An electron and a positron collide head on, annihilate, and create two 0.804 MeV photons traveling in opposite directions. What was the initial kinetic energy of an electron? What was the initial kinetic energy of a positron?

Answers

Answer 1

Answer:

Ke- = Ke+ = 0.294MeV

Explanation:

To fins the kinetic energy of both electron and positron you use the following formula, for the case of annihilation of one electron an positron:

2[tex]E_p=2E_o+K_{e^-}+K_{e^+}[/tex]   (1)

Ep: photon energy = 0.804MeV

Eo: rest energy of one electron (and positron) = 0.51MeV

Ke-: kinetic energy of electron

Ke+: kinetic energy of positron

You replace the values of Ep and Eo in the equation (1):

[tex]K_{e^-}+K_{e^+}=2E_p-2E_o=2(0.804MeV-0.51MeV)=0.588MeV[/tex]

Iy you assume both positron and electron have the same speed, then, the kinetic energy of them are equal, and the kinetic energy of each one is:

[tex]K_{e^-}=K_{e^+}=\frac{0.588MeV}{2}=0.294MeV[/tex]


Related Questions

Why do some nucleus emit electrons?

Answers

Answer:

In beta-minus decay, a neutron breaks down to a proton and an electron, and the electron is emitted from the nucleus. In beta-plus decay, a proton breaks down to a neutron and a positron, and the positron is emitted from the nucleus.

Explanation:

Hope this helps!

At a time when mining asteroids has become feasible, astronauts have connected a line between their 3220-kg space tug and a 6240-kg asteroid. They pull on the asteroid with a force of 362 N. Initially the tug and the asteroid are at rest, 311 m apart. How much time does it take for the ship and the asteroid to meet

Answers

-- F = m a ... ==>  a = F/m

-- The tension in the rope is 362 N.  That same force acts on the asteroid and on the tug, pulling them together.

-- The asteroid's acceleration is 362N / 6240 kg = 0.058 m/s², headed for a point on the rope somewhere between the asteroid and the tug.

-- The tug's acceleration is 362 N / 3220 kg = 0.112 m/s², also headed for a point on the rope somewhere between the tug and the asteroid.

-- So now we have a gap between them, initially 311 m long, closing with a speed that starts at zero and accelerates at  0.170 m/s² .

-- D = (1/2) a T²

311 m = (1/2) (0.170 m/s²) (T²)

T²  =  311 m / 0.085 m/s²

T = √(311/0.085)  seconds

T = 60.41 seconds

The answer I get is so durn near 60 seconds (1 minute) that it suggests two things to me:  ==> That's where the weird numbers of 362N and 311m came from, and ==> there's a good chance that my answer is correct.

Note:  It's important to me that you know that 5 points for this one is really cheap and chintzy, and the reason I decided to try it was only to see whether I could.

An arrow is shot from a height of 1.55 m toward a cliff of height H. It is shot with a velocity of 26 m/s at an angle of 60° above the horizontal. It lands on the top edge of the cliff 3.99 s later.
(a) Draw a sketch of the given example. Include the x-y coordinate system.
(b) What is the height of the cliff?
(c) What is the maximum height reached by the arrow along its trajectory?
(d) What is the arrow's impact speed just before hitting the cliff?

Answers

Answer:

Explanation:

vertical component of the velocity of arrow

= 26 sin 60 = 22.516 m

height reached by it after 3.99 s

h = ut - 1/2 g t²

= 22.516 x 3.99 - .5 x 9.8 x 3.99²

= 89.83 - 78

11.83 m

Total height of cliff = 1.55 + 11.83

= 13.38 m

c ) maximum height covered s

v² = u² - 2gs

0 = u² - 2gs

s = u² / 2g

= 22.516² / 2 x 9.8

= 25.86

maximum height reached

= 25.86 + 1.55

= 27.41 m

d )

vertical speed after 3.99 s

v = u - gt

= 22.516 - 9.8 x 3.99

= -16.586

Horizontal component will remain unchanged

Horizontal component = 26 cos 60

= 13 m /s

Resultant of two velocities

= √ 13²+ 16.568²

= 21 m /s

During a football game, a receiver has just caught a pass and is standing still. Before he can move, a tackler, running at a velocity of 2.60 m/s, grabs and holds onto him so that they move off together with a velocity of 1.30 m/s. If the mass of the tackler is 122 kg, determine the mass of the receiver. Assume momentum is conserved.

Answers

Answer:

122kg

Explanation:

Using the law of conservation of momentum which states that 'the sum of momentum of bodies before collision is equal to their sum after collision. The bodies will move together with a common velocity after collision.

Momentum = Mass * Velocity

Before collision;

Momentum of receiver m1u1= 0 kgm/s (since the receiver is standing still)

Momentum of the tackler

m2u2 = 2.60*122 = 317.2 kgm/s

where m2 and u2 are the mass and velocity of the tacker respectively.

Sum of momentum before collision = 0+317.2 = 317.2 kgm/s

After collision

Momentum of the bodies = (m1+m2)v

v = their common velocity

m1 = mass of the receiver

Momentum of the bodies = (122+m1)(1.30)

Momentum of the bodies = 158.6+1.30m1

According to the law above;

317.2 = 158.6+1.30m1

317.2-158.6 = 1.30m1

158.6 = 1.30m1

m1 = 158.6/1.30

m1 = 122kg

The mas of the receiver is 122kg

a steel ball is dropped from a diving platform use the approximate value of g as 10 m/s^2 to solve the following problem what is the velocity of the ball 0.9 seconds after its released

Answers

Answer:

The final speed of the ball is 9 m/s.

Explanation:

We have,

A steel ball is dropped from a diving platform. It is required to find the velocity of the ball 0.9 seconds after its released. It will move under the action of gravity. Using equation of motion to find it as :

[tex]v=u+at[/tex]

u = 0 (at rest), a = g

[tex]v=gt\\\\v=10\times 0.9\\\\v=9\ m/s[/tex]

So, the final speed of the ball is 9 m/s.

what statement is true according to newton’s first law of motion?

a. in the absence of unbalanced force an object at rest will stay at rest and an object in motion will come to a stop.

b. in the absence of an unbalanced force, an object will start moving and an object in motion will come to a stop.

c. in the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.

d. in the absence of an unbalanced force, an object will start moving and an object in motion will stay in motion.

Answers

Answer:

  c.  in the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.

Explanation:

First law: things keep doing what they are doing, unless force is applied.

In Physics lab, a lab team places a cart on one of the horizontal, linear tracks with a fan attached to it. The cart is positioned at one end of the track, and the fan is turned on. Starting from rest, the cart takes 4.34 s to travel a distance of 1.62 m. The mass of the cart plus fan is 354 g. Assume that the cart travels with constant acceleration.
A) What is the net force exerted on the cart-fan combination?B) Mass is added to the cart until the total mass of the cart-fan combination is 762 g, and the experiment is repeated. How long does it take for the cart, starting from rest, to travel 1.62 m now?

Answers

Answer:

A. F = 0.06 N

B. t = 6.37 s

Explanation:

A)

First we need to find the constant acceleration of the cart. For this purpose, we use 2nd equation of motion:

s = (Vi)(t) + (0.5)at²

where,

s = distance traveled = 1.62 m

Vi = 0 m/s   (Since, it starts from rest)

t = Time Taken = 4.34 s

a = acceleration = ?

Therefore,

1.62 m = (0 m/s)(4.34 s) + (0.5)(a)(4.34 s)²

1.62 m/9.4178 s² = a

a = 0.172 m/s²

Now, from Newton's Second law, we know that:

F = ma

where,

F = Net Force of the combination = ?

m = Mass pf combination = 354 g = 0.354 kg

Therefore,

F = (0.354 kg)(0.172 m/s²)

F = 0.06 N

B)

Now, for the same force, but changed mass = 762 g = 0.762 kg, we have the acceleration to be:

F = ma

a = F/m

a = 0.06 N/0.762 kg

a = 0.08 m/s²

Now, using  2nd equation of motion:

s = (Vi)(t) + (0.5)at²

1.62 m = (0 m/s)(t) + (0.5)(0.08 m/s²)t²

t² = 1.62 m/(0.04 m/s²)

t = √40.54 s²

t = 6.37 s

EASY! WILL GIVE BRAINLIEST!

Find the conductivity of a conduit with a cross-sectional area of 0.50 cm2 and a length of 15 cm if its conductance G is 0.050 ohm-1.

σ = _____ ohm-1cm-l

3
75
1.5
0.0017

Answers

the answer is 1.5 hope this helps

Answer:

1.5

Explanation:

0.5=σ/(15/0.5)

σ=3/2 or 1.5

A population _____ follows a period of

Answers

A population decline follows a period of overshooting.

Answer:

a population increase

Explanation:

During the 20th century, the world population increased from 1.65 billion to 6 billion. In 1970, the world's population was half that of today. In less than 15 years, 47% of the population will live in areas already under heavy water stress. In Africa, between 75 and 250 million people will face growing shortages in 2020 due to climate change. The scarcity of some arid and semi-arid regions will have a decisive impact on migration.

A string is stretched between fixed supports separated by 72.0 cm. It is observed to have resonant frequencies of 370 and 555 Hz, and no other resonant frequencies between these two.(a) What is the lowest resonant frequency for this string?(b) What is the wave speed for this string?

Answers

Answer:

(a) f = 185 Hz

(b) v = 266.4 m/s

Explanation:

(a) The lowest frequency can be calculated by using the following formula for the calculation of the modes (resonant frequencies) in a string:

[tex]f_n=\frac{nv}{2L}[/tex]

[tex]f_n=nf[/tex]

n: order of the mode

v: velocity of the waves in the string

L: length of the string = 72.0cm = 0.72m

fn: frequency of the n-th mode

With the information about two consecutive modes you can find the lowest resonant frequency. First you find the resonant mode n:

[tex]f_n=nf\\\\f_{n-1}=(n-1)f\\\\\frac{f_n}{f_{n-1}}=\frac{n}{n-1}[/tex]

you solve the previous equation for n:

[tex](n-1)f_n=nf_{n-1}\\\\555n-555=370n\\\\n=3[/tex]

With this information you can calculate the lowest resonant frequency:

[tex]f_n=nf\\\\f=\frac{f_n}{n}=\frac{555}{3}=185Hz[/tex]

b) You have information about two consecutive modes fn, fn-1. Then, you can calculate the velocity of the waves:

[tex]f_{n}-f_{n-1}=n\frac{v}{2L}-(n-1)\frac{v}{2L}\\\\f_n-f_{n-1}=\frac{v}{2L}\\\\v=2L(f_n-f_{n-1})[/tex]

fn = 555 Hz

fn-1: 370 Hz

[tex]v=2(0.72m)(555-370)Hz=266.4\frac{m}{s}[/tex]´

hence, the velocityof the waves in the string is 266.4 m/s

Question 7 of 10
The coefficient of kinetic friction between a couch and the floor is 0.4. If the
couch has a mass of 35 kg and you push it with a force of 200 N. what is the
net force on the couch as it slides?
O A. 337 N
B. 143 N
O C. 343 N
O D. 63 N​

Answers

Answer:

D

Explanation:

Now the net force is the applied force minus the frictional force; this is expressed mathematically as:

Fnet= Fappplied - Ffrictional

Now the frictional force is given as ;

Coefficient of friction × normal reaction

Normal reaction is the weight of the human acting in opposite direction.

Normal reaction of the human is ;

35 × 9.8 = 343N { note that weight = m× g and g= 9.8m/S2, a known standard }

Hence the Frictional force =343×0.4 =137.20N

Hence Fnet = 200-137.20 = 62.8N

Fnet = 63N to the nearest whole

The net force on the couch as it slides is  63N.

What is frictional force?

When an object is moving on a rough surface, it experiences opposition. This opposing force is called the friction force.

The friction force is given by

f = coefficient of friction x Normal force

Given, the coefficient of kinetic friction between a couch and the floor is 0.4. If the couch has a mass of 35 kg and you push it with a force of 200 N.

Normal reaction is the weight of the human acting in opposite direction.

Normal reaction N =35 × 9.8 = 343N

Frictional force f =0.4 x 343

                          f =137.20N

The net force will be

Fnet= Fappplied - Ffrictional

Fnet = 200-137.20 = 62.8N

Fnet = 63N

Thus,  the net force on the couch as it slides is  63N.

Learn more about friction force.

https://brainly.com/question/1714663

#SPJ2

The temperature at the surface of the Sun is approximately 5,300 K, and the temperature at the surface of the Earth is approximately 293 K. What entropy change of the Universe occurs when 6.00 103 J of energy is transferred by radiation from the Sun to the Earth?

Answers

Answer:

The entropy change of the Universe that occurs is 19.346 J/K

Explanation:

Given;

temperature of the sun, [tex]T_s[/tex] = 5,300 K

temperature of the Earth, [tex]T_E[/tex] = 293 K

radiation energy transferred by the sun to the earth, E = 6000 J

The sun loses Q of heat and therefore decreases its entropy by the amount

[tex]\delta S_{sun} = \frac{-Q}{T_s}[/tex]

The earth gains Q of heat and therefore increases its entropy by the amount

[tex]\delta S_{Earth} = \frac{-Q}{T_E}[/tex]

The total entropy change is:

[tex]\delta S_{Earth} + \delta S_{sun} = \frac{Q}{T_E} -\frac{Q}{T_S} \\\\ = Q(\frac{1}{T_E} -\frac{1}{T_S} )\\\\= 6000(\frac{1}{293} -\frac{1}{5300} )\\\\=6000(0.0032243)\\\\= 19.346 \ J/K[/tex]

Therefore, the entropy change of the Universe that occurs is 19.346 J/K

When the play button is pressed, a CD accelerates uniformly from rest to 430 rev/min in 4.0 revolutions. If the CD has a radius of 7.0 cm and a mass of 17 g , what is the torque exerted on it?

Answers

Answer:

The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].

Explanation:

As CD is acceleration uniformly, the following equation of motion can be used to determine the angular acceleration:

[tex]\dot n^{2} = \dot n_{o}^{2} + 2\cdot \ddot n \cdot \Delta n[/tex]

Where:

[tex]\dot n_{o}[/tex] - Initial angular speed, measured in revolutions per minute.

[tex]\dot n[/tex] - Final angular speed, measured in revolutions per minute.

[tex]\ddot n[/tex] - Angular acceleration, measured in revolution per square minute.

[tex]\Delta n[/tex] - Change in angular position, measured in revolutions.

The angular acceleration is cleared and calculated:

[tex]\ddot n = \frac{\dot n^{2}-\dot n_{o}^{2}}{2\cdot \Delta n}[/tex]

Given that [tex]\dot n_{o} = 0\,\frac{rev}{min}[/tex], [tex]\dot n = 430\,\frac{rev}{min}[/tex] and [tex]\Delta n = 4\, rev[/tex], the angular acceleration is:

[tex]\ddot n = \frac{\left(430\,\frac{rev}{min} \right)^{2}-\left(0\,\frac{rev}{min} \right)^{2}}{2\cdot (4\,rev)}[/tex]

[tex]\ddot n = 23112.5\,\frac{rev}{min^{2}}[/tex]

The angular accelaration measured in radians per square second is:

[tex]\alpha = \left(23112.5\,\frac{rev}{min^{2}} \right)\cdot \left(2\pi\,\frac{rad}{rev}\right)\cdot \left(\frac{1}{3600}\,\frac{min^{2}}{s^{2}} \right)[/tex]

[tex]\alpha \approx 40.339\,\frac{rad}{s^{2}}[/tex]

Net torque experimented by the CD during its accleration is equal to the product of its moment of inertia with respect to its axis of rotation and angular acceleration:

[tex]\tau = I \cdot \alpha[/tex]

Where:

[tex]I[/tex] - Moment of inertia, measured in [tex]kg \cdot m^{2}[/tex].

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

In addition, a CD has a form of a uniform disk, whose moment of inertia is:

[tex]I = \frac{1}{2}\cdot m \cdot r^{2}[/tex]

Where:

[tex]m[/tex] - Mass of the CD, measured in kilograms.

[tex]r[/tex] - Radius of the CD, measured in meters.

If [tex]m = 0.017\,kg[/tex] and [tex]r = 0.07\,m[/tex], then:

[tex]I = \frac{1}{2}\cdot (0.017\,kg)\cdot (0.07\,m)^{2}[/tex]

[tex]I = 4.165\times 10^{-5}\,kg\cdot m^{2}[/tex]

Now, the net torque exerted on CD is:

[tex]\tau = (4.165\times 10^{-5}\,kg\cdot m^{2})\cdot \left(40.339\,\frac{rad}{s^{2}} \right)[/tex]

[tex]\tau = 1.680\times 10^{-3}\,N\cdot m[/tex]

The net torque exerted on CD is [tex]1.680 \times 10^{-3}\,N\cdot m[/tex].

Sr-90 has a half-life of T1/2 = 2.85 a (years). How much Sr-90 will remain in a 5.00 g sample after 5.00 a? Show all of your work. (2 marks)

Answers

Answer:

1.48 g

Explanation:

A = A₀ (½)^(t / T)

where A is the final amount,

A₀ is the initial amount,

t is time,

and T is the half life.

A = (5.00 g) (½)^(5.00 a / 2.85 a)

A = 1.48 g

1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a turn b. a child swinging around a pole c. a person sitting on a bench facing the center of a carousel d. a rock swinging on a string e. the Earth orbiting the Sun.

Answers

Complete Question

For each of the following scenarios, describe the force providing the centripetal force for the motion:

a. a car making a turn

b. a child swinging around a pole

c. a person sitting on a bench facing the center of a carousel

d. a rock swinging on a string

e. the Earth orbiting the Sun.

Answer:

Considering a

    The force providing the centripetal force is the frictional force on the tires \

          i.e  [tex]\mu mg = \frac{mv^2}{r}[/tex]

    where [tex]\mu[/tex] is the coefficient of static friction

Considering b

   The force providing the centripetal force is the force experienced by the boys  hand on the pole

Considering c

     The force providing the centripetal force is the normal from the bench due to the boys weight

Considering d

     The force providing the centripetal force is the tension on the string

Considering e

      The force providing the centripetal force is the force of gravity between the earth and the sun

Explanation:

If radio waves are used to communicate with an alien spaceship approaching Earth at 10% of the speed of light c, the aliens would receive our signals at speed of:_______.
a. 0.99c
b. 1.10c
c. 1.00c
d. 0.90c
e. 0.10c

Answers

Answer:

3×10^7 m/s or 0.10c (e)

Explanation: If the actual value of the speed of light were to be put into consideration.

Given that the speed of light is c = 3.0×10^8m/s

The alien spaceship is approaching at the rate of 10% of the speed of light.

10% of 3.0×10^8m/s

10/100 × 3.0×10^8m/s

0.1 ×3.0×10^8m/s

3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c

Answer: 1.00c

Explanation: I got it correct on the homework

A 2 kg object is subjected to three forces that give it an acceleration −→a = −(8.00m/s^2)ˆi + (6.00m/s^2)ˆj. If two of the three forces, are −→F1 = (30.0N)ˆi + (16.0N)ˆj and −→F2 = −(12.0N)ˆi + (8.00N)ˆj, find the third force.

Answers

Answer:

[tex]\vec{F_3}=(-34.0N)\hat{i}+(-12.0N)\hat{j}[/tex]

Explanation:

You have three forces F1, F2 an F3 that produce the following  acceleration:

a = −(8.00m/s^2)ˆi + (6.00m/s^2)ˆj

you know that force F1 and F2 are:

F1 = (30.0N)ˆi + (16.0N)ˆj

F2 = −(12.0N)ˆi + (8.00N)ˆj

and the force F3 is unknown:

F3 = F3x ˆi + F3y ˆj

The second Newton law is given by the following equation:

[tex]\vec{F}=m\vec{a}[/tex]

F: the total force = F1 +F2 + F3

m: mass of the object = 2 kg

By the properties of vectors you have:

[tex]\vec{F_1}+\vec{F_2}+\vec{F_3}=m\vec{a}\\\\(30.0-12.0+F_{3x})N\hat{i}+(16.0+8.00+F_{3y})N\hat{j}=(2.0kg)[(-8.00m/s^2)\hat{i}+(6.00m/s^2)\hat{j}]\\\\(18.0+F_{3x})N\hat{i}+(24.0+F_{3y})\hat{j}=(-16.00N)\hat{i}+(12.0N)\hat{j}[/tex]

Both x and y component must be equal in the previous equality, then you have:

[tex]18.0N+F_{3x}=-16.00N\\\\F_{3x}=-34.00N\\\\24.0N+F_{3y}=12.0N\\\\F_{3y}=-12.00N[/tex]

Hence, the vector F3 is:

[tex]\vec{F_3}=(-34.0N)\hat{i}+(-12.0N)\hat{j}[/tex]

Two hockey pucks, labeled A and B, are initially at rest on a smooth ice surface and are separated by a distance of 18.0 m . Simultaneously, each puck is given a quick push, and they begin to slide directly toward each other. Puck A moves with a speed of 3.90 m/s , and puck B moves with a speed of 4.30 m/s . What is the distance covered by puck A by the time the two pucks collide

Answers

Answer:

The distance covered by puck A before collision is  [tex]z = 8.56 \ m[/tex]

Explanation:

From the question we are told that

   The label on the two hockey pucks is  A and  B

    The distance between the  two hockey pucks is D   18.0 m

     The speed of puck A is  [tex]v_A = 3.90 \ m/s[/tex]

        The speed of puck B is  [tex]v_B = 4.30 \ m/s[/tex]

The distance covered by puck A is mathematically represented as

     [tex]z = v_A * t[/tex]

  =>  [tex]t = \frac{z}{v_A}[/tex]

 The distance covered by puck B  is  mathematically represented as

      [tex]18 - z = v_B * t[/tex]

=>   [tex]t = \frac{18 - z}{v_B}[/tex]

Since the time take before collision is the same

        [tex]\frac{18 - z}{V_B} = \frac{z}{v_A}[/tex]

substituting values

          [tex]\frac{18 -z }{4.3} = \frac{z}{3.90}[/tex]

=>      [tex]70.2 - 3.90 z = 4.3 z[/tex]

=>       [tex]z = 8.56 \ m[/tex]

An object is thrown vertically and has an upward velocity of 18 m/s when it reaches one fourth of its maximum height above its launch point. What is the initial (launch) speed of the object

Answers

Answer:

v = 25.45 m/s

Explanation:

In order to calculate the initial speed of the object, you take into account the formula for the maximum height reaches by the object. Such a formula is given by:

[tex]h_{max}=\frac{v_o^2}{g}[/tex]   (1)

vo: initial speed of the object = 18 m/s

g: gravitational acceleration = 9.8 m/s²

Furthermore you use the following formula for the final speed of the object:

[tex]v^2=v_o^2-2gh[/tex]       (2)

h: height

You know that the speed of the object is 18m/s when it reaches one fourth of the maximum height. You use this information, and you replace the equation (1) in to the equation (2), as follow:

[tex]v^2=v_o^2-2g(\frac{h_{max}}{4})=v_o^2-\frac{1}{2}g(\frac{v_o^2}{g})\\\\v^2=v_o^2-\frac{1}{2}v_o^2=\frac{1}{2}v_o^2[/tex]

Then, you solve the previous result for vo:

[tex]v_o=\sqrt{2}v=\sqrt{2}(18m/s)=25.45\frac{m}{s}[/tex]

The initial speed of the object was 25.45 m/s

What is the period of a wave if the frequency is? 5 Hz

Answers

Answer:  If the woodpecker drums upon a tree 5 times in one second, then the frequency is 5 Hz; each drum must endure for one-fifth a second, so the period is 0.2 s.

The Great Lakes are all part of what? The Mississippi River The St. Lawrence Seaway A large body of salt lakes The Missouri River

Answers

Answer:

St Lawrence Sea way

Explanation:

The great lake connects the middle of North America which is at the Canada-United states border connecting to the Atlantic Ocean through the St Lawrence River.

A light spring having a force constant of 115 N/m is used to pull a 9.00 kg sled on a horizontal frictionless ice rink. The sled has an acceleration of 2.10 m/s2. Part A By how much does the spring stretch if it pulls on the sled horizontally

Answers

Answer:

Stretch in the spring = 0.1643 (Approx)

Explanation:

Given:

Mass of the sled (m) = 9 kg

Acceleration of the sled (a) = 2.10 m/s ²

Spring constant (k) = 115 N/m

Computation:

Tension force in the spring  (T) = ma

Tension force in the spring  (T) = 9 × 2.10

Tension force in the spring  (T) = 18.9 N

Tension force in the spring = Spring constant (k) × Stretch in the spring

18.9 N = 115 N  × Stretch in the spring

Stretch in the spring = 18.9 / 115

Stretch in the spring = 0.1643 (Approx)

When an electromagnetic wave falls on a white, perfectly reflectingsurface, it exerts a force F on that surface. If the surfaceis now painted a perfectly absorbing black, the force that the samewave would exert on the surface is:___________.
A) F
B) F/2
C) F/4
D) 2F
E) 4F

Answers

Answer:

B. F/2

Explanation:

The radiation force per unit area (radiation pressure Prad) exerted by an electromagnetic wave on a perfectly absorbing body has been found by experiment to be equal to the energy density of the wave

i.e Prad = u

For a reflecting body, this force exerted per unit area has been found to be twice the energy density of the wave.

i.e Prad = 2u.

Therefore, if the force exerted on a perfectly reflective body is F, then the force exerted on a perfectly absorbing body will be F/2

What is the answer for this question

Answers

ANSWER: My sister, who is a waitress at Billy’s Big Burger Shack, is sixteen years old.
The correct is c. If you need help with more questions you can dm me

A freight car moves along a frictionless level railroad track at constant speed. The freight car is open on top. A large load of coal is suddenly dumped into the car. What happens to the speed of the freight car

Answers

Answer:

The speed of the freight car decreases.

Explanation:

According to the law of conservation of momentum indicates that for colliding in an isolated system, the total momentum pre and post collision is same for the two objects this is done because the momentum that one item has lost is same for the momentum that the other received

In the given situation, the freight car travels at constant speed along a frictionless railroad line. The top floor freight car is open. Then a huge load of coal is dumped inside the car.

Therefore the speed of the freight car decreased by applying the law of conservation of momentum i

g A proton is held at rest in a uniform electric field. When it is released, the proton will lose... electrical potential energy. kinetic energy. both kinetic energy and electric potential energy. neither kinetic energy or electric potential energy.

Answers

Answer:

It will lose electrical potential energy.

Explanation:

A photon held at rest in a uniform electrical field will lose electrical potential energy when it is released this is because the electrical potential energy is the energy posses by the photon at rest or by virtue of the position is converted to kinetic energy which is energy posses by a body in motion.

Since the photon is released and set in motion , it now has kinetic energy and has lost the potential energy because it is set in motion.

An aluminium pot whose thermal conductivity is 237 W/m.K has a flat, circular bottom

with diameter 15 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water in

the pot through its bottom at a rate of 1400 W. If the inner surface of the bottom of the pot

is at 105 °C, determine the temperature at the outer surface of the bottom of the pot

Answers

Answer:

T₁ = 378.33 k = 105.33°C

Explanation:

From Fourier's Law of heat conduction, we know that:

Q = - KAΔT/t

where,

Q = Heat Transfer Rate = 1400 W

K = Thermal Conductivity of Material (Aluminum) = 237 W/m.k

A =Surface Area through which heat transfer is taking place=circular bottom

A = π(radius)² = π(0.15 m)² =  0.0707 m²

ΔT = Difference in Temperature of both sides of surface = T₂ - T₁

T₁ = Temperature of outer surface = ?

T₂ = Temperature of inner surface = 105°C + 273 = 378 k

ΔT = 388 k - T₁

t = thickness of the surface (Bottom of Pot) = 0.4 cm = 0.004 m

Therefore,

1400 W = - (237 W/m.k)(0.0707 m²)(378 k - T₁)/0.004 m

(1400 W)/(4188.14 W/k) = - (378 k - T₁)

T₁ = 0.33 k + 378 k

T₁ = 378.33 k = 105.33°C

The motion of an object undergoing constant acceleration can be modeled by the kinematic equations. One such equation is xf=xi+vit+12at2 where xf is the final position, xi is the initial position, vi is the initial velocity, a is the acceleration, and t is the time. Let's say a car starts with an initial speed of 15 m/s, and moves between the 1000 m and 5000 m marks on a roadway in a time of 60 s. What is its acceleration?

Answers

Answer:

a = 1.72 m/s²

Explanation:

The given kinematic equation is the 2nd equation of motion. The equation is as follows:

xf = xi + (Vi)(t) + (1/2)(a)t²

where,

xf = the final position =  5000 m

xi = the initial position = 1000 m

Vi = the initial velocity = 15 m/s

t = the time taken = 60 s

a = acceleration = ?

Therefore,

5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²

5000 m = 1000 m + 900 m + a(1800 s²)

5000 m = 1900 m + a(1800 s²)

5000 m - 1900 m = a(1800 s²)

a(1800 s²) = 3100 m

a = 3100 m/1800 s²

a = 1.72 m/s²

Zinc is added to a breaker containing hydrochloric acid and the beaker gets warm what type os reaction is this

Answers

Answer:

Exothermic

Explanation:

Depending on the unit you are in, the answer may vary.

This is an exothermic reaction because it produces heat (the beaker gets warm).

1. In 214 BC, Archimedes invented a large spherical-type mirror used to focus the sun's intense rays onto far away enemy boats, which would eventually light them on fire. If the boats were travelling in a nearby channel approximately 1,000 m from the river bank, what would the radius of curvature of his mirror need to be? Show your work.

Answers

Answer:

2000 m

Explanation:

since the boat is 1000 m from the river bank, the beam must be focused at this point. This indicates that the focal length is 1000 m

for a spherical mirror, the focal length is given by

f = R/2

where R is the radius of curvature

1000 = R/2

R = 2000 m

R = 2000 m

this means that the radius of curvature must be 2000 m

Other Questions
21*Note: Picture not drawn toIf w = 4 in, I = 6 in, s = 16.49 in, and s2 = 17.09 in, what is the surface areaA. 430.6 in2B.334.6 in 2C.491.76 in 2 D.369.44 in 2PosetSubm On hot, sunny, summer days, Jane rents inner tubes by the river that runs through her town. Based on her past experience, she has assigned the following probability distribution to the number of tubes she will rent on a randomly selected day.x 25 50 75 100 TotalP(x) 0.16 0.36 0.38 0.10 1.00Find the probability expressions: (Round your answers to 2 decimal places.)a.P(X=50)P(X=50).b.P(X75)P(X75).c.P(X>50)P(X>50).d.P(X if someone answers this in the next 30 seconds, ill vote YOU brainliest Why is it important to determine your values during career planning? Select the correct answer. What is heat of vaporization? A. It is the heat required to change a substances temperature by 1CB. It is the heat required to change a gram of substance from a solid to a liquidC. It is the heat required to change a substance from a solid directly to a gasD. It is the heat required to change a gram of substance from a liquid to a gasE. It is the heat required to separate one substance into two substances Help will mark brainliest The mean of the data set(9,5,y,2,x)is twice the data set (8,x, 4,1,3).What is (y-x) URGENT!! Describe the attractions of growth stocks and value stocks. What spread the plague along trade routes to the Mediterranean Two lines are guaranteed to be coplanar if they? Determine the value of k. answers: A) 18 B) 180 C) 108 D) 97 Find the discriminant: *7x2 5 = 2x + 9x2 Which of the compounds below are amines?1. H4C-NH-CH32. H3C-NH-C-CH3H2C-CH31 +H3C-CH2-N-CH3CH3N3. H4. The topmost layer of the Earth is made up of large pieces that fit together like a puzzle. However, these pieces don't stay still, and sometimes they rub against each other. When these large sections of the Earths crust, called tectonic plates, hit each other, they send vibrations through the surface of the Earth. These vibrations are seismic waves. Seismic waves are just like the ripples in a pond. But instead of traveling through water, they travel through the Earth. When they reach the Earth's surface, they make the ground shake. That's an earthquake. Earthquakes are the result of?A ripples traveling through water. B Earths topmost layer sinking. C vibrations from seismic waves. D tectonic plates staying still. Writa function to read content from "Zone. txt" and write it into another file "zone1. txt" by reversing each line if the line starts with A Even though slavery ended after the Civil War, what conditions led someleaders to call for a separate nation for black people? Choose TWO answersSELECT ALL THAT APPLY1. Jim Crow laws kept black people separate from whitepeople and defended black people getting inferiorservices.2. Black people could not find jobs or housing in the areaswhere they had formerly been slaves.3. If accused of crime, some black people were lynched bymobs without fair trials by jury.4. White people were fighting to reestablish slavery in theSouth. How did adopting the policy of appeasement at the Munich Conference in September 1938 change Europe A girl is out jogging at 2.00 m/s and accelerates at 1.50 m/s^2 until she reaches a velocity of 5.00 m/s. How far does she get? Can the polynomial in the numerator of the expression x^2-5x+7/x-9 be factored to derive (x 9) as a factor What addition expression is shown on thenumber line?8+?15