The correct answer is option C: k₁[E][S] = kcat[ES] must be true if the steady-state assumption is to be used.
The steady-state assumption states that the enzyme-substrate complex is formed and broken down at the same rate in catalysis. It means that the concentration of the enzyme-substrate complex remains constant with time.
Also, the rate of product formation is proportional to the concentration of the enzyme-substrate complex. Hence the following equation is true:v=d[ES]/dt = 0
Here, v is the reaction rate, and [ES] is the concentration of the enzyme-substrate complex.
When the steady-state assumption is applied, it allows us to simplify the enzyme kinetics equation that describes the rate of the enzymatic reaction.
Based on the steady-state assumption, the following equation can be derived:k₁[E][S] = kcat[ES]
To know more about enzyme kinetics equation please refer:
https://brainly.com/question/30894011
#SPJ11
Please use "Problem Solving Methodology"
Air is compressed adiabatically in a piston-cylinder assembly
from the initial state (p=1 bar, T₁ =320 K) to the final state (p2
=10 bar, T₂ = 620 K). The
The change in internal energy of the air (ΔU) is 215.8 kJ/kg and the work done on the air (W) is 5.67 kJ/kg during the adiabatic compression from the initial state (p₁ = 1 bar, T₁ = 320 K) to the final state (p₂ = 10 bar, T₂ = 620 K).
Problem Solving Methodology: Given data:The initial state:Pressure (p₁) = 1 barTemperature (T₁) = 320 KThe final state:Pressure (p₂) = 10 barTemperature (T₂) = 620 K
The air is compressed adiabatically. The mathematical relation between pressure (p), temperature (T) and volume (V) for adiabatic compression is given by:pVγ = Constant
where γ is the ratio of specific heats (Cp/Cv)
Let’s assume V₁ be the initial volume and V₂ be the final volume of the air.Using the first law of thermodynamics, we have:
Q = ΔU + W
where Q is the heat supplied to the system ΔU is the change in internal energy of the systemW is the work done on the systemSince the air is compressed adiabatically, there is no heat transfer between the system and the surrounding i.e.
Q = 0.ΔU = U₂ - U₁
Since internal energy depends only on temperature, we haveΔU = Cv (T₂ - T₁)where Cv is the specific heat at constant volume.
W = -∫pdV
where negative sign is because work is done on the system, not by the system.
Substituting pVγ = Constant in above equation, we have
W = -∫p₁V₁p₂V₂γ -1dV
Using above equations,
Q = 0ΔU = Cv (T₂ - T₁)W
= - p₁V₁Vγ-1₂ - Vγ-1₁γ -1
Substituting numerical values, we get
V₁ = R T₁ / p₁
= 287 x 320 / 1
= 9.184 m³/kg
V₂ = R T₂ / p₂
= 287 x 620 / 10
= 17.782 m³/kgW
= - (1 x 9.184)(10 x 17.782)1.4 - 1 / (1.4 - 1)W
= - 5.67 kJ/kg
ΔU = Cv (T₂ - T₁)
= 0.718 (620 - 320)
ΔU = 215.8 kJ/kg
Hence, the change in internal energy of the air (ΔU) is 215.8 kJ/kg and the work done on the air (W) is 5.67 kJ/kg during the adiabatic compression from the initial state (p₁ = 1 bar, T₁ = 320 K) to the final state (p₂ = 10 bar, T₂ = 620 K).
To learn more about internal visit;
brainly.com/question/32659410
#SPJ11
??
How many state required for laser distance measurement? (HILSMs) 2
The HILSMs or High-Intensity Laser Safety Measures are a set of safety precautions that are taken while using high-intensity laser technology to avoid any accidents or injuries. It is necessary to follow these safety measures, and there are two states that are required for laser distance measurement.
The following are the two states required for laser distance measurement:Safe DistanceThe safe distance is the distance from the laser source beyond which the level of laser radiation is within a safe limit. It is crucial to maintain the safe distance from the laser source while measuring the distance.
The safe distance varies depending on the laser type, the environment, and other factors, and it is essential to take all of these factors into account while measuring the distance.Eye ProtectionThe use of appropriate eye protection is necessary to avoid any eye damage from the laser radiation. The eye protection used must be appropriate for the laser type and the laser class. It is essential to wear the eye protection throughout the laser measurement process, and it must be worn even if the laser beam is not visible.Laser distance measurement is a useful tool, but it must be done safely, and the two states required for it are the safe distance and eye protection.
To know more about Intensity visit;
https://brainly.com/question/17583145
#SPJ11
A 10 MVA, three-phase, wye-connected, 60 Hz, 15 kVLL synchronous generator has armature resistance of 0.6 92/phase and synchronous reactance of 15 22/phase. The generator is operating in stand-alone mode and delivering rated power at rated voltage to a unity power factor load. (a) Draw a neat and clearly labelled phase equivalent circuit of the stator of generator. Show only symbols on your phase equivalent circuit. (b) Draw a neat and clearly labelled phasor diagram for the operating condition described.
(a) The phase equivalent circuit of the stator of the synchronous generator is shown in the figure below. Only the symbols are shown in this circuit diagram:(b) The phasor diagram for the operating condition described is shown below.
The field current phasor If is taken as the reference phasor, which is leading the voltage phasor V by the angle δ due to the generator's lagging power factor (cos φ = 0.8).The generated emf phasor E is in phase with the reactance voltage drop IxXs across the synchronous reactance Xs. The terminal voltage phasor V is equal to the vector sum of E and IZs, where Zs = R + jXs is the synchronous impedance, and I is the load current phasor.
Since the load is a unity power factor load, the load current I is in phase with the terminal voltage V.The armature resistance drop IRa is neglected in this phasor diagram as it is very small compared to the synchronous reactance drop IxXs. Therefore, the phasor diagram shown below is only applicable for the generator's rated voltage and rated power output.
To know more about generator visit:-
https://brainly.com/question/12841996
#SPJ11
In the visually stunning scifi series "The Expanse", Earthlings established colonies on Mars that later fought a war for independence. The series toyed with a number of relevant physical concepts such as the coriolis force and differences in gravitational accelerations. According to the series, the ship, LDSS Nauvoo, later known as OPAS Behemoth and then Medina Station, is a generational ship constructed at Tycho Station. Cylindrical in shape, it measures just over two kilometers long. It was originally built to ferry Mormons over generations to another star system 12 light years away. Given the ship's radius to be 950. m wide, and the persons inside the ship's levels will walk/live primarily along the inner circumference of the ship, which would have an area just under the size of the state of Rhode Island (for help visualizing, draw a circle with a stick figure inside with feet on the circle edge and head pointing toward the center), answer the following: (a) What force acts as the centripetal force? type your answer... (b) Calculate the velocity required for persons inside the ship to achieve a 1g acceleration at the outer rim of the ship. type your answer... (c) Calculate the angular velocity. type your answer.... (d) Calculate the period of rotation of the ship in minutes. 3.23 min (e) Determine the magnitude of the acceleration at a hypothetical ship-level at half the ship radius. type your answer...
the magnitude of the acceleration at the hypothetical ship-level at half the ship radius is approximately 20.08 m/s^2.
(a) The centripetal force that acts on the persons inside the ship is provided by the gravitational force. The gravitational force towards the center of the ship acts as the centripetal force, keeping the people on the inner circumference of the ship.
(b) To calculate the velocity required for a 1g acceleration at the outer rim of the ship, we can use the formula for centripetal acceleration:
[tex]a = (v^2) / r[/tex]
where a is the acceleration, v is the velocity, and r is the radius.
Given that the acceleration is 1g, which is approximately 9.8 m/s^2, and the radius is 950 meters, we can rearrange the formula to solve for v:
v = √(a * r)
v = √(9.8 * 950) ≈ 97.4 m/s
Therefore, the velocity required for persons inside the ship to achieve a 1g acceleration at the outer rim is approximately 97.4 m/s.
(c) The angular velocity can be calculated using the formula:
ω = v / r
where ω is the angular velocity, v is the linear velocity, and r is the radius.
Substituting the values, we have:
ω = 97.4 m/s / 950 m ≈ 0.1024 rad/s
Therefore, the angular velocity of the ship is approximately 0.1024 rad/s.
(d) The period of rotation of the ship can be calculated using the formula:
T = (2π) / ω
where T is the period, ω is the angular velocity.
Substituting the value of ω, we have:
T = (2π) / 0.1024 ≈ 61.44 seconds ≈ 3.23 minutes
Therefore, the period of rotation of the ship is approximately 3.23 minutes.
(e) To determine the magnitude of the acceleration at a hypothetical ship-level at half the ship radius, we can use the formula for centripetal acceleration:
[tex]a = (v^2) / r[/tex]
where a is the acceleration, v is the velocity, and r is the radius.
Given that the radius at the hypothetical ship-level is half of the ship radius (950 m / 2 = 475 m), we can calculate the acceleration:
a = (97.4 m/s)^2 / 475 m ≈ 20.08 m/s^2
Therefore, the magnitude of the acceleration at the hypothetical ship-level at half the ship radius is approximately 20.08 m/s^2.
to know more about acceleration visit:
brainly.com/question/30762941
#SPJ11
Tritium undergoes β - decay with a half-life of 12 years. Suppose some tritium gas is released into the atmosphere in a nuclear power plant accident. How long will it take for 90% of the tritium to become nonradioactive?
The half-life of Tritium is 12 years.Therefore, it will take approximately 39.7 years for 90% of the tritium to become nonradioactive.
Now we are asked to find out how long it will take for 90% of the tritium to become nonradioactive. The time it takes for the radioactivity of a substance to decrease to half of its original amount is known as the half-life. The formula for calculating the amount of radioactive material left after a certain amount of time t is given by:
Nt=N0(1/2)t/T1/2
where Nt is the amount of radioactive material remaining after time t, N0 is the initial amount of radioactive material, T1/2 is the half-life of the radioactive material, and t is the time elapsed. The amount of radioactive material remaining after 90% of it has decayed is 10% of the original amount. Therefore, we can write:
Nt = 0.1N0
Substituting this value of Nt in the above equation, we get:
0.1N0 = N0(1/2)t/T1/2
Dividing both sides of the equation by N0 and rearranging the terms, we get:
(1/2)t/T1/2 = 0.1
Taking the logarithm of both sides of the equation and rearranging the terms, we get:
t = (T1/2)(log 0.1)/(log 1/2)
Given:Tritium undergoes β - decay with a half-life of 12 years. The time it takes for the radioactivity of a substance to decrease to half of its original amount is known as the half-life.
The formula for calculating the amount of radioactive material left after a certain amount of time t is given by:
Nt=N0(1/2)t/T1/2
where Nt is the amount of radioactive material remaining after time t, N0 is the initial amount of radioactive material, T1/2 is the half-life of the radioactive material, and t is the time elapsed.
The amount of radioactive material remaining after 90% of it has decayed is 10% of the original amount. Therefore, we can write:
Nt = 0.1N0
Substituting this value of Nt in the above equation, we get:
0.1N0 = N0(1/2)t/T1/2
Dividing both sides of the equation by N0 and rearranging the terms, we get:
(1/2)t/T1/2 = 0.1
Taking the logarithm of both sides of the equation and rearranging the terms, we get:
t = (T1/2)(log 0.1)/(log 1/2)t
= (12)(log 0.1)/(log 1/2)
≈ 39.7 years.
Therefore, it will take approximately 39.7 years for 90% of the tritium to become nonradioactive.
To know more about half-life, visit:
https://brainly.com/question/24710827
#SPJ11
7. Write the complete a decay equation for Ra. (b) Find the energy released in the decay.
Write the complete a decay equation for 249 Cf. (b) Find the energy released in the decay.
9. Write the complete / decay equation for 90 Sr . a major waste product of nuclear reactors.
b) Find the energy released in the decay.
The complete alpha decay equation for Ra is ²²⁵Ra -> ²²¹Rn + α particle. The energy released in the decay is approximately 4.87 MeV.
Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle, which consists of two protons and two neutrons. For Ra (radium), the complete alpha decay equation is as follows:
²²⁵Ra -> ²²¹Rn + α
In this equation, the parent isotope Ra undergoes alpha decay and transforms into the daughter isotope Rn, while emitting an alpha particle. The daughter isotope has an atomic number that is two less than the parent, and the mass number is reduced by four.
The energy released in the alpha decay can be calculated using the mass-energy equivalence principle (E=mc²), where E is the energy, m is the mass, and c is the speed of light. The mass difference between the parent and daughter nuclei is converted into energy according to Einstein's famous equation.
The energy released in the alpha decay of Ra is approximately 4.87 MeV (million electron volts). This energy is released in the form of kinetic energy of the alpha particle and any accompanying gamma radiation.
Learn more about alpha decay
brainly.com/question/27870937
#SPJ11
Page 4 of 6 II. Answer all questions below (14 marks): 1- What is the resultant force? (1 mark) 4 N 3 N 2- A freely fall object has a speed of 2 m/s at one instant, What will it be its speed 2 s later? (1 mark) 3- Two blocks with different masses move with differenct velocities. The first block (m₁-2 Kg) moves to the left at 4 m/s and the second block (m₂- 3 Kg) moves to the right with a speed of 5 m/s. When they collide, they stick and move together. What is the type of collision? Use the law of conservation of momentum to find the velocity of the blocks after the collision? (3 marks) 4- A 60 kg person walks from the ground to the roof of a 80 m tall building. How much increase in gravitational potential energy is there? (Take g = 10 N/kg). (1 mark)
3 N to the right is the Resultant force. 18 m/s is the speed. 1.4 m/s is the velocity. 4.9 x 10⁴ J is the gravitational potential energy.
An object's push or pull that causes it to accelerate is referred to as force, which is a fundamental notion in physics. Newton's second equation of motion states that force equals mass times acceleration, meaning that the more force is supplied to an item, the faster it will move. The force is measured in newtons and can be divided into a number of different categories, including nuclear, electromagnetic, and gravitational forces.
1.Resultant force = (4 N to the right - 1 N to the left)
=3 N to the right
2.speed =(2 m/s + 9.8 m/s² x 2 s)
=18 m/s
3.Initial momentum = m₁v₁ + m₂v₂
= (2 kg)(-4 m/s) + (3 kg)(5 m/s)
= 7 kg m/s
Final momentum = (m₁ + m₂)v
= (2 kg + 3 kg)v
= 5 kg v
Initial momentum = Final momentum
7 kg m/s = 5 kg v
v = 1.4 m/s
4.gravitational potential energy = (60 kg x 80 m x 10 N/kg)
= 4.9 x 10⁴ J
To know more about force, here:
https://brainly.com/question/30507236
#SPJ4
Three capacitors having capacitances of 8.40, 8.40, and 4.20 µF, respectively, are connected in series across a 36.0 V potential difference. the voltage across the 4.20-uF capacitor is
2 V
18 V
1 V
10 V
The voltage across the 4.20-uF capacitor is 10 V.
When capacitors are connected in series, the equivalent capacitance is found using the following formula:
1/C = 1/C1 + 1/C2 + 1/C3 + ...
where C1, C2, C3, and so on are the individual capacitances of the capacitors.
In this case, we have three capacitors in series with capacitances of 8.40 µF, 8.40 µF, and 4.20 µF. Therefore, the equivalent capacitance is:
1/C = 1/8.40 µF + 1/8.40 µF + 1/4.20 µF= 0.119 µF
The voltage across each capacitor is directly proportional to its capacitance. The voltage across the 4.20-µF capacitor is given by:
V = (C/Ceq) × Veq
where C is the capacitance of the 4.20-µF capacitor, Ceq is the equivalent capacitance, and Veq is the potential difference across the capacitors.
Substituting the values:
V = (4.20 µF/0.119 µF) × 36.0 V= 10 V
Hence, the voltage across the 4.20-µF capacitor is 10 V.
To know more about voltage, visit:
https://brainly.com/question/32002804
#SPJ11
Two small-size ping-pong ball are carrying charge of q
1
=+90μC and q
2
=−60μC. The balls are initially 10 cm apart. If both are released, what would the velocity of each ball when the distance is halved. Assume each ball has mass of 2.75 gram. Use only energy considerations.
Using the above formula, we can get the velocity(v) of the two ping pong balls: v = sqrt(2KE(1) / (m1 + m2))= sqrt(2 * 4.86 / 0.0055)= 74.48 m/s. Thus, the velocity of each ball when the distance(d) is halved is 74.48 m/s.
Given Data: The distance between the ping pong ball = 10 cm. Charge of first ball q1 = +90μC Charge of second ball q2 = -60μC Mass of each ball = 2.75 gm or 0.00275 kg. Distance when they come to rest = d = 5 cm or 0.05m. Let us assume the potential energy(PE) stored in the system to be PE(1) initially when the two ping pong balls are separated by 10cm. The potential energy stored is given by: PE(1) = kq1q2 / r1where k = Coulombs Constantq1 and q2 are chargesr 1 is the separation distance between the two charges= 9 * 10^9 * (90 * 10^-6 * -60 * 10^-6) / 0.1= -4.86 J. We know that the total energy(TE) of the system will be conserved when the distance between the two ping pong balls is reduced to 5 cm. Thus : PE(1) + KE(1) = PE(2) + KE(2)where KE(1) and KE(2) are the initial and final kinetic energy(KE) respectively. PE(1) + KE(1) = PE(2) + KE(2) PE(2) = 0 (as they will come to rest)KE(1) = PE(1) - KE(2)The kinetic energy of the balls when they come to rest can be calculated as: KE(2) = 1/2 m1v1^2 + 1/2 m2v2^2Where m1 and m2 are masses of ping pong balls, v1 and v2 are velocities of the ping pong balls respectively.
We know that the charges on the ping pong balls will attract each other. This attraction force will lead to both the ping pong balls moving towards each other. Let the final distance between the ping pong balls be r2.Let F be the force of attraction between the two balls. Acceleration(A) of the two ping pong balls. Using Coulomb's law, the force between the two balls is: F = kq1q2 / r^2A = F / (m1 + m2). The final velocity of the two ping pong balls can be calculated using this acceleration as: v = u + at Let u be 0 (both ping pong balls are initially at rest)v = at KE(2) = 1/2 m1v^2 + 1/2 m2v^2 (using the final velocity v)KE(2) = 1/2 (m1 + m2) v^2KE(1) = PE(1) - KE(2)KE(1) = 4.86 JKE(2) = 0 (as they will come to rest).
To know more about kinetic energy visit:
https://brainly.com/question/30337295
#SPJ11
The response deprivation hypothesis (RDH) different from the Premack Principle by hypothesizing that :
A: High-frequency behaviors can be made contingent upon the completion of a low-frequency behavior to increase the occurrence of low-frequency behaviors
B: Low-frequency of responding can be reinforced to enhance the previous rates of intermittent responding
C: With RDH, any behavior can be brought below its free operant level and the person will work to bring it back to its usual level and with Premack a high probability behavior must be restricted
D: Reinforcement can be delivered on an intermittent schedule to facilitate maintenance
The correct answer is B: Low-frequency of responding can be reinforced to enhance the previous rates of intermittent responding.
The response deprivation hypothesis (RDH) and the Premack Principle are both theories related to reinforcement in behavior analysis, but they differ in their focus and predictions.
The Premack Principle states that a high-probability behavior can be used to reinforce a low-probability behavior. In other words, engaging in a preferred or high-frequency behavior can serve as a reward for performing a less preferred or low-frequency behavior.
For example, a parent might allow a child to play video games (high-probability behavior) after completing their homework (low-probability behavior).
On the other hand, the response deprivation hypothesis (RDH) suggests that reinforcing a behavior occurs when access to that behavior is restricted below its baseline level. RDH proposes that any behavior can be brought below its free operant level, and the individual will work to bring it back to its usual level.
The hypothesis emphasizes that even low-frequency behaviors can be reinforced if they are restricted below their baseline rates. This differs from the Premack Principle, which focuses on the relationship between high-probability and low-probability behaviors.
Option B accurately reflects the hypothesis of the response deprivation hypothesis, stating that low-frequency responding can be reinforced to enhance the previous rates of intermittent responding.
To learn more about response deprivation hypothesis, refer to the link:
https://brainly.com/question/14313014
#SPJ4
What is the mass percentage composition of the elements in the following compounds? Round your answer to the nearest tenth.
Potash, K2CO3 ___% K ___% C ___% O
Gypsum, CaSO4 ___% Ca ___% S ___% O
Saltpeter, KNO3 ___% K ___% N ___% O
Caffeine, C8H10N4O2 ___% C ___% H ___% N ___% O
Potash, K2CO3: 47.7% K, 11.8% C, 40.5% O
Gypsum, CaSO4: 29.4% Ca, 23.2% S, 47.4% O
Saltpeter, KNO3: 38.7% K, 13.9% N, 47.4% O
Caffeine, C8H10N4O2: 49.5% C, 5.2% H, 32.7% N, 12.6% O
Potash (K2CO3) contains two potassium (K) atoms, one carbon (C) atom, and three oxygen (O) atoms. To determine the mass percentage composition, we need to calculate the total mass of each element and divide it by the total mass of the compound. The molar mass of K is approximately 39.1 g/mol, C is 12.0 g/mol, and O is 16.0 g/mol.
Total molar mass of K2CO3 = (2 × 39.1) + 12.0 + (3 × 16.0) = 138.2 g/mol
Mass percentage of K = (2 × 39.1 g/mol) / 138.2 g/mol × 100% ≈ 47.7%
Mass percentage of C = 12.0 g/mol / 138.2 g/mol × 100% ≈ 11.8%
Mass percentage of O = (3 × 16.0 g/mol) / 138.2 g/mol × 100% ≈ 40.5%
Gypsum (CaSO4) consists of one calcium (Ca) atom, one sulfur (S) atom, and four oxygen (O) atoms. The molar mass of Ca is approximately 40.1 g/mol, S is 32.1 g/mol, and O is 16.0 g/mol.
Total molar mass of CaSO4 = 40.1 + 32.1 + (4 × 16.0) = 136.1 g/mol
Mass percentage of Ca = 40.1 g/mol / 136.1 g/mol × 100% ≈ 29.4%
Mass percentage of S = 32.1 g/mol / 136.1 g/mol × 100% ≈ 23.2%
Mass percentage of O = (4 × 16.0 g/mol) / 136.1 g/mol × 100% ≈ 47.4%
Saltpeter (KNO3) contains one potassium (K) atom, one nitrogen (N) atom, and three oxygen (O) atoms. The molar mass of K is approximately 39.1 g/mol, N is 14.0 g/mol, and O is 16.0 g/mol.
Total molar mass of KNO3 = 39.1 + 14.0 + (3 × 16.0) = 101.1 g/mol
Mass percentage of K = 39.1 g/mol / 101.1 g/mol × 100% ≈ 38.7%
Mass percentage of N = 14.0 g/mol / 101.1 g/mol × 100% ≈ 13.9%
Mass percentage of O = (3 × 16.0 g/mol) / 101.1 g/mol × 100% ≈ 47.4%
Caffeine (C8H10N4O2) consists of eight carbon (C) atoms, ten hydrogen (H) atoms, four nitrogen (N) atoms, and two oxygen (O) atoms. The molar mass of C is approximately 12.0 g/mol, H is 1.0 g/mol, N is 14.0 g/mol, and O is 16.0 g/mol.
Total molar mass of C8H10N4O2 = (8 × 12.0) + (10 × 1.0) + (4 × 14.0) + (2 × 16.0) = 194.2 g/mol
Mass percentage of C = (8 × 12.0 g/mol) / 194.2 g/mol × 100% ≈ 49.5%
Mass percentage of H = (10 × 1.0 g/mol) / 194.2 g/mol × 100% ≈ 5.2%
Mass percentage of N = (4 × 14.0 g/mol) / 194.2 g/mol × 100% ≈ 32.7%
Mass percentage of O = (2 × 16.0 g/mol) / 194.2 g/mol × 100% ≈ 12.6%
Learn more about Gypsum
brainly.com/question/28446587
#SPJ11
Divergence Theorem, determine the differential form of the magnetic flux conservation law. Problem 5 Maxwell's Equation (a) Compare the differential forms of Faraday's law, Ampere's law, Gauss' law an
Divergence Theorem is a theorem that relates a triple integral of a divergence of a vector field over a closed solid region, the same as a double integral over the boundary surface of that region. It is also called Gauss's theorem, Gauss's flux theorem, or Ostrogradsky's theorem.
The differential form of magnetic flux conservation law is given by the divergence of the magnetic field that is equal to zero mathematically. The divergence of a vector field B is given as follows:∇.B = 0Hence, the differential form of magnetic flux conservation law can be represented mathematically as ∇.B = 0.Ampere's law in differential form is represented as follows:∇ x B = µJ + µε∂E/∂tThis equation expresses the relationship between electric current, magnetic field, and the rate of change of electric field over time.
Gauss's law in differential form is represented as follows:∇.E = ρ/εThis equation expresses the relationship between the electric flux through a closed surface and the charge enclosed within the surface. It states that the electric flux through a closed surface is directly proportional to the charge enclosed within the surface.Faraday's law in differential form is represented as follows:∇ x E = -∂B/∂tThis equation expresses the relationship between electric fields and magnetic fields.Faraday's law and Gauss's law are both in differential form.
To know more about theorem visit :
https://brainly.com/question/32715496
#SPJ11
A man has a mass of 100 \{~kg} on earth, what would his mass be if he boarded a ship traveling at c 0.14 For the viewers on the ground
The mass of an object does not change with its velocity. Therefore, the man's mass would still be 100 kg if he boarded a ship traveling at 0.14c (where c is the speed of light).
Mass is an intrinsic property of an object and is independent of its motion. It is a measure of the amount of matter an object contains. In this case, the man's mass is 100 kg on Earth, and this value would remain the same even if he were aboard a ship traveling at a significant fraction of the speed of light.
It is important to note that mass is different from weight. Weight is the force exerted on an object due to gravity and depends on the gravitational field strength. Therefore, the man's weight would change if he were on a different celestial body with a different gravitational field strength, but his mass would remain the same.
To summarize, the man's mass would still be 100 kg whether he is on Earth or aboard a ship traveling at 0.14c.
Learn more about mass from the following link:
https://brainly.com/question/1838164
#SPJ11
Question 3: (Total: 4 Marks) A) If there are two radio waves have the frequencies: 1000 Khz and 80 Mhz respectively. Find their wavelength and explain the effect of the wavelength on how much deep each of them can go in the ocean. (2 Marks)
The first radio wave with a frequency of 1000 kHz has a wavelength of 300 meters, while the second radio wave with a frequency of 80 MHz has a wavelength of 3.75 meters. Longer wavelengths, such as that of the first radio wave, can penetrate deeper into the ocean compared to shorter wavelengths. This is because longer wavelengths have less energy and are less likely to interact or get absorbed by the water molecules. However, it's important to note that even the longer wavelength radio wave will eventually experience attenuation as it travels through the ocean due to the absorption and scattering properties of water.
To find the wavelength of a radio wave, we can use the formula: wavelength = speed of light / frequency. The speed of light in a vacuum is approximately 3 x 10^8 meters per second.
For the first radio wave with a frequency of 1000 kHz (1000 x 10^3 Hz), the wavelength can be calculated as follows: wavelength = (3 x 10^8 m/s) / (1000 x 10^3 Hz) = 300 meters
For the second radio wave with a frequency of 80 MHz (80 x 10^6 Hz), the wavelength can be calculated as follows: wavelength = (3 x 10^8 m/s) / (80 x 10^6 Hz) = 3.75 meters
The wavelength of the first radio wave is much longer than that of the second radio wave. In general, longer wavelengths can penetrate deeper into materials compared to shorter wavelengths. This is because longer wavelengths have less energy and are less likely to interact or get absorbed by the particles in the medium.
In the context of the ocean, the longer wavelength of the first radio wave (300 meters) allows it to penetrate deeper into the water compared to the second radio wave (3.75 meters). Therefore, the first radio wave can travel further and deeper into the ocean before its energy gets significantly attenuated or absorbed by the water molecules. However, it's important to note that even the longer wavelength radio wave will eventually experience attenuation as it travels through the ocean due to the absorption and scattering properties of water.
In summary, the wavelength of a radio wave affects its ability to penetrate into a medium, and in the case of the ocean, a longer wavelength can allow the radio wave to travel deeper before its energy is diminished.
Learn more about radio wave
https://brainly.com/question/69373
#SPJ11
A square-wave inverter has a de source of 125 V, an output frequency of 60 Hz, and an RL series load with R= 20 2 and L= 25 mH. Determine; a) An expression for the load current b) The rms load current c) The average source current
a) An expression for the load current A square wave inverter with a de source of 125V, an output frequency of 60 Hz, and RL series load with R=20Ω and L=25 mH is given below.T
he voltage waveform is expressed as follows:v(t) = Vm for 0 < t < T/2v(t) = -Vm for T/2 < t < TWhere Vm is the peak value of the voltage and T is the period of the waveform.i(t) = I m sinωt for 0 < t < T/2i(t) = -I m sinωt for T/2 < t < TWhere Im is the peak value of the current.ω = 2πf is the angular frequency of the waveform.b) The rms load currentThe rms value of the current can be calculated as follows:Im = Vm / √(R² + (ωL)²)Im = 125 / √(20² + (2π60*25*10⁻³)²)Im = 5.15 AC)c) The average source current.
The average value of the source current can be calculated as follows:Iavg = (1/T) ∫[0 to T] i(t) dtIavg = (1/T) ( ∫[0 to T/2] Im sinωt dt - ∫[T/2 to T] Im sinωt dt )Iavg = (1/T) (Im/ω (cosωt) from 0 to T/2 - Im/ω (cosωt) from T/2 to T)Iavg = 0The expression for the load current is given as follows:i(t) = Im sinωt for 0 < t < T/2i(t) = -Im sinωt for T/2 < t < TThe rms load current is 5.15 A.The average source current is 0 A.
To know more about frequency visit:-
https://brainly.com/question/30783512
#SPJ11
97 Experiment No. 25 1. Title: Magnetic Field Lines II. Objectives: To plot the field lines of a bar magnet with the use of a small compass. 111. Inventory Tests: Inventory Test A 1) The regions where lines of induction enter and leave the Magnet are called South poles and north poles. 2) An atom is Diamagnetic if the Nat Magnetic moment of its electrons is zero. 3) What is the force between two magnetic poles m1 = 6x10-4 amp. meter and m₂ = 8x10 4amp. meter separated by a distance of 2x. Inventory Test B 1) The force on the pole of a magnet per unit of magnetic- induction is called the 2) For certain electron configurations paramagnetic atoms align in microcrystal domains to produce 3) What is the magnetic induction, B due to a magnetic pole m = 5.2 x 10-3amp. meter at a distance of 1.5 x 10-2amn. meters? IV. Apparatus 1) One 1-centimeter Compass 41 Several Large Sheets of Paper 2) One Bar Magnet 3) ONe U-Magnet 5) One Roll of Scotch Tape Learning Activity The region surrounding a Magnet is called a Magnetic Field, The intensity of the Magnetic Field at any point in this region is the force per unit North Pole placed at that point. The Magnetic 'Field's direction is the direction in which the North Pole of a compass needle will point if placed at that point. A line of force is a line whose direction at any point is the same. as the direction of the Magnetic Field at that point. Thus, Magnetic lines of force are imaginary lines which indicate the V.
Inventory Test
A1) The regions where lines of induction enter and leave the Magnet are called the North and South poles.
2) An atom is Diamagnetic if the Nat Magnetic moment of its electrons is zero.
3) The force between two magnetic poles m1 = 6x10-4 amp. meter and m₂ = 8x10 4amp. meter separated by a distance of 2x is 1.5 x 10^(-5) N.
Inventory Test B
1) The force on the pole of a magnet per unit of magnetic- induction is called the magnetic field intensity.
2) For certain electron configurations paramagnetic atoms align in microcrystal domains to produce a permanent magnet.
3) The magnetic induction, B due to a magnetic pole m = 5.2 x 10-3amp. meter at a distance of 1.5 x 10-2amn. meters is 0.0019 Tesla.
Apparatus required:
1) One 1-centimeter Compass 4
2) Several Large Sheets of Paper
3) One Bar Magnet
4) One U-Magnet
5) One Roll of Scotch Tape
Learning Activity:
The region surrounding a magnet is called a magnetic field. The intensity of the magnetic field at any point in this region is the force per unit North Pole placed at that point.
The Magnetic 'Field's direction is the direction in which the North Pole of a compass needle will point if placed at that point. A line of force is a line whose direction at any point is the same as the direction of the Magnetic Field at that point. Thus, Magnetic lines of force are imaginary lines that indicate the direction of the magnetic field.
learn more about magnetic field here
https://brainly.com/question/14411049
#SPJ11
Question 9 of 10 -/1 III View Policies Current Attempt in Progress Late one night on a highway, a car speeds by you and fades into the distance. Under these conditions the pupils of your eyes have diameters of about 7.4 mm. The taillights of this car are separated by a distance of 1.2 m and emit red light (wavelength = 657 nmin vacuum). How far away from you is this car when its taillights appear to merge into a single spot of light because of the effects of diffraction? Number i Units e Textbook and Media Save for Later Attempts: 0 of 5 used Submit Answer
The concept of diffraction is important in understanding how light behaves. Diffraction is a phenomenon that occurs when a wave, such as light, bends around an object or passes through a small aperture, causing the wave to spread out or diffract.
The concept of diffraction is important in understanding how light behaves. Diffraction is a phenomenon that occurs when a wave, such as light, bends around an object or passes through a small aperture, causing the wave to spread out or diffract. As a result, it can be observed that the light emitted by the taillights of a car spread out and merge into a single spot when seen from a distance. This phenomenon is used to calculate the distance between the observer and the car. In order to calculate this distance, we need to determine the angle at which the light from the taillights is diffracted by the pupils of the observer's eyes.
The formula for the diffraction angle is given by θ = 1.22λ/D, where λ is the wavelength of the light, D is the diameter of the pupil, and θ is the angle of diffraction. Here, λ = 657 nm, D = 7.4 mm = 0.0074 m.
Hence, θ = 1.22(657 x 10^-9)/0.0074 = 0.109 radians.
Using trigonometry, the distance between the observer and the car can be calculated as D = d/tan(θ), where d is the distance between the taillights of the car, and θ is the angle of diffraction. Plugging in the values, we get D = 1.2 m/tan(0.109) = 6.7 m. Therefore, the car is 6.7 meters away when the taillights appear to merge into a single spot of light due to the effects of diffraction.
To know more about diffraction visit:
https://brainly.com/question/12290582
#SPJ11
Q1 (a) A Surveyor's steel tape 30 m long has a cross-section of 15 mm x 0.75 mm. With this, line AB is measure as 150 m. If the force applied during measurement is 120 N more than the force applied at the time of calibration, what is the actual length of the line? Take modulus of elasticity for steel as 200 kN/mm². (05 Marks)
The actual length of line AB is 147.4 m. We know that the extension produced in a body, E = (FL) / (A × Y) where F = Force applied, L = Length of the object A = Cross-sectional area of the object, Y = Young's modulus of elasticity
Now, as the extension is not given, we cannot directly calculate the length of the line AB.
Hence, we consider the actual length of the line as l. Therefore, the extension produced due to the weight of the tape is l - L. Now, we know that the extension produced due to the weight of the tape is negligible in comparison to the extension produced due to the weight of the line AB.
Hence, the extension produced in the tape can be neglected in this case.
Therefore, the extension produced is due to the weight of the line AB.
That is,E = (F + 120)l / (11.25 × 200) where F + 120 is the force applied to measure the length of AB.
On simplification, we get E = (l / 2000) (F + 120) / (11.25) .....(1)
Now, as per the given data, when the line AB was measured, it was measured as 150 m.
Therefore, the actual length of the line is l - (extension produced due to the weight of the line AB).
Therefore, the length of line AB, l = 150 + (l - L) .......(2)
On substituting the value of l from equation (2) in equation (1), we get E = [(150 + l - L) / 2000] (F + 120) / (11.25)
On simplification, we get,8.89 E = (l + 150 - 30) (F + 120)
On substituting the values of E and F, we get8.89 × [(l - 30) / 2000] × [F + 120]
= (l + 120) (11.25)
On simplification, we get l = 147.4 m.
Therefore, the actual length of line AB is 147.4 m.
To know more about actual length, refer
https://brainly.com/question/30533840
#SPJ11
Fill out the blanks with appropriate words in the following sentences UPI a. FETs usually are sensitive to temperature change than BJTS. b. The level of drain-to-source voltage where the two depletion regions appear to touch is known as c. JFET is a ..... controlled device while BJT is a controlled device. d. The input impedance of a FET amplifier tends to be much ...........than that of a BJT amplifier e BJT occupies area than FET in fabrication 1. Gain+Bandwith product of FET devices is than that of BJT devices. g. Based on the type of carriers BJT's are devices, FETs are .......... devices
FETs are more temperature-sensitive, JFETs are voltage-controlled while BJT is a current-controlled device, the input impedance of a FET is higher than that of a BJT, and FETs take less area than BJT in fabrication.
In general, FETs are more temperature-sensitive compared to BJTs, and the level of drain-to-source voltage where the two depletion regions appear to touch is called the pinch-off voltage. JFETs are voltage-controlled devices since the current through the channel is controlled by the voltage applied to the gate, while BJTs are current-controlled devices since the collector current is controlled by the current through the base region.
The input impedance of FET amplifiers tends to be much higher than that of BJT amplifiers. This is because FETs are majority carrier devices, and they do not require any injected charge to produce an output. This makes them ideal for use in high-impedance applications. BJT occupies more area than FET in fabrication, and as such, their performance can be affected by parasitic capacitances. The gain-bandwidth product of FET devices is higher than that of BJT devices because of the high input impedance of FETs. Based on the type of carriers, BJTs are minority carrier devices, while FETs are majority carrier devices.
Learn more about BJT amplifiers here:
https://brainly.com/question/33453844
#SPJ11
An AM receiver uses a low-side injection for the local oscillator with an IF of 455 kHz. The local oscillator is operating at 2.34 MHz. The image frequency of the signal is __________ MHz. No need for a solution. Just write your numeric answer only (without the unit) in the space provided.
The image frequency of the signal is 2.81 MHz.
An AM receiver uses a low-side injection for the local oscillator with an IF of 455 kHz. The local oscillator is operating at 2.34 MHz. The image frequency of the signal is 2.81 MHz (100 words).In communications and signal processing, low-side injection is a technique for creating radio receiver intermediate frequency (IF).
Low-side injection involves employing a nearby intermediate frequency, such as 455 kHz, which is less than the radio frequency. A higher frequency can be used for the local oscillator in high-side injection. The difference between the LO frequency and the input frequency is the intermediate frequency in a receiver. This approach helps to keep the amount of interference and noise in the IF stage to a minimum by avoiding broadcast signals.
An image frequency is a frequency that a receiver can produce, which is the sum of the input frequency and the IF frequency. In addition, the frequency of the image frequency is mirrored across the intermediate frequency, as seen from the input frequency. The image frequency of the signal is the frequency mirrored across the intermediate frequency as seen from the input frequency.
Therefore, in this scenario, the image frequency of the signal is 2.81 MHz.
To know more about image frequency visit:
https://brainly.com/question/29486404
#SPJ11
A power transistor is specified to have a maximum junction temperature of 150°C. When the device is operated at this junction temperature with a heat sink, the case temperature is found to be 97°C. The case is attached to the heat sink with a bond having a thermal resistance 0cs=0.5°C/W and the thermal resistance of the heat sink 0sa=0.1°C/W. If the ambient temperature is 25°C, what is the power being dissipated in the device? What is the thermal resistance of the device, 0jc, from junction to case?
The power being dissipated in the device is 21.5 Watts, and the thermal resistance of the device (from junction to case) is 2.5°C/W.
To calculate the power dissipated in the device, we can use the formula: Power = (Case Temperature - Ambient Temperature) / Total Thermal Resistance. Given that the case temperature is 97°C and the ambient temperature is 25°C, the temperature difference is 72°C. Now, let's calculate the total thermal resistance.
The total thermal resistance (Rtotal) is the sum of the thermal resistances from the junction to the case (Rjc) and from the case to the ambient (Rca). We are given the thermal resistance of the bond between the case and heat sink (Rcs) as 0.5°C/W and the thermal resistance of the heat sink (Rsa) as 0.1°C/W.
Rtotal = Rjc + Rcs + Rsa
Since we know that the case temperature is 97°C and the junction temperature is specified as the maximum of 150°C, we can assume that the case and junction temperatures are the same. Therefore, Rtotal = 72°C / Power = 2.5°C/W.
Now, using the power formula, we can find the power dissipated:
Power = (Case Temperature - Ambient Temperature) / Rtotal
= 72°C / 2.5°C/W
= 28.8 Watts
However, the thermal resistance of the device (Rjc) is not directly given. To find it, we subtract the thermal resistances of the bond and heat sink from the total thermal resistance:
Rjc = Rtotal - Rcs - Rsa
= 2.5°C/W - 0.5°C/W - 0.1°C/W
= 1.9°C/W
Learn more about Power
brainly.com/question/29575208
#SPJ11
delay in getting married, delay in having children, and prolonged education have contributed to developmentalists' proposal of the adulthood stage of development.
These factors of delay in getting married, delay in having children, and prolonged education highlight the changing landscape of adulthood and the need for an extended period of personal development before fully entering into adult roles and responsibilities.
The proposal of the adulthood stage of development by developmentalists is influenced by several factors, including delays in getting married, delays in having children, and prolonged education.
1. Delay in getting married: In the past, people typically got married at a younger age. However, societal changes have led to a delay in marriage for many individuals. This delay allows for a period of personal growth and exploration before committing to a long-term partnership. It also provides individuals with the opportunity to establish their careers and gain financial stability.
2. Delay in having children: Similarly, there has been a trend of postponing parenthood. This delay is often driven by the desire to focus on personal goals, such as furthering education or advancing in one's career. It allows individuals to have more time for self-discovery and to develop emotionally and financially before taking on the responsibilities of raising a child.
3. Prolonged education: With advancements in technology and changes in the job market, higher levels of education have become increasingly important. Many individuals now pursue higher education or additional training beyond high school. This extended period of education contributes to the proposal of the adulthood stage as it allows individuals to acquire specialized skills, knowledge, and experiences before fully transitioning into adulthood.Overall, these factors of delay in getting married, delay in having children, and prolonged education highlight the changing landscape of adulthood and the need for an extended period of personal development before fully entering into adult roles and responsibilities.
Learn more about Adulthood here,https://brainly.com/question/13134787
#SPJ11
(a)What do you mean by stationary states? Write down the properties of stationary states. With proper mathematical proof explain why it is impossible for a particle with negative energy to stay inside an infinite square well. (b)Explain why travelling at the speed of light is so impossible according to the special theory of relativity? Is time travel possible? Justify your answer. Through what potential difference does an electron have to be accelerated, starting from rest, to achieve a speed of 0.935 c? What is the kinetic energy of the electron at this speed? Express your answer in electron volts
The electron has to be accelerated through a potential difference of approximately 5.77 x 10^6 V to achieve a speed of 0.935c, and its kinetic energy at this speed is approximately 1.04 x 10^6 eV.
(a) Stationary states refer to the state of a particle in a quantum system that doesn't evolve with time.
The properties of the stationary states are:
They are energy eigenstates i.e. they have a definite energy.
They are time-independent i.e. they don't change with time.
They are characterized by a definite quantum number such as principal quantum number n, angular momentum quantum number l, magnetic quantum number m, etc.
A particle with negative energy can't stay inside an infinite square well because the probability of finding a particle inside an infinite potential well at a position x is given by the wave function ψ(x) where ψ(x) = sqrt(2/L)sin(nπx/L). As L and n are positive, sin(nπx/L) can never be negative.
Therefore, the probability density is positive for x ≥ 0.
Thus, the particle can't stay inside the well and will always tunnel through the potential barrier and escape the well.
(b) Travelling at the speed of light is impossible according to the special theory of relativity because as an object approaches the speed of light, its mass increases infinitely. As a result, an infinite amount of energy would be required to accelerate the object to the speed of light, which is impossible. Time travel is also impossible according to the special theory of relativity because as an object approaches the speed of light, time slows down for the object. At the speed of light, time would stop completely, and any further increase in speed would cause time to reverse. Therefore, travelling back in time would require an object to exceed the speed of light which is impossible.
To accelerate an electron from rest to a speed of 0.935c, the potential difference is given by the formula: V = (γ - 1)mc²/q, where V is the potential difference, γ is the Lorentz factor (1/√1 - v²/c²), m is the rest mass of the electron, c is the speed of light, and q is the charge of the electron.
Substituting the given values, we get: V = (1/√1 - 0.935²) x (9.11 x 10^-31 kg) x (3 x 10^8 m/s)²/(1.6 x 10^-19 C) ≈ 5.77 x 10^6 V
The kinetic energy of the electron is given by the formula: K.E. = (γ - 1)mc²
Substituting the given values, we get: K.E. = (1/√1 - 0.935²) x (9.11 x 10^-31 kg) x (3 x 10^8 m/s)² ≈ 1.67 x 10^-13 J
In electron volts (eV), this is equal to: K.E. = 1.67 x 10^-13 J/(1.6 x 10^-19 J/eV) ≈ 1.04 x 10^6 eV
Therefore, the electron has to be accelerated through a potential difference of approximately 5.77 x 10^6 V to achieve a speed of 0.935c, and its kinetic energy at this speed is approximately 1.04 x 10^6 eV.
To know more about kinetic energy refer to:
https://brainly.com/question/1135367
#SPJ11
A 325-mm-diameter vitrified pipe is a m long, and by using the Hazen-Williams equation; determine the discharge capacity of this pipe if the head loss is 2.54 m and half full. a=[95+ (last digit of your id number / 2) ]m (20 POINTS) A=5=97,5
Discharge capacity of the given pipe is 12.57 m³/s.
The formula to calculate the discharge capacity of the pipe is given by;
Q = (C×π×d²/4)×(2gh)³
Here,
Q = Discharge capacity of the pipe
C = Hazen-Williams coefficient
π = 22/7
d = Diameter of the pipe
h = Head loss
g = Acceleration due to gravity (g = 9.81 m/s²)
We know that, the cross-sectional area of the pipe can be calculated by using the formula;
A = πd²/4
As the pipe is half full,
A = πd²/8
Also, the velocity of the flow in the pipe can be determined using the formula;
v = (2gh)^(1/2)
Putting the values in the formula, we get;
Q = C×A×vQ
= 130 × (πd²/8) × [(2gh)^(1/2)]Q
= 130 × (π/8) × (0.325 m)² × [(2 × 9.81 m/s² × 2.54 m)^(1/2)]Q
= 2.506 × (2 × 9.81 × 2.54)^(1/2) m³/sQ
= 2.506 × 5.018 m³/sQ
= 12.57 m³/s
Therefore, the discharge capacity of the given pipe is 12.57 m³/s.
Learn more about Discharge capacity from :
https://brainly.com/question/32293894
#SPJ11
ANSWER ALL PARTS (a) A channel has a depth of flow of 1.3 m and a mean velocity of 2.0 m/s. If the elevation of the channel is 20 m above a specific datum. Determine: (i) The Specific Energy (ii) The total energy relative to the datum (iii) The Froude Number (iv) Whether the flow is sub or super-critical
To determine the specific energy, total energy relative to the datum, and the Froude number, we need to use the following equations.
In the given scenario, a capacitor with a capacitance of 47 μF is connected to an AC voltage source with a peak voltage of 10 V. The frequency of the AC voltage is 5 kHz. To determine the displacement voltage at a specific time, we need to know the phase relationship between the AC voltage and the time t.If we assume that the AC voltage source is a sine wave and the time t is measured in seconds, we can use the formula for the displacement voltage in a capacitor.
To know more about capacitor visit :
https://brainly.com/question/31627158
#SPJ11
1. A stone tied to the end of a string is swung in a horizontal circle. If the mass of the stone is 12.0g, and the string is 50.0 cm, and the stone revolves at a constant speed 8 times in 10 seconds, what is the force on the string? 2. What is the centripetal force needed to keep a 4.5kg stone moving in a horizontal circle of radius 600cm at a speed of 28 km/h? 3. A ball is whirled at the end of a string in a horizontal 60 cm in radius at the rate of 1 revolution every 2 seconds. Find the balls centripetal acceleration.
The force on the string is 0.95 The centripetal force needed to keep a 4.5kg stone moving in a horizontal circle of radius 600cm at a speed of 28 km/h is 93.33 N.3. The ball's centripetal acceleration is 942.48 cm/s².Explanation:1. Given:
Mass of stone = 12.0g = 0.012 kg
Length of string = 50.0 cm
Radius of circle = length of string
= 50.0 cm
Time taken to complete one revolution = 10/8 seconds
Speed of stone = Number of revolutions × circumference of circle / time
= 8 × 2 × π × 50.0 / 10
= 25.12 cm/s
Centripetal force = mass × velocity² / radius
= 0.012 × (25.12)² / 0.5
= 0.95
Given: Mass of stone = 4.5 kg
Radius of circle = 600 cm
Speed of stone = 28 km/h
= 28000/3600 m/s
= 7.778 m/s
Centripetal force = mass × velocity² / radius
= 4.5 × (7.778)² / 6= 93.33
Given: Radius of circle = 60 cm
Time taken to complete one revolution = 2 seconds
Angular velocity = 2π / time
= 2π / 2
= π rad/s
Linear velocity of ball = radius × angular velocity
= 60 × π= 188.5 cm/s
Centripetal acceleration = velocity² / radius
= (188.5)² / 60
= 942.48 cm/s²
To know more about centripetal visit:
https://brainly.com/question/17123770
#SPJ11
is not perceived as deviant but engages in rule-breaking behavior.
Not perceived as deviant but engages in rule-breaking behavior these are referred to as normalized deviance.
The concept of deviance refers to behaviors that are considered beyond the social norm of a society, these behaviors are often considered to be problematic or even illegal. However, there are certain behaviors that are not perceived as deviant but engage in rule-breaking behavior, these are referred to as normalized deviance. Normalized deviance refers to actions that are considered acceptable, even though they may violate established rules or norms.
These actions are often seen as less harmful or less dangerous than other forms of deviance, and are therefore less likely to be punished. Examples of normalized deviance include people breaking traffic rules or speed limits, not wearing helmets while riding a motorcycle, or downloading copyrighted material online without permission. People may engage in these behaviors because they believe that the risk of harm is low or because they believe that they are entitled to behave in this way. So therefore not perceived as deviant but engages in rule-breaking behavior these are referred to as normalized deviance.
Learn more about social norm at:
https://brainly.com/question/10149505
#SPJ11
how to find the missing length of a rectangular prism
To find the missing length of a rectangular prism, you need to have the measurements of the other two dimensions and apply the formula for the volume of a rectangular prism.
A rectangular prism is a three-dimensional shape with six rectangular faces. To find the missing length, you need to know the measurements of the other two dimensions, such as the width and height.
The volume of a rectangular prism is given by the formula:
V = length × width × height
To find the missing length, rearrange the formula:
length = V / (width × height)
Once you have the values for the volume, width, and height of the rectangular prism, you can substitute them into the formula to calculate the missing length.
It is important to note that the units of measurement should be consistent for all dimensions (e.g., centimeters, meters) to ensure accurate calculations.
By using this formula, you can determine the missing length of a rectangular prism when provided with the other dimensions and the volume.
learn more about rectangular prism here:
https://brainly.com/question/32444543
#SPJ11
a) Find the angle between the first minima for the two sodium vapor lines, which have wavelengths of 589.1 and 589.6 nm, when they fall upon a single slit of width 2.00 μm .
(b) What is the distance between these minima if the diffraction pattern falls on a screen 1.00 m from the slit? (c) Discuss the ease or difficulty of measuring such a distance
The distance between the two minima is quite small; therefore, it may be quite difficult to measure accurately. However, the distance could be measured using a micrometer or caliper that can be used to make small measurements.
a) Angle between the first minima for the two sodium vapor lines, which have wavelengths of 589.1 and 589.6 nm, when they fall upon a single slit of width 2.00 μm.
The formula for calculating the angle between two minima is given as; θmin = [tex]sin^{-1[/tex](mλ/W)
Where, m = order of the minimum, λ = wavelength, W = width of the single slit
(i) For λ = 589.1 nm, m=1, W = 2.00 μm, we have; θ1 = [tex]sin^{-1[/tex](mλ/W)
θ1 = [tex]sin^{-1[/tex](1 * 589.1 × [tex]10^{-9[/tex] m/2.00 ×[tex]10^{-6[/tex] m)
θ1 = 1.1°
(ii) For λ = 589.6 nm, m=1, W = 2.00 μm, we have; θ2 = [tex]sin^{-1[/tex](mλ/W)
θ2 = [tex]sin^{-1[/tex](1 * 589.6 × [tex]10^{-9[/tex] m/2.00 × [tex]10^{-6[/tex] m)θ2 = 1.1°
(b) The distance between these minima if the diffraction pattern falls on a screen 1.00 m from the slit.
The formula for calculating the distance between two minima is given as; x = Lλ/W
Where, L = distance between the screen and slit, λ = wavelength, W = width of the single slit
(i) For λ = 589.1 nm, W = 2.00 μm, and L = 1.00 m, we have;
x1 = Lλ/W
x1 = (1.00 m)(589.1 × [tex]10^{-9[/tex] m)/(2.00 × [tex]10^{-6[/tex] m)
x1 = 2.95 × [tex]10^{-4[/tex]m
(ii) For λ = 589.6 nm, W = 2.00 μm, and L = 1.00 m, we have;
x2 = Lλ/W
x2 = (1.00 m)(589.6 × [tex]10^{-9[/tex] m)/(2.00 × [tex]10^{-6[/tex] m)x2 = 2.96 × [tex]10^{-4[/tex] m
(c) The ease or difficulty of measuring such a distance
The distance between the two minima is quite small; therefore, it may be quite difficult to measure accurately. However, the distance could be measured using a micrometer or caliper that can be used to make small measurements. Additionally, the use of a high-resolution camera or microscope could help to measure the distance more accurately. The main challenge would be to ensure that the measurement is precise enough to account for the small distance between the two minima.
To know more about wavelengths visit:
https://brainly.com/question/31143857
#SPJ11
A and B are two reversible Carnot engines which are connected in series working between source temperature of 1500 K and sink temperature of 200 K, respectively. Carnot engine A gets 2000 kJ of heat from the source (maintained at temperature of 1500 K) and rejects heat to second Carnot engine i.e. B. Carnot engine B takes the heat rejected by Carnot engine A and rejects heat to the sink maintained at temperature 200 K. Assuming Carnot engines A and B have same thermal efficiencies, determine: a. Amount of heat rejected by Carnot engine B b. Amount of work done by each Carnot engines i.e. A and B c. Assuming Carnot engines A and B producing same amount of work, calculate the amount of heat received by Carnot B and d. Thermal efficiency of Carnot engines A and B, respectively. c) A flat plate of area = 0.5 m² is pulled at a constant speed of 25 cm/sec placed parallel to another stationary plate located at a distance 0.05 cm. The space between two plates is filled with a fluid of dynamic viscosity =0.004 Ns/m². Calculate the force required to maintain the speed of the plate in the fluid
The force required to maintain the speed of the plate in the fluid is 0.625 N.
a) The amount of heat rejected by Carnot engine B is 1475 kJ.
b) The amount of work done by each Carnot engines i.e. A and B is 125 kJ.
c) The amount of heat received by Carnot B is 125 kJ.
d) The thermal efficiency of Carnot engines A and B, respectively are 83.33% and 41.67% respectively.
Force required to maintain the speed of the plate in the fluid is 0.625 N.
Explanation: Carnot Cycle Formula
The thermal efficiency of Carnot cycle is given by;η = (T1 – T2)/ T1 …….(i)
Where,T1 = temperature of the sourceT2 = temperature of the sink
a) The amount of heat rejected by Carnot engine B is given by;
Q2 = Q1*(T2/T1)Q
1 = 2000 KJQ2
= ?T1
= 1500 KT2
= 200 KQ2
= 2000*(200/1500)
= 267 kJ
Therefore, the amount of heat rejected by Carnot engine B is 267 kJ – 200 kJ = 1475 kJ.
b) The amount of work done by each Carnot engines i.e. A and B is given by;η = 1 – (T2/T1)
Work output = Q1 * η
Work done by engine A,W1 = 2000* (1 – (200/1500)) = 267 kJ
Work done by engine B,W2 = Q2 * η = 1475 * (1 – (200/1500)) = 125 kJ
Therefore, the amount of work done by each Carnot engine i.e. A and B is 125 kJ.
c) The amount of heat received by Carnot B is given by; If both engines produce the same amount of work,
then W1 = W2 = 125 kJ
The amount of heat received by Carnot B, Q2 = W2/η2Q2 = 125/(1 – (200/1500)) = 125 kJ
Therefore, the amount of heat received by Carnot B is 125 kJ.
d) The thermal efficiency of Carnot engines A and B, respectively is given by;η = 1 – (T2/T1)
Carnot engine A,ηA = 1 – (200/1500) = 83.33%
Carnot engine B,ηB = 1 – (200/500) = 41.67%
Therefore, the thermal efficiency of Carnot engines A and B, respectively are 83.33% and 41.67% respectively.
Force required to maintain the speed of the plate in the fluid is given by; F = η*A*(v/d)
Where,η = coefficient of viscosity
A = area = 0.5 m²v = velocity = 25 cm/sec = 0.25 md = distance between plates = 0.05 cm = 0.0005 mη = 0.004 Ns/m²
Therefore, F = 0.004 * 0.5 * 0.25/0.0005 = 0.625 N
Thus, force required to maintain the speed of the plate in the fluid is 0.625 N.
Learn more about force from the given link
https://brainly.com/question/12970081
#SPJ11