8 = e^{2 [2(4) - 2(t + 2)]} = e^{-16(t + 2)}[/tex]
If [tex]y_n[/tex] converges to I, then the subsequence [tex]a_n[/tex] will also converge to I, as it consists of every second element of [tex]y_n[/tex].
(d) To prove the statement that a sequence can have at most one limit, we assume the contrary. Assume that a sequence has two distinct limits, [tex]L_1[/tex] and [tex]L_2[/tex], where [tex]L_1 \neq L_2[/tex]
_2.
If a sequence has a limit [tex]L_1[/tex] , it means that for any positive value ε, there exists a positive integer N1 such that for all n > N1,
|xn - L1| < ε.
Similarly, if a sequence has a limit [tex]L_2[/tex], there exists a positive integer N2 such that for all n > N2, [tex]|x_n - L_2| < \epsilon[/tex]
Now, let N = max(N1, N2). For this value of N, we have:
[tex]|x_n - L_1| < \epsilon[/tex](for all n > N)
[tex]|x_n - L_2| < \epsilon[/tex] (for all n > N)
By combining these inequalities, we have:
[tex]|L_1 - L_2| = |L_1 - x_n + x_n - L_2|[/tex]
[tex]\leq |L_1 - x_n| + |x_n - L_2|[/tex]
[tex]< 2\epsilon[/tex]
Since ε can be any positive value, it follows that |L_1 - L_2| can be made arbitrarily small. However, since L_1 ≠ L_2, this is a contradiction.
Therefore, the assumption that a sequence can have two distinct limits is false, and a sequence can have at most one limit.
(e) Based on the conclusion in part (d) that a sequence can have at most one limit, it implies that the subsequence [tex]a_k[/tex] and [tex]q_n[/tex] cannot converge to two different limits.
Therefore, if the limit 1 is valid for one of the sequences, it must also be the limit for the other sequence.
Thus, the value of the limit for the sequence 1 is 1.
Hence, the required answers are:
a. The limit of the sequence [tex]x_n[/tex] is [tex](e^t) / (t + 1)[/tex].
b. [tex]q_n[/tex] converges to [tex]l^2[/tex].
c. If [tex]y_n[/tex] converges to I, then the subsequence [tex]a_n[/tex] will also converge to I, as it consists of every second element of [tex]y_n[/tex].
d. The given sequence can have at most one limit.
e, The value of the limit for the sequence 1 is 1
Know more about limit of sequence here:
https://brainly.com/question/16779166
#SPJ4
Write the augmented matrix of the system and use it to solve the system. If the system has an infinite number of solutions, express them in terms of the parameter z. 18y 32 - 12x + - 2x + Z y Зу - 6
If the system has an infinite number of solutions, the augmented matrix of the system can be expressed as follows:
An augmented matrix is a matrix that represents a system of linear equations. It consists of the coefficients of the variables in the equations, along with a column containing the constants on the right-hand side of the equations. The augmented matrix allows us to perform row operations and apply matrix operations to solve the system of equations.
To write the augmented matrix for the given system, we arrange the coefficients of the variables and the constants into a matrix form. The system can be represented as:
| 0 18 -12 0 0 |
| 2 0 32 1 0 |
| -2 1 0 0 0 |
| 0 0 1 1 0 |
| 0 0 0 3 -6 |
Now, we can perform row operations on this matrix to solve the system.
R1 = R1 / 18
| 0 1 -2/3 0 0 |
| 2 0 32 1 0 |
|-2 1 0 0 0 |
| 0 0 1 1 0 |
| 0 0 0 3 -6 |
R2 = R2 - 2R1 and R3 = R3 + 2R1
| 0 1 -2/3 0 0 |
| 2 -2/3 40/3 1 0 |
| 0 5/3 -4/3 0 0 |
| 0 0 1 1 0 |
| 0 0 0 3 -6 |
R4 = R4 - R3
| 0 1 -2/3 0 0 |
| 2 -2/3 40/3 1 0 |
| 0 5/3 -4/3 0 0 |
| 0 -5/3 5/3 1 0 |
| 0 0 0 3 -6 |
R2 = R2 + (2/3)R1 and R3 = R3 - (5/3)R1
| 0 1 -2/3 0 0 |
| 2 0 16/3 1 0 |
| 0 0 -2/3 0 0 |
| 0 -5/3 5/3 1 0 |
| 0 0 0 3 -6 |
R3 = R3 * (-3/2) and R4 = R4 + (5/3)R2
| 0 1 -2/3 0 0 |
| 2 0 16/3 1 0 |
| 0 0 1 0 0 |
| 0 0 5/3 1 0 |
| 0 0 0 3 -6 |
R4 = R4 - (5/3)R3
| 0 1 -2/3 0 0 |
| 2 0 16/3 1 0 |
| 0 0 1 0 0 |
| 0 0 0 1 0
To know more about matrix operations, visit:
https://brainly.com/question/27237605
#SPJ11
how is x-y+z the same as x-(y+z) or (x-y)+z?
The expression "x - y + z" can be simplified and rearranged using the associative property and commutative property of addition. Let's break it down step by step:
1. x - y + z
According to the associative property of addition, the grouping of terms does not affect the result when only addition and subtraction are involved. Therefore, we can choose to group "y" and "z" together:
2. x + (-y + z)
Next, using the commutative property of addition, we can rearrange the terms "-y + z" as "z + (-y)":
3. x + (z + (-y))
Now, we have the expression "x + (z + (-y))". According to the associative property of addition, we can group "x" and "z + (-y)" together:
4. (x + z) + (-y)
Finally, we can rewrite the expression as "(x + z) - y", which is equivalent to "(x - y) + z":
5. (x + z) + (-y) = (x - y) + z
Therefore, "x - y + z" is indeed the same as both "x - (y + z)" and "(x - y) + z" due to the associative and commutative properties of addition.
Urgent please help!!
Find fx and f, for f(x, y) = 13(7x − 6y + 12)7. - fx(x,y)= fy(x,y)= |
To find fx and fy for the function f(x, y) = 13(7x - 6y + 12)7, we need to differentiate the function with respect to x and y, respectively.
To find fx, we differentiate the function f(x, y) with respect to x while treating y as a constant. Using the power rule, the derivative of
(7x - 6y + 12) with respect to x is simply 7. Therefore,
fx(x, y) = 7 ×13(7x - 6y + 12)6.
To find fy, we differentiate the function f(x, y) with respect to y while treating x as a constant. Since there is no y term in the function, the derivative of (7x - 6y + 12) with respect to y is 0. Therefore, fy(x, y) = 0.
Hence fx(x, y) = 7 × 13(7x - 6y + 12)6, and fy(x, y) = 0. The partial derivative fx represents the rate of change of the function with respect to x, while fy represents the rate of change of the function with respect to y.
Learn more about partial derivatives here:
https://brainly.com/question/28750217
#SPJ11
A survey of property owners' opinions about a street-widening project was taken to determine if owners' opinions were related to the distance between their home and the street. A randomly selected sample of 100 property owners was contacted and the results are shown next. Opinion Front Footage For Undecided Against Under 45 feet 12 4 4 45-120 feet 35 5 30 Over 120 feet 3 2 5 What is the expected frequency for people who are undecided about the project and have property front-footage between 45 and 120 feet? Seleccione una:
A. 7.7
B. 5.0
C. 2.2
D. 3.9
The expected frequency for people who are undecided about the project and have property front-footage between 45 and 120 feet is 7.7.
How to solve for expected frequencyFirst, you need to calculate the row totals, column totals, and the grand total from the provided data.
Row Totals:
Under 45 feet: 12 + 4 + 4 = 20
45-120 feet: 35 + 5 + 30 = 70
Over 120 feet: 3 + 2 + 5 = 10
Column Totals:
For: 12 + 35 + 3 = 50
Undecided: 4 + 5 + 2 = 11
Against: 4 + 30 + 5 = 39
Grand Total: 20 + 70 + 10 = 100
Then, the expected frequency for the specified group can be calculated as:
Expected Frequency = (Row Total for 45-120 feet * Column Total for Undecided) / Grand Total
= (70 * 11) / 100 = 7.7
The expected frequency for people who are undecided about the project and have property front-footage between 45 and 120 feet is 7.7.
Read more on expected frequency here https://brainly.com/question/23866673
#SPJ4
A 60lb weight stretches a spring 6 feet. The weight hangs vertically from the spring and a damping force numerically equal to 5√√3 times the instantaneous velocity acts on the system. The weight is released from 3 feet above the equilibrium position with a downward velocity of 13 ft/s. (a) Determine the time (in seconds) at which the mass passes through the equilibrium position. (b) Find the time (in seconds) at which the mass attains its extreme displacement from the equilibrium position
To solve this problem, we can use the equation of motion for a damped harmonic oscillator
m*y'' + c*y' + k*y = 0,
where m is the mass, y is the displacement from the equilibrium position, c is the damping coefficient, and k is the spring constant.
Given:
m = 60 lb,
y(0) = 3 ft,
y'(0) = -13 ft/s,
c = 5√√3,
k = (60 lb)/(6 ft) = 10 lb/ft.
Converting the units:
m = 60 lb * (1 slug / 32.2 lb·ft/s²) = 1.86 slug,
k = 10 lb/ft * (1 slug / 32.2 lb·ft/s²) = 0.31 slug/ft.
The equation of motion becomes:
1.86*y'' + 5√√3*y' + 0.31*y = 0.
(a) To determine the time at which the mass passes through the equilibrium position, we need to find the time when y = 0.
Substituting y = 0 into the equation of motion, we get:
1.86*y'' + 5√√3*y' + 0.31*0 = 0,
1.86*y'' + 5√√3*y' = 0.
The solution to this homogeneous linear differential equation is given by:
y(t) = c₁*e^(-αt)*cos(βt) + c₂*e^(-αt)*sin(βt),
where α = (5√√3) / (2 * 1.86) and β = sqrt((0.31 / 1.86) - (5√√3)^2 / (4 * 1.86^2)).
Since the mass starts from 3 ft above the equilibrium position with a downward velocity, we can determine that c₁ = 3.
To find the time at which the mass passes through the equilibrium position (y = 0), we set y(t) = 0 and solve for t:
c₁*e^(-αt)*cos(βt) + c₂*e^(-αt)*sin(βt) = 0.
At the equilibrium position, the cosine term becomes zero: cos(βt) = 0.
This occurs when βt = (2n + 1) * π / 2, where n is an integer.
Solving for t, we have:
t = ((2n + 1) * π / (2 * β)), where n is an integer.
(b) To find the time at which the mass attains its extreme displacement from the equilibrium position, we need to find the maximum value of y(t).
The maximum value occurs when the sine term in the solution is at its maximum, which is 1.
Thus, c₂ = 1.
To find the time when the mass attains its extreme displacement, we set y'(t) = 0 and solve for t:
y'(t) = -α*c₁*e^(-αt)*cos(βt) + α*c₂*e^(-αt)*sin(βt) = 0.
Simplifying the equation, we have:
α*c₂*sin(βt) = α*c₁*cos(βt).
This occurs when the tangent term is equal to α*c₂ / α*c₁:
tan(βt) = α*c₂ / α*c₁.
Solving for t, we have:
t = arctan(α*c₂ / α*c₁)
/ β.
Substituting the given values and solving numerically will give the values of t for both (a) and (b).
Visit here to learn more about harmonic oscillator:
brainly.com/question/13152216
#SPJ11
Use the fact that the vector product is distributive over addition to show that (a - b) x (a + b) = 2(axb) By considering the definition of a Xb prove that k(a X b) = (ka) × b = ax (kb). 7 If a, b and c form the triangle shown, prove that axb=bXc=cXa [Hint: consider the obvious relation between a, b and c then construct suitable vector products.]
To show that (a - b) x (a + b) = 2(axb), we can expand both sides using the distributive property of the vector product:
(a - b) x (a + b) = a x (a + b) - b x (a + b)
Expanding further:
= a x a + a x b - b x a - b x b
Since the vector product is anti-commutative (b x a = -a x b), we can simplify the expression:
= a x a + a x b - (-a x b) - b x b
= a x a + a x b + a x b - b x b
= a x a + 2(a x b) - b x b
Now, using the fact that a x a = 0 (the vector product of a vector with itself is zero), we have:
= 0 + 2(a x b) - b x b
= 2(a x b) - b x b
Since the vector product is also anti-commutative (b x b = -b x b), we can simplify further:
= 2(a x b) + b x b
= 2(a x b) + 0
= 2(a x b)
Therefore, we have shown that (a - b) x (a + b) = 2(axb).
Now, let's prove the relation k(a x b) = (ka) x b = a x (kb) using the definition of the vector product.
Using the distributive property of scalar multiplication, we have:
k(a x b) = k[(a₂b₃ - a₃b₂)i - (a₁b₃ - a₃b₁)j + (a₁b₂ - a₂b₁)k]
Expanding further:
= [(ka₂b₃ - ka₃b₂)i - (ka₁b₃ - ka₃b₁)j + (ka₁b₂ - ka₂b₁)k]
= [(ka₂b₃)i - (ka₃b₂)i + (ka₁b₃)j - (ka₃b₁)j + (ka₁b₂)k - (ka₂b₁)k]
Rearranging the terms:
= [(ka₂b₃)i + (ka₁b₃)j + (ka₁b₂)k] - [(ka₃b₂)i + (ka₃b₁)j + (ka₂b₁)k]
Now, considering the definition of the vector product a x b, we can rewrite the expression as:
= (ka) x b - a x (kb)
Therefore, we have shown that k(a x b) = (ka) x b = a x (kb).
Finally, let's prove that axb = bxc = cxa using the given triangle formed by vectors a, b, and c.
Using the definition of the vector product, we have:
axb = (a₂b₃ - a₃b₂)i - (a₁b₃ - a₃b₁)j + (a₁b₂ - a₂b₁)k
bxc = (b₂c₃ - b₃c₂)i - (b₁c₃ - b₃c₁)j + (b₁c₂ - b₂c₁)k
cxa = (c₂a₃ - c₃a₂)i - (c₁a₃ - c₃a₁)j + (c₁a₂ - c₂a₁
To learn more about Vector product - brainly.com/question/31388926
#SPJ11
Get a similar question You can retry this question below The average THC content of marijuana sold on the street is 9.8%. Suppose the THC content is normally distributed with standard deviation of 2%. Let X be the THC content for a randomly selected bag of marijuana that is sold on the street. Round all answers to 4 decimal places where possible, a. What is the distribution of X? X - NO b. Find the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 9.1. c. Find the 64th percentile for this distribution. % Hint: Helpful videos: • Find a Probability [+] 7 Finding a Value Given a Probability [+] Hint Submit
The distribution of X is normally distributed.
The given information states that the THC content of marijuana sold on the street is normally distributed with a mean of 9.8% and a standard deviation of 2%. This means that the THC content follows a bell-shaped curve, where the majority of values will be around the mean of 9.8%.
In statistical terms, we can represent the THC content as a random variable X. Since X is normally distributed, we can use the notation X ~ N(9.8, 0.02^2), where N represents the normal distribution, 9.8 is the mean, and 0.02 is the standard deviation.
To find the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 9.1, we need to calculate the area under the curve to the right of 9.1. This can be done by finding the z-score corresponding to 9.1, which measures the number of standard deviations a value is away from the mean. Using the formula z = (X - μ) / σ, we can calculate the z-score as (9.1 - 9.8) / 0.02 = -3.5.
Now, we can use a standard normal distribution table or a calculator to find the probability associated with a z-score of -3.5. The probability corresponds to the area under the curve to the right of the z-score. In this case, the probability is approximately 0.0002327, rounded to 4 decimal places. Therefore, the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 9.1 is approximately 0.0002.
Learn more about normal distribution
brainly.com/question/15103234
#SPJ11
A says "I am a knight" and B says "A is a Knave?" therefore what
is A and B ??
The logic is Knights always tell the truth and Knaves always
lie
A is a Knave and B is a Knight. First, we need to understand the rules. The first rule is that Knights always tell the truth, while Knaves always lie.
A Knave is a person who always lies, while a Knight is a person who always tells the truth. According to the statement provided in the question, A claims to be a Knight, and B claims that A is a Knave. If A is a Knight, he must be telling the truth; as a result, B's statement must be false. As a result, if A is a Knight, B must be a Knave. If A is a Knave, he must be lying, so his statement cannot be true. As a result, B's statement must be true, implying that A is, in fact, a Knave. As a result, we can deduce that A is a Knave and B is a Knight.
To know more about rules visit :
https://brainly.com/question/31943344
#SPJ11
How can i compute these huge congruences??
it about to find a such that
1422^937 = a (mod 2536)
Next we compute 1422937 = 614 (mod 2537) = 1384937 = 1403 (mod 2537) 1828937 = 1120 (mod 2537) 2117937 = 210 (mod 2537) Using the above code we obtain the message GOOD LUCK.
The value of a such that 1422⁹³⁷ ≡ a (mod 2536) is 2136.
To compute the congruence 1422⁹³⁷ ≡ a (mod 2536) step by step:
Start with a base value of 1.
Square the base modulo 2536: base = (1422²) % 2536 = 2012.
Square the base again: base = (2012²) % 2536 = 496.
Repeat the squaring process: base = (496²) % 2536 = 1152.
Continue squaring: base = (1152²) % 2536 = 236.
Keep squaring: base = (236²) % 2536 = 2136.
The final value of the base is 2136, which represents a in the congruence.
Therefore, 1422⁹³⁷≡ 2136 (mod 2536).
To know more about congruence, visit:
https://brainly.com/question/31475475
#SPJ11
use the given zero to find the remaining zeros of the function.
h(x) = 4x^(5)+6x^(4)+36x^(3)+54x^(2)-448x-672 zero:-4i
The zeros of the function are: -4i, 4i, -3, 2 and (7 - 3√17)/4. Given function is h(x) = 4x⁵ + 6x⁴ + 36x³ + 54x² - 448x - 672. Zero is -4i. Therefore, the remaining zeros of the given function can be determined by dividing the given polynomial function by (x - zero).Since the given zero is -4i.
We get:4x⁴ - 14x³ - 14x² + 66x + 168 - 64i.The quotient obtained after division is 4x⁴ - 14x³ - 14x² + 66x + 168 and -64i is the remainder. Since the degree of the quotient obtained is four, we need to find its remaining zeros which are complex or real.For finding the remaining zeros, we need to solve the equation: 4x⁴ - 14x³ - 14x² + 66x + 168 = 0.Thus, the remaining zeros are real and can be found by factoring the polynomial:4x⁴ - 14x³ - 14x² + 66x + 168= 2(x - 2)(x + 3)(2x² - 7x - 14).
To know more about function visit :-
https://brainly.com/question/30721594
#SPJ11
need help
Let f(x)= x + 4 and g(x) = x - 4. With the following stephs, determine whether f(x) and g(x) are inverses of each other: (a) f(g(x)) (b) g(f(x)) = (c) Are f(x) and g(x) inverses of each other?
(a) f(g(x)) = x,
(b) g(f(x))= x
(c) f(x) and g(x) are inverses of each other
The given functions are,
f(x)= x + 4
g(x) = x - 4
To find f(g(x)),
Put in g(x) for x in the expression for f(x),
⇒ f(g(x)) = g(x) + 4 = (x - 4) + 4 = x
Since, f(g(x)) = x,
we can see that f(x) and g(x) are inverse functions, at least in part.
(b) To find g(f(x)),
Put in f(x) for x in the expression for g(x),
⇒ g(f(x)) = f(x) - 4
= (x + 4) - 4
= x
As with part (a), we find that g(f(x)) = x.
This confirms that f(x) and g(x) are indeed inverse functions.
(c) To determine whether f(x) and g(x) are inverses of each other,
Verify that applying one function after the other gets us back to where we started.
We have to check that,
⇒ f(g(x)) = x and g(f(x)) = x
We have already shown that both of these equations hold,
so we can conclude that f(x) and g(x) are inverses of each other.
To learn more about function visit:
https://brainly.com/question/8892191
#SPJ4
The number of weeds in your garden grows exponential at a rate of 15% a day. if there were initially 4 weeds in the garden, approximately how many weeds will there be after two weeks? (Explanation needed)
A) 28 Weeds
B) 20 Weeds
C) 11 Weeds
D) 5 Weeds
Approximately 20 weeds will be present in the garden after two weeks.
The correct answer is B) 20 Weeds.
To determine the approximate number of weeds in the garden after two weeks, we can use the exponential growth formula:
N = N0 × [tex](1 + r)^t[/tex]
Where:
N0 is the initial number of weeds
r is the growth rate as a decimal
t is the time in days
N is the final number of weeds
Given:
Initial number of weeds (N0) = 4
Growth rate (r) = 15% = 0.15 (as a decimal)
Time (t) = 2 weeks = 14 days
Substituting the values into the formula, we have:
N = 4 × [tex](1 + 0.15)^{14[/tex]
Calculating the expression inside the parentheses:
N = 4 × [tex](1.15)^{14[/tex]
Using a calculator or computational tool to evaluate the expression:
N ≈ 19.752
Rounding the result to the nearest whole number, we get:
N ≈ 20
Therefore, approximately 20 weeds will be present in the garden after two weeks.
The correct answer is:
B) 20 Weeds.
for such more question on exponential growth
https://brainly.com/question/19961531
#SPJ8
Bullet Proof Inc. manufactures high-end protective screens for Smartphones and Tablets. The plant equipment limits both kinds that can be made in one day. The limits are as follows:
• No more than 80 Tablet screens, < 80
• No more than 110 Smartphone screens, y ≤ 110
• No more than 150 total, z + y ≤ 150
• Tablet screens cost $120 each to manufacture
• Smartphone screens cost $85 each to manufacture
Using the above information, the objective function for the cost of screens produced at this manufacturer is
C-$80+ $110y
C=$150z + 150y
C=$85z + $120y
C-$120x + $85y
The objective function C = $85z + $120y represents the total cost of manufacturing screens, taking into account the cost per unit and the number of units produced for both Smartphones and Tablets.
The objective function for the cost of screens produced at this manufacturer can be expressed as:
C = $85z + $120y
Let's break down the components of this objective function:
$85z represents the cost of manufacturing Smartphone screens. Here, z represents the number of Smartphone screens produced, and $85 represents the cost per Smartphone screen.
$120y represents the cost of manufacturing Tablet screens. Here, y represents the number of Tablet screens produced, and $120 represents the cost per Tablet screen.
The objective function combines these two costs to give the total cost of manufacturing screens at the manufacturer. The coefficients $85 and $120 represent the cost per unit, while z and y represent the number of units produced.
Therefore, the objective function C = $85z + $120y represents the total cost of manufacturing screens, taking into account the cost per unit and the number of units produced for both Smartphones and Tablets.
For more questions on function
https://brainly.com/question/11624077
#SPJ8
111 60 LOA 1.5? and D-030 Comode AD and of the roof than when Als nutried by Don the right or on the internet marzo a ABA 1.76 002 Compte AD ADED Compute DA-D Kerian how the columns from of the wen Als utilety on the grante it. Choose the correct OA Righ-mutications, plotion on the by the diagonal Death Aby mooding on your cation Deacon of Aby the company ofb O Botication that is, mutation on the right and station by the diagonal mare multiples who y Ay the coording care of Oc Bettightpation is mutation on the multiplication by the Gael Duties cathow why of Aby compondre dugonal y D. OD. Romuto tontti, mutation on the by the diagonal Duples each column of Aby the corresponding truly Diction by multiple each Aty the correspondag dagenwarty D Find a 3x3m, att detty, such that AB-BA Choose the carbow There is only one unique solution - QA Simply yours There are intely many sous Artof, will OC There does not mat that will herion
The correct option is: Find a 3x3m, att detty, such that AB-BA - Mutation on the by the diagonal Duples each column of Aby the corresponding truly Diction by multiple each Aty the correspondag dagenwarty D.
To find a 3x3m, att detty, such that AB-BA, we can use the equation: (AB - BA) = [A, B], where [A, B] is the commutator of the matrices A and B.
Given A = 111 60 LOA 1.5 and B = D-030 Comode AD.
We need to find a matrix X of size 3x3 such that AB - BA = X.We have, AB = 111 60 LOA 1.5 × D-030 Comode AD = [A, B] + BA= AB - [B, A] + BA= AB - BA + [A, B]
Here, [A, B] = A × B - B × A is the commutator of matrices A and B.
Using this, we can write,AB - BA = [A, B]= 111 60 LOA 1.5 × D-030 Comode AD - D-030 Comode AD × 111 60 LOA 1.5= (111 60 LOA 1.5 × D-030 Comode AD) - (D-030 Comode AD × 111 60 LOA 1.5)= [111 60 LOA 1.5, D-030 Comode AD]
Therefore, the matrix X we need to find is the commutator [A, B] which we have just found.
Hence, the correct option is: Find a 3x3m, att detty, such that AB-BA - Mutation on the by the diagonal Duples each column of Aby the corresponding truly Diction by multiple each Aty the correspondag dagenwarty D.
To know more about equation visit :-
https://brainly.com/question/29538993
#SPJ11
3 0 0 6
1 8 1 8
0 8 1 ?
7 5 2 4
puzzle level : Advanced
find the question mark
Solve only if you have a valid logic,
Posting this second time
Answer = 6
The answer to the given puzzle is 6. The answer to the missing number is calculated by multiplying the first number of each column by 2 and adding 3 to it.
To solve this puzzle, we need to find the pattern of numbers being used in each column of the given numbers. We need to apply the same pattern to find the missing number. The first step is to identify the pattern being followed in each column. If we look at the first column, we see that the first number (3) is multiplied by 2, and then 3 is added to the answer. Therefore, the answer is ((3 x 2) + 3) = 9. Now, if we look at the second column, the first number (0) is multiplied by 2, and then 3 is added to the answer. Therefore, the answer is ((0 x 2) + 3) = 3. Similarly, we can find that the pattern of each column follows the same sequence and hence can be used to find the answer for the missing number. The third column has a missing number and is represented by a question mark. Therefore, we need to apply the pattern used in the third column to find the missing number. We know that the first number (1) is multiplied by 2, and then 3 is added to the answer. Therefore, the answer is ((1 x 2) + 3) = 5. Hence, the missing number in the third column is 6.
Therefore, the answer to the given puzzle is 6. The solution is based on a pattern that is being used in each column of the given numbers. We can apply the same pattern to find the missing number, which is represented by a question mark. The answer to the missing number is calculated by multiplying the first number of each column by 2 and adding 3 to it.
Learn more about puzzle visit:
brainly.com/question/30790276
#SPJ11
Find the limit of the sequence: 6n² +9n+8 an 2n²+6n+7 Limit=
The limit of the sequence (6n² + 9n + 8)/(2n² + 6n + 7) as n approaches infinity can be found by dividing the leading terms of the numerator and denominator, which gives a limit of 3/2.
To find the limit of the sequence (6n² + 9n + 8)/(2n² + 6n + 7) as n approaches infinity, we can compare the leading terms of the numerator and denominator. In this case, the leading terms are 6n² and 2n², respectively.
Dividing these leading terms, we get (6n²)/(2n²) = 3/1 = 3.
Since the degree of the numerator and denominator is the same (both are quadratic), we can conclude that the limit of the sequence as n approaches infinity is determined by the ratio of the leading coefficients. In this case, the leading coefficients are 6 and 2, which give a limit of 3/2.
Therefore, the limit of the sequence (6n² + 9n + 8)/(2n² + 6n + 7) as n approaches infinity is 3/2.
to learn more about denominator click here:
brainly.com/question/28670549
#SPJ11
3. Find the equation of a line that is perpendicular to 3x + 5y = 10, and goes through the point (3,-8). Write equation in slope-intercept form. (7 points)
The equation of the line perpendicular to 3x + 5y = 10 and passing through the point (3,-8) is y = (5/3)x - 13.
How to find the equation of a line perpendicular to 3x + 5y = 10 and passing through the point (3,-8)?To find the equation of a line perpendicular to 3x + 5y = 10, we first need to determine the slope of the given line.
Rearranging the equation into slope-intercept form (y = mx + b), we can isolate y to obtain y = -(3/5)x + 2. The slope of the given line is -3/5.
For a line perpendicular to the given line, the slopes are negative reciprocals. Therefore, the slope of the perpendicular line is 5/3.
Next, we substitute the coordinates of the given point (3,-8) into the point-slope form of a line (y - [tex]y_1[/tex] = m(x - [tex]x_1[/tex])), where [tex](x_1, y_1)[/tex] represents the coordinates of the point.
Plugging in the values, we have y + 8 = (5/3)(x - 3).
To convert the equation to slope-intercept form, we simplify and isolate y. Distributing (5/3) to (x - 3) gives y + 8 = (5/3)x - 5. Rearranging the equation, we have y = (5/3)x - 13.
Therefore, the equation of the line perpendicular to 3x + 5y = 10 and passing through the point (3,-8) is y = (5/3)x - 13.
Learn more about equation of a line
brainly.com/question/21511618
#SPJ11
Technique To Solve Use Laplace Transformation The Initial Value Problem Below.
y"-4y = eˆ3t
y (0) = 0
y' (0) = 0
To solve the initial value problem y'' - 4y = e^(3t) with the initial conditions y(0) = 0 and y'(0) = 0 using Laplace transformation, we follow these steps:
Apply the Laplace transform to both sides of the differential equation:
Taking the Laplace transform of the given differential equation, we get s^2Y(s) - 4Y(s) = 1/(s - 3), where Y(s) represents the Laplace transform of y(t) and s is the Laplace variable.
Solve the algebraic equation in the Laplace domain:
Rearranging the equation, we have Y(s) * (s^2 - 4) = 1/(s - 3). Solving for Y(s), we find Y(s) = 1/[(s - 3)(s^2 - 4)].
Decompose Y(s) using partial fraction decomposition:
Express Y(s) as a sum of partial fractions: Y(s) = A/(s - 3) + (Bs + C)/(s^2 - 4), where A, B, and C are constants to be determined.
Determine the values of A, B, and C:
To find the values of A, B, and C, we equate the coefficients of like powers lof s on both sides of the equation. Multiplying both sides by the common denominator, we can compare the coefficients and solve for the constants A, B, and C.
Take the inverse Laplace transform:
Having obtained the decomposition of Y(s) and determined the values of A, B, and C, we can now take the inverse Laplace transform to obtain the solution y(t) in the time domain. Utilize Laplace transform tables or a computer algebra system to find the inverse Laplace transform.
Apply the initial conditions:
To find the specific solution satisfying the initial conditions y(0) = 0 and y'(0) = 0, substitute these values into the obtained solution y(t) and solve for any remaining unknowns. By substituting t = 0 into y(t) and its derivative, we can determine the values of A, B, and C, thereby obtaining the unique solution to the initial value problem.
To learn more about initial value click here
brainly.com/question/17613893
#SPJ11
8) Let g(x)=-x-2+3 a. Determine the common function of g(x). [1 pt] [1 pt] b. Usex=-2, –1, 0, 1, 2 to determine points of the common function. C. Use the points of the common function found in part
Given that the function g(x) = -x - 2 + 3. We have to determine the common function of g(x) and find points of the common function when x = -2, -1, 0, 1, 2.
The common function of g(x) is the parent function f(x) = -x. Since a common function is a parent function with some horizontal or vertical shift.The common function of g(x) = -x.
The function
g(x) = -x - 2 + 3 is in the form of f(x) + c, where
c = -2 + 3 = 1. Thus, the function f(x) can be determined by dropping the constant c from the given function g(x).Thus, the common function of g(x) is the parent function
f(x) = -x. Since a common function is a parent function with some horizontal or vertical shift.Using
x = -2, -1, 0, 1, 2, we can find the points of the common function as follows:f(-2) = -(-2)
= 2f(-1) = -(-1)
= 1f(0) = -(0)
= 0f(1) = -(1) =
-1f(2) = -(2) = -2
learn more about vertical shift
https://brainly.com/question/26246140
#SPJ11
Let F= (y/x^2+Y^2, - x/x^2+y^2( be a field of force in the xOy plane and let 2 2 x² + + y² (C) be the circle x = acost, y = asint (0 ≤ t ≤ 2n, a > 0). Suppose that a par- ticle moves along the circle (C) with positive direction and makes a cycle. Find the work done by the field of forc
The work done by the force field F on a particle moving along the circle C is zero. The force field F is conservative, which means that there exists a potential function ϕ such that F = −∇ϕ.
The potential function for F is given by
ϕ(x, y) = −x^2/2 - y^2/2
The work done by a force field F on a particle moving from point A to point B is given by
W = ∫_A^B F · dr
In this case, the particle starts at the point (a, 0) and ends at the point (a, 0). The integral can be evaluated as follows:
W = ∫_a^a F · dr = ∫_0^{2π} −∇ϕ · dr = ∫_0^{2π} (-x^2/2 - y^2/2) · (-a^2 sin^2 t - a^2 cos^2 t) dt = 0
Therefore, the work done by the force field F on a particle moving along the circle C is zero.
Learn more about potential function here:
brainly.com/question/28156550
#SPJ11
determine whether the sequence converges or diverges. if it converges, find the limit. (if the sequence diverges, enter diverges.) an = n 6 sin 6 n
We can conclude that the given sequence diverges. Thus, the given sequence diverges.
To determine whether the given sequence converges or diverges, we need to compute the limit of the sequence.
The sequence is given by an = n 6 sin 6 n. Here's how we can approach this problem:
Solution: We know that the sine function oscillates between -1 and 1.
Thus, if we can find two subsequences of the given sequence such that one of them has a limit of L, while the other has a limit of M, such that L ≠ M, then the given sequence will diverge.
To do this, let us consider two subsequences of the given sequence:Subsequence
1: Let {n1} be the subsequence of all even natural numbers, i.e. n1 = 2, 4, 6, 8, ...
Then, the corresponding terms of the sequence are given by an1 = n1 6 sin 6n1 = 2 6 sin (6 × 2) = 2 6 sin 12 ≈ 5.8.
Subsequence
2: Let {n2} be the subsequence of all odd natural numbers, i.e. n2 = 1, 3, 5, 7, ... Then, the corresponding terms of the sequence are given by an2 = n2 6 sin 6n2 = 1 6 sin 6 ≈ 0.5.
Thus, we have found two subsequences of the given sequence such that one of them has a limit of 5.8, while the other has a limit of 0.5, which are not equal.
Therefore, we can conclude that the given sequence diverges. Thus, the given sequence diverges.
To know more about Divergent visit :
https://brainly.com/question/31778047
#SPJ11