d. A student used a different calibration curve to determine the mass of sugar in a 100.0 mL sample of Gatorade to be 6.95 g. How many grams sugar would be in a 12 oz. bottle of this Gatorade?

Answers

Answer 1

The mass of sugar in a 12 oz. bottle of Gatorade is approximately 2.47 grams, based on the given calibration curve and volume conversion.

To determine the mass of sugar in a 12 oz. bottle of Gatorade, we can use the information provided:

The student determined that the mass of sugar in a 100.0 mL sample of Gatorade is 6.95 g.1 L is equal to 33.8 oz.

First, we need to convert the volume of the 12 oz. bottle to liters:

12 oz * (1 L / 33.8 oz) = 0.355 L

Next, we can use the ratio of the mass of sugar in the 100.0 mL sample to calculate the mass of sugar in the 0.355 L bottle:

(6.95 g / 100.0 mL) * 0.355 L = 2.47 g

Therefore, there would be approximately 2.47 grams of sugar in a 12 oz. bottle of Gatorade.

To know more about the Gatorade refer here,

https://brainly.com/question/4512508#

#SPJ11

Complete question :

A student used a different calibration curve to determine the mass of sugar in a 100.0 mL sample of Gatorade to be 6.95 g. How many grams sugar would be in a 12oz. bottle of this Gatorade? 1 L = 33.8 oz.


Related Questions

Answer the following questions BEFORE the lab session and submit to your instructor upon entry into the lab. 1. What is the difference between a molecular formula and a structural formula?

Answers

A molecular formula reveals the types and quantities of atoms in a compound but lacks information about their arrangement. In contrast, a structural formula visually represents the connectivity and spatial arrangement of atoms within a molecule, offering a more detailed understanding of its structure.

A molecular formula is a concise representation of the types and numbers of atoms present in a molecule.

It provides information about the elemental composition of a compound but does not reveal the arrangement of atoms within the molecule.

For example, the molecular formula for glucose is [tex]C_6H_{12}O_6[/tex], indicating that it contains six carbon (C) atoms, twelve hydrogen (H) atoms, and six oxygen (O) atoms. However, it doesn't specify how these atoms are connected.

On the other hand, a structural formula provides more detailed information about the connectivity of atoms within a molecule.

It represents the bonds between atoms and the spatial arrangement of these bonds.

It gives a visual depiction of how the atoms are arranged and connected, providing a more comprehensive understanding of the molecule's structure.

Using the example of glucose, its structural formula shows how the carbon, hydrogen, and oxygen atoms are bonded together in a specific arrangement.

In summary, while a molecular formula provides information about the elemental composition of a compound, a structural formula goes further by illustrating the specific arrangement and connectivity of atoms within the molecule.

To know more about molecular formula refer here:

https://brainly.com/question/13064001#

#SPJ11

A precipitate forms when a solution of lead (iD) chloride is mixed with a solution of sodium hydroxide. Write the "formula" equation describing this chemical reaction.

Answers

The formula equation describing this chemical reaction is [tex]PbCl2 + 2NaOH \rightarrow Pb(OH)2 + 2NaCl[/tex].

When a solution of lead(II) chloride (PbCl2) is mixed with a solution of sodium hydroxide (NaOH), a chemical reaction occurs.

The formula equation for this reaction is [tex]PbCl2 + 2NaOH \rightarrow Pb(OH)2 + 2NaCl[/tex]. The reaction results in the formation of a precipitate, lead(II) hydroxide (Pb(OH)2), which appears as a solid. Sodium chloride (NaCl) remains dissolved in the solution.

This reaction demonstrates a double displacement reaction, where the positive ions of the reactants swap places to form new compounds.

To know more about chemical reaction refer here

https://brainly.com/question/22817140#

#SPJ11

which of the following statements correctly and most accurately describes the function of fad in the pyruvate dehydrogenase enzyme complex? a) nadh passes electrons to fad to form fadh2. b) lipoamide passes electrons through fadh2, which almost instantly passes them to nad thus forming nadh. c) fadh2 donates electrons to lipoamide thus regenerating fad. d) lipoamide oxidizes nadh to nad by passing electrons to fad. e) nad accepts electrons directly from lipoamide, which has gained them via oxidation of fadh2.

Answers

The correct statement that accurately describes the function of FAD in the pyruvate dehydrogenase enzyme complex is:

c) FADH₂ donates electrons to lipoamide, thus regenerating FAD.

Flavin adenine dinucleotide (FAD), which functions as a coenzyme in the pyruvate dehydrogenase enzyme complex, is essential to the catalytic process. When pyruvate is decarboxylated, FAD receives electrons and is reduced to FADH₂ . The oxidized form of FAD is then produced by FADH₂  transferring the electrons to lipoamide, an element of the enzyme complex.

The subsequent transfer of electrons to NAD⁺ (nicotinamide adenine dinucleotide) to create NADH, which functions as a carrier of electrons for other energy-producing events in the cell, is made possible by this electron transfer from FADH₂  to lipoamide.

The role of FAD in the pyruvate dehydrogenase enzyme complex is thus appropriately described by option c).

To know more about nicotinamide adenine dinucleotide:

https://brainly.com/question/31716054

#SPJ4

6. A 50mM Tris buffer of pH7.8 is sitting on the shelf at room temperature (22 ∘
C). What will be the pH of this Tris buffer if it is to be cooled and used in an experiment at 4 ∘
C ? 7. Using the graph that you plotted for glycine titration, what are the pKa values for glycine? Compare your values with those from the literature and other students. What are the percentage errors? 8. What is the pH at the isoelectric point of glycine?

Answers

The pH of a Tris buffer decreases when cooled, the pKa values for glycine can be determined by comparing with literature values, and the isoelectric point of glycine represents the pH with no net charge.

6. The pH of the Tris buffer will slightly decrease when cooled to 4 °C due to the temperature effect on the ionization constant of water. The exact pH change can be calculated using the Henderson-Hasselbalch equation.

7. The pKa values for glycine can be determined by analyzing the inflection points on the titration curve. Compare the calculated pKa values with the literature values and calculate the percentage errors to assess the accuracy of the experiment.

8. The isoelectric point of glycine is the pH at which it has no net charge. This occurs when the number of positive and negative charges on glycine is equal. The pH at the isoelectric point can be calculated based on the pKa values of its ionizable groups.

To know more about isoelectric point here: brainly.com/question/33738638

#SPJ11

The amount of I3−​(aq) in a solution can be determined by titration with a solution containing a known concentration of S2​O32−​( aq ) (thiosulfate ion). The determination is based on the net ionic equation 2 S2​O32−​(aq)+I3−​(aq)⟶S4​O62−​(aq)+3I−(aq) Given that it requires 35.5 mL of 0.360MNa2​ S2​O3​ (aq) to titrate a 20.0 mL sample of I3−​(aq), calculate the molarity of I3−​(aq) in the solution. [I3−​]= M

Answers

The amount of I3−​(aq) in a solution can be determined by titration with a solution containing a known concentration of S2​O32−​( aq ) (thiosulfate ion) the molarity of I3- in the solution is 0.319 M.

From the balanced net ionic equation, we can see that the ratio of S2O32- to I3- is 2:1. Therefore, for every 2 moles of S2O32- used, 1 mole of I3- is consumed.

Volume of Na2S2O3 solution used: 35.5 mL

Concentration of Na2S2O3 solution: 0.360 M

Volume of I3- solution: 20.0 mL

To find the moles of S2O32- used, we can use the equation:

moles S2O32- = concentration × volume

moles S2O32- = 0.360 M × 0.0355 L

moles S2O32- = 0.01278 mol

Since the molar ratio of S2O32- to I3- is 2:1, the moles of I3- is half the moles of S2O32- used:

moles I3- = 0.01278 mol / 2

moles I3- = 0.00639 mol

To calculate the molarity of I3-, we need to divide the moles of I3- by the volume of the I3- solution in liters:

molarity of I3- = moles I3- / volume of I3- solution

molarity of I3- = 0.00639 mol / 0.0200 L

molarity of I3- = 0.319 M

Therefore, the molarity of I3- in the solution is 0.319 M.

To know more about titration refer here:

https://brainly.com/question/31483031#

#SPJ11

what is the first precaution that you need to take for performing a grignard reaction? group of answer choices the reaction vessel needs to be pre-weighed. glassware needs to be dry! the magnesium (mg) metal needs to be accurately weighed. the bromobenzene needs to be accurately weighed. flag question: question 2 question 21 pts how will you achieve your first precaution for performing a grignard reaction? group of answer choices by having the weigh balance ready by having the magnesium (mg) ready by placing the glassware in an oven to dry by having the bromobenzene ready

Answers

To achieve this precaution, the correct option would be:

By placing the glassware in an oven to dry.

The first precaution that you need to take for performing a Grignard reaction is that the glassware needs to be dry.

To achieve this precaution, the correct option would be:

By placing the glassware in an oven to dry.

By placing the glassware in an oven to dry, you can remove any moisture or residual water present on the surface of the glassware, ensuring that it is dry before performing the Grignard reaction. This is important because moisture can react with the Grignard reagent and interfere with the reaction or even lead to undesired side reactions. Therefore, drying the glassware is an essential step to ensure the success of the Grignard reaction.

To know more about Grignard reagent :

https://brainly.com/question/17135014

#SPJ4

2. CCC Patterns Use the figure to compare the melting points of the metals in Groups 1
and 2. Describe the general pattern in the relationship between a metal's position in
these two groups and its melting point.

Answers

In Groups 1 and 2 of the periodic table, the melting points of metals generally decrease as you move down the group. This trend is known as a general pattern in the relationship between a metal's position in these groups and its melting point.

Group 1 consists of alkali metals (Li, Na, K, etc.), and Group 2 consists of alkaline earth metals (Be, Mg, Ca, etc.). As we move down these groups, the number of electron shells increases, and the atomic radius of the metals also increases. This increase in atomic radius leads to weaker metallic bonding between the atoms.

The melting point of a metal is influenced by the strength of the metallic bonds. Metallic bonding occurs when metal atoms share their outer electrons freely, forming a "sea" of delocalized electrons. These delocalized electrons are responsible for the high electrical conductivity and malleability of metals. The stronger the metallic bonding, the higher the melting point of the metal.

As we move down Groups 1 and 2, the increased atomic radius results in a greater distance between the metal ions in the crystal lattice. This increased distance weakens the metallic bonding, making it easier to break the bonds and convert the solid metal into a liquid state. Therefore, metals lower in Groups 1 and 2 have lower melting points compared to metals higher up in the groups.

Additionally, the increased number of electron shells also leads to greater shielding of the outer electrons from the positive charge of the nucleus. This reduced attraction between the outer electrons and the nucleus further contributes to the weaker metallic bonding and lower melting points as we move down the groups.

In summary, the general pattern in the relationship between a metal's position in Groups 1 and 2 and its melting point is that the melting points decrease as we move down the groups due to the increasing atomic radius, weaker metallic bonding, and reduced attraction between the outer electrons and the nucleus.

for more questions on periodic table

https://brainly.com/question/15255548

#SPJ8

6. A reaction has an equilibrium constant of 9.1×10 2
at 298 K. At 600 K, the equilibrium constant is 0.84. Find Δ r

H ∘
for the reaction.

Answers

At 298 K (K1 = 9.1×10^2), ΔrH° for the reaction is approximately 867.67 J/mol (or 0.868 kJ/mol).

To find ΔrH° for the reaction, we can use the Van 't Hoff equation, which relates the equilibrium constant to the change in enthalpy with temperature:

ln(K2/K1) = (-ΔrH°/R) * (1/T2 - 1/T1)

Given that K1 = 9.1×10^2 at T1 = 298 K and K2 = 0.84 at T2 = 600 K, we can solve for ΔrH°.

ln(0.84/9.1×10^2) = (-ΔrH°/R) * (1/600 K - 1/298 K)

Simplifying the equation and plugging in the values:

-0.172 = (-ΔrH°/R) * (0.001677 K⁻¹)

Assuming R = 8.314 J/(mol·K), we can rearrange the equation to solve for ΔrH°:

ΔrH° = -0.172 * (-8.314 J/(mol·K)) / (0.001677 K⁻¹)

ΔrH° ≈ 867.67 J/mol or 0.868 kJ/mol.

To know more about enthalpy, click here:

brainly.com/question/32882904

#SPJ11

Which statement defines the heat capacity of a sample?
the temperature of a given sample
the temperature that a given sample can withstand
the quantity of heat that is required to raise the sample’s temperature by 1°C (or Kelvin)
the quantity of heat that is required to raise 1 g of the sample by 1°C (or Kelvin) at a given pressure

Answers

Answer:

Explanation:4

What volume of water (in mL) is required to react with 28.18 g
of calcium metal to produce calcium hydroxide and hydrogen gas?
(Density H2O = 1.0 g/cm3)

Answers

The volume of water required to react with 28.18 g of calcium metal to produce calcium hydroxide and hydrogen gas is approximately 1.406 mL.

The balanced equation for the reaction is:

Ca + 2 H₂O → Ca(OH)₂ + H₂

From the equation, we can see that the stoichiometric ratio between calcium (Ca) and water (H₂O) is 1:2. This means that for every 1 mol of calcium, we need 2 moles of water.

To calculate the volume of water, we need to convert the given mass of calcium into moles. The molar mass of calcium is 40.08 g/mol.

Moles of calcium = (28.18 g) / (40.08 g/mol) ≈ 0.703 mol Ca

Since the stoichiometric ratio is 1:2, the moles of water required will be double the moles of calcium.

Moles of water = 2 × 0.703 mol Ca = 1.406 mol H₂O

Now, to convert the moles of water into volume, we need to use the density of water. Since the density of water is 1.0 g/cm³, 1 mL of water is equal to 1 g.

Volume of water = 1.406 mol H₂O ≈ 1.406 mL

learn more about moles here:

https://brainly.com/question/28239680

#SPJ11

Experiments were performed for the reaction: D + 2 G → L. Use
the data to determine the orders of each of the reactants.
Experiment initial conc
of D initial conc of G initial rate

Answers

The order of reaction in each of the reactants can be seen from the equation of the reaction as shown;

D = First order

G = Second order

What is the order of reaction?

The order of a reaction can be determined experimentally by conducting a series of reaction rate experiments with varying initial concentrations of the reactants.

The order is represented by a positive integer or zero, known as the reaction order. The reaction order is determined separately for each reactant and can be classified into three types: zero order, first order, and second order.

Learn more about order of reaction:https://brainly.com/question/31609774


#SPJ4

An unknown compound has the following composition, by mass: 46.2% C, 5.17% H, and 48.7% F. The molar mass of the compound is experimentally determined to be 468 g/mol. Determine the empirical and molecular formulas for this compound.

Answers

The empirical formula of the compound is CF₂, and the molecular formula is C₂F₄.

To determine the empirical formula, we need to find the simplest whole-number ratio of the elements present in the compound.

Given the mass percentages of carbon (C), hydrogen (H), and fluorine (F), we can assume a 100g sample of the compound to make calculations easier.

1. Convert the mass percentages to grams:

- Carbon (C): 46.2g

- Hydrogen (H): 5.17g

- Fluorine (F): 48.7g

2. Convert the grams of each element to moles using their molar masses:

- Carbon (C): 46.2g / 12.01 g/mol = 3.849 mol

- Hydrogen (H): 5.17g / 1.008 g/mol = 5.13 mol

- Fluorine (F): 48.7g / 18.99 g/mol = 2.564 mol

3. Determine the simplest whole-number ratio of the moles by dividing each by the smallest mole value:

- Carbon (C): 3.849 mol / 2.564 mol = 1.5 ≈ 1

- Hydrogen (H): 5.13 mol / 2.564 mol = 2 ≈ 2

- Fluorine (F): 2.564 mol / 2.564 mol = 1

The empirical formula of the compound is CF₂.

To determine the molecular formula, we need to know the molar mass of the compound. Given that it is 468 g/mol, we can divide it by the empirical formula mass (CF₂) to find the molecular formula ratio:

Molecular formula ratio = 468 g/mol / (12.01 g/mol + 18.99 g/mol * 2) ≈ 468 g/mol / 50.99 g/mol ≈ 9.17

Round the molecular formula ratio to the nearest whole number:

Molecular formula ratio ≈ 9

Multiply the empirical formula by the molecular formula ratio:

Empirical formula (CF₂) * Molecular formula ratio (9) = C₂F₄

learn more about empirical formula here:

https://brainly.com/question/14044066

#SPJ11

What do we mean by c8 columns? None of the above The column contains eight carbons by lonic bonded The column contains eight carbons by covalent bond The column contains phenyl group by covalent bond

Answers

C8 columns refer to chromatography columns that contain a stationary phase consisting of hydrocarbon chains with eight carbon atoms. c8 columns means none of the given options. The correct answer is (d) None of the above.

C8 columns refer to chromatography columns that contain a stationary phase consisting of hydrocarbon chains with eight carbon atoms. These carbon chains are typically covalently bonded to a solid support material.

The C8 designation represents the length and composition of the hydrocarbon chains in the stationary phase.

These columns are commonly used in chromatography techniques, such as reversed-phase liquid chromatography, where nonpolar compounds are separated based on their interactions with the hydrophobic stationary phase.

The C8 stationary phase provides moderate retention for analytes with different polarities, allowing for effective separation.

The statement about ionic bonding or the presence of a phenyl group is not applicable to C8 columns.

To know more about column chromatography, refer here:

https://brainly.com/question/32298002#

#SPJ11

Which of these sequences is complimentary to the DNA strand 5 ′
T-G-C-C-A-TC 3'? 3' A-C-G-G-T-A-G 5′
3' A-C-G-C-T-U-G 5' 3' U-C-C-G-T-T-G 5′
3′ T−G−G−C−A−A−C5 ′

Answers

Option A: 3' A-C-G-G-T-A-G 5′ is the complimentary sequence to the DNA strand 5′T-G-C-C-A-T-C 3'.

In DNA, the bases adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). So, for the given DNA strand, each base is paired with its complementary base to form the double-stranded DNA molecule.  The complementary sequences of DNA form a DNA double helix. These sequences are also referred to as palindromes because they read the same on left and right.

In the DNA double helix structure, two DNA strands are held together by hydrogen bonds between the complementary bases. The two strands run in opposite directions and are twisted around each other to form a helical structure. The complementary base pairing ensures the stability and integrity of the DNA molecule.

To know more about base pairs, refer:

https://brainly.com/question/14849727

#SPJ4

Correct question:

Which of these sequences is complimentary to the DNA strand 5′T-G-C-C-A-TC 3'?

3' A-C-G-G-T-A-G 5′

3' A-C-G-C-T-U-G 5'

3' U-C-C-G-T-T-G 5′

3′ T−G−G−C−A−A−C5 ′

A student performed this experiment and obtained the following concentration values: 0.01490 M, 0.01517 M, and 0.01461 M. a. What is the mean concentration? M b. What is the standard deviation of these results?

Answers

The mean concentration of the experiment's results, measured at 0.01490 M, 0.01517 M, and 0.01461 M, is calculated to be 0.01489 M. The standard deviation of the measurements is approximately 0.0002915 M.

To calculate the mean concentration, we sum up all the concentration values and divide by the number of measurements. In this case, the student obtained three concentration values: 0.01490 M, 0.01517 M, and 0.01461 M.

Mean concentration (M) = (0.01490 M + 0.01517 M + 0.01461 M) / 3 = 0.04468 M / 3 = 0.01489 M

Therefore, the mean concentration is 0.01489 M.

To calculate the standard deviation, we need to determine the variability of the individual data points from the mean concentration. The formula for the sample standard deviation is as follows:

Standard deviation = √(Σ(xi - x_bar)² / (n - 1))

Where:

- xi represents each concentration value

- x_bar is the mean concentration

- n is the number of measurements

Substituting the values, we get:

Standard deviation = √[((0.01490 - 0.01489)² + (0.01517 - 0.01489)² + (0.01461 - 0.01489)²) / (3 - 1)]

= √[(0.00000001 + 0.00000008 + 0.00000008) / 2]

= √(0.00000017 / 2)

= √0.000000085

= 0.0002915

Therefore, the standard deviation of the results is approximately 0.0002915 M.

To know more about concentration refer here:

https://brainly.com/question/30824831#

#SPJ11

Consider the reaction 2SO2​( g)+O2​( g)⟶2SO3​( g) Using the standard thermodynamic data in the tables linked above, calculate ΔGrxn​ for this reaction at 298.15 K if the pressure of each gas is 21.40 mmHg.

Answers

ΔGrxn​ for reaction at 298.15 K if the pressure of each gas is 21.40 mmHg is -142.2 kJ/mol.

For calculating ΔGrxn​ (change in Gibbs free energy) for the given reaction at 298.15 K and a pressure of 21.40 mmHg for each gas, we can use the equation:

ΔGrxn​ = ΔG°rxn + RT * ln(Q)

Where:

ΔGrxn​ is the change in Gibbs free energy for the reaction

ΔG°rxn is the standard Gibbs free energy change for the reaction

R is the gas constant (8.314 J/(mol·K))

T is the temperature in Kelvin (298.15 K)

ln(Q) is the natural logarithm of the reaction quotient (Q)

First, let's find ΔG°rxn using the standard thermodynamic data. The standard Gibbs free energy change for the reaction can be obtained from the difference in standard Gibbs free energies of the products and reactants:

ΔG°rxn = ΣnΔG°f(products) - ΣnΔG°f(reactants)

Using the thermodynamic data from the tables, we have:

ΔG°f(SO2) = -300.4 kJ/mol

ΔG°f(O2) = 0 kJ/mol

ΔG°f(SO3) = -371.5 kJ/mol

ΔG°rxn = (2 * ΔG°f(SO3)) - (2 * ΔG°f(SO2) + ΔG°f(O2))

       = (2 * -371.5 kJ/mol) - (2 * -300.4 kJ/mol + 0 kJ/mol)

       = -743 kJ/mol + 600.8 kJ/mol

       = -142.2 kJ/mol

Next, we need to calculate the reaction quotient (Q) using the given pressures. Since we are dealing with gases, we can use the partial pressures to calculate Q:

Q = (P(SO3))^2 / (P(SO2))^2 * P(O2)

P(SO3) = 21.40 mmHg

P(SO2) = 21.40 mmHg

P(O2) = 21.40 mmHg

Q = (21.40 mmHg)^2 / (21.40 mmHg)^2 * (21.40 mmHg)

 = 1

Now, we can substitute the values into the equation to calculate ΔGrxn​:

ΔGrxn​ = ΔG°rxn + RT * ln(Q)

       = -142.2 kJ/mol + (8.314 J/(mol·K) * 298.15 K) * ln(1)

       = -142.2 kJ/mol

Therefore, ΔGrxn​ for the given reaction at 298.15 K and a pressure of 21.40 mmHg for each gas is approximately -142.2 kJ/mol.

To know more about gibbs free energy refer here:

https://brainly.com/question/13795204?#

#SPJ11

3 Cu + 8HNO3 → 3 Cu(NO3)2 + 2 NO + 4 H2O

In the above equation, how many grams of water can be made when 16.6 moles of HNO3 are consumed?



Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0

Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:

Element Molar Mass
Hydrogen 1
Nitrogen 14
Copper 63.5
Oxygen 16

Answers

The balanced equation for the reaction between copper and nitric acid is:3 Cu + 8 HNO3 → 3 Cu(NO3)2 + 2 NO + 4 H2OThe above equation is balanced, meaning that there are equal numbers of atoms of each element in the reactants and products.

The coefficients in the equation tell us the ratio in which the reactants combine and the ratio in which the products are produced.Copper (Cu) reacts with nitric acid (HNO3) to produce copper nitrate (Cu(NO3)2), nitrogen monoxide (NO), and water (H2O).Balancing the equation: The equation can be balanced by adding coefficients in front of the formulas of the reactants and products. In this case, we need to add coefficients of 3 and 8 to the formulas of Cu and HNO3, respectively. This will give us 3 atoms of copper and 24 atoms of hydrogen on both sides of the equation.The balanced equation is:3 Cu + 8 HNO3 → 3 Cu(NO3)2 + 2 NO + 4 H2ONumber of oxygen atoms in the equationTo determine the number of oxygen atoms in the equation, we need to count the number of atoms of oxygen in the formulas of all the reactants and products. Here, we have 8 atoms of oxygen in 8 molecules of HNO3, and 12 atoms of oxygen in 3 molecules of Cu(NO3)2. So the total number of oxygen atoms in the equation is:8 × 3 + 12 = 36Hence, there are 36 atoms of oxygen in the equation.

For such more question on coefficients

https://brainly.com/question/1038771

#SPJ8

For which of the below reactions does the enthalpy of reaction equal the enthalpy of formation of \( \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \) ? a. \( 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarro

Answers

The reaction that has the enthalpy of reaction equal to the enthalpy of formation of H₂SO₄(l) is option e. H₂SO₄(I) → O₂(g) + H₂(g) + S₈(s). In this reaction, the enthalpy change of formation of H₂SO₄ is equal to the enthalpy change of reaction.

Enthalpy of formation is the enthalpy change when one mole of a compound is formed from its constituent elements in their standard states.

The enthalpy change of formation for H₂SO₄(l) is the enthalpy of reaction in this case. Among the given options, only option e shows the formation of H₂SO₄ from its constituent elements (H₂, O₂, and S₈).

Thus, the enthalpy of reaction in option e is equal to the enthalpy of formation of H₂SO₄.

To know more about enthalpy of formation, refer here:

https://brainly.com/question/30761452#

#SPJ11

A precipitate forms when a solution of lead (II) chioride is mixed with a solution of sodium hydroxide. Write the "net ionic" equation describing this chemical reaction. Edit View insert format Tools

Answers

When a solution of lead (II) chloride is mixed with a solution of sodium hydroxide, a precipitate is formed. The net ionic equation of the chemical reaction that describes this process is given below: [tex]$$\ce{Pb^2+(aq) + 2OH^- (aq) -> Pb(OH)2(s)}$$[/tex]

Note that the net ionic equation represents only the chemical species that undergo chemical changes during the process. Hence, spectator ions are not included in the net ionic equation.In the given chemical reaction, Lead (II) chloride reacts with sodium hydroxide to form lead (II) hydroxide (a precipitate) and sodium chloride.

The balanced chemical equation for this reaction is as follows:[tex]$$\ce{PbCl2 (aq) + 2NaOH (aq) -> Pb(OH)2 (s) + 2NaCl (aq)}$$[/tex] Lead (II) chloride is a salt that is soluble in water, meaning it dissociates into its respective ions. It dissociates as follows[tex]:$$\ce{PbCl2(s) -> Pb^2+(aq) + 2Cl^- (aq)}$$[/tex]

Sodium hydroxide, on the other hand, also dissolves in water, forming sodium and hydroxide ions. It dissociates as follows:[tex]$$\ce{NaOH (aq) -> Na^+ (aq) + OH^- (aq)}$$[/tex]

Therefore, when a solution of lead (II) chloride is mixed with a solution of sodium hydroxide, the following reaction takes place:[tex]$$\ce{Pb^2+ (aq) + 2Cl^- (aq) + 2Na^+ (aq) + 2OH^- (aq) -> Pb(OH)2(s) + 2Na^+ (aq) + 2Cl^- (aq)}$$[/tex]

By canceling out spectator ions that appear on both sides, the net ionic equation is obtained, which is as follows:[tex]$$\ce{Pb^2+(aq) + 2OH^- (aq) -> Pb(OH)2(s)}$$[/tex]

To know more about net ionic equation refer here :

https://brainly.com/question/13887096#

#SPJ11

What hybrid atomic orbitals are overlapping to form the carbon-oxygen sigma bond in acetone CH3COCH3
1b) What hybrid atomic orbitals are overlapping to form the carbon-oxygen pi bond in acetone CH3COCH3

Answers

1a. The carbon-oxygen sigma bond in acetone CH3COCH3 is formed by the overlap of the sp2 hybridized orbitals of the carbon atom and the sp3 hybridized orbitals of the oxygen atom.

The carbon atom in acetone is sp2 hybridized, which means that it has hybridized its 2s orbital and 2 of its 2p orbitals to form 3 sp2 orbitals.

The sp2 orbitals are arranged in a trigonal planar configuration, and they are used to form the 3 sigma bonds between the carbon atom and the hydrogen atoms in the methyl groups.

The oxygen atom in acetone is sp3 hybridized, which means that it has hybridized its 2s orbital and all 3 of its 2p orbitals to form 4 sp3 orbitals.

The sp3 orbitals are arranged in a tetrahedral configuration, and they are used to form the 4 sigma bonds between the oxygen atom and the hydrogen atoms in the methyl group and the carbon atom in the carbonyl group.

The carbon-oxygen sigma bond is formed by the overlap of the p[tex]z[/tex] orbital of the carbon atom and the p[tex]z[/tex] orbital of the oxygen atom.

The p[tex]z[/tex]orbitals are the p orbitals that are perpendicular to the plane of the molecule. The overlap of these orbitals creates a sigma bond that is strong and directional.

1b. The carbon-oxygen pi bond in acetone CH3COCH3 is formed by the overlap of the p[tex]x[/tex] and p[tex]y[/tex] orbitals of the carbon atom and the px and py orbitals of the oxygen atom.

The p[tex]x[/tex] and p[tex]y[/tex] orbitals are the p orbitals that are parallel to the plane of the molecule. The overlap of these orbitals creates a pi bond that is weaker and less directional than a sigma bond.

The pi bond in acetone is responsible for the double bond between the carbon and oxygen atoms. The sigma bond is responsible for the single bond between the carbon and oxygen atoms.

To learn more about sigma bond click here; brainly.com/question/31659836

#SPJ11

 

A \( 15.0 \) L cylinder contains a gas with a pressure of \( 3.73 \) atms when held at a temperature of \( 35.00{ }^{\circ} \mathrm{C} \). How many moles of gas are held in the container? \( 0.670 \)

Answers

The number of moles of gas held in the container is approximately 0.670 moles.

To find the number of moles of gas, we can use the ideal gas law equation: PV = nRT

Where:

P = pressure of the gas (in atm)

V = volume of the gas (in liters)

n = number of moles of gas

R = ideal gas constant (0.0821 L·atm/mol·K)

T = temperature of the gas (in Kelvin)

First, we need to convert the given temperature from Celsius to Kelvin by adding 273.15:

\( T = 35.00 + 273.15 = 308.15 \) K

Plugging the given values into the ideal gas law equation:

\( 3.73 \) atm × \( 15.0 \) L = \( n \) × \( 0.0821 \) L·atm/mol·K × \( 308.15 \) K

Simplifying the equation:

\( 55.95 \) = \( n \) × \( 25.325815 \)

Solving for \( n \):

\( n = \frac{55.95}{25.325815} \approx 0.670 \) moles

Therefore, the number of moles of gas held in the container is approximately 0.670 moles.

To learn more about  number of moles here:

https://brainly.com/question/20370047

#SPJ11

In a 10 gram geological sample an experiment was conducted and the sample was serially diluted 1000 times. Calculate the BPG for the sample if there are 100 CFU's present. Also state whether the sample Is contaminated or not? (2) Also, if any similar 3 another Experiments if BPG are 12000,24000, 55000. Then can you predict in which phase the microbes are in the 4th experiment.

Answers

Regarding the prediction of the microbial phase in the fourth experiment based on the BPG values from the previous three experiments (BPG: 12000, 24000, 55000), it is not possible to make a direct prediction of the microbial phase.

To calculate the BPG (Most Probable Number) for the sample, we need to know the dilution factor used at each step of the serial dilution. However, in this case, we have been given the final dilution, which is 1000 times.

The BPG can be calculated using the formula:

BPG = Number of positive wells / Total number of wells

In this scenario, if the sample was serially diluted 1000 times and there are 100 CFUs (Colony-Forming Units) present, it means that the CFUs are present in the last dilution, which is 1 in 1000.

So, the number of positive wells would be 1 (since the CFUs are present) and the total number of wells would be 1000.

BPG = 1/1000 = 0.001

Now, to determine if the sample is contaminated or not, we need to compare the BPG value to the acceptable threshold for contamination. The threshold for contamination varies depending on the specific experiment, industry, or guidelines being followed. Without this information, it is not possible to determine if the sample is contaminated or not.

The BPG value alone does not provide information about the specific phase of microbial growth. Additional information about the growth conditions, duration of the experiments, and specific microorganisms being studied would be necessary to make predictions about the microbial phase in the fourth experiment.

To know more about microbial growth, refer:

https://brainly.com/question/14301939

#SPJ4

what challenges do the three industries have in making better batteries? What solutions are being suggested?

Answers

The three industries facing challenges in improving battery technology are the automotive, electronics, and renewable energy sectors. In automotive, the main hurdle is the limited range and long charging times of electric vehicles (EVs).

The electronics industry grapples with the need for smaller, more efficient batteries to power devices with increasing energy demands. Renewable energy requires high-capacity and cost-effective batteries for grid-scale storage.Suggested solutions involve advancements in battery materials and manufacturing processes. Research focuses on developing higher energy density materials, such as lithium-sulfur or solid-state batteries. Improving battery lifespan and fast-charging capabilities is also crucial. Additionally, efforts are directed towards recycling and sustainability, as battery production involves resource-intensive mining. Collaborations between academia, industry, and governments are essential for funding research, supporting innovation, and establishing standards for safety and performance. Ultimately, these combined efforts aim to overcome the challenges and pave the way for better batteries to power our future.

For such more question on technology

https://brainly.com/question/24208298

#SPJ8

All organic compounds contain carbon and hydrogen. They can also include nitrogen, phosphorus, sulfur, oxygen and halogens (fluorine, chlorine, bromine and iodine). If there are charged entities, there may also be associated cations (sodium, calcium, and potassium). Provide the electron configuration and the number of valence shell electrons for each of the following elements (note that some of them are charged!). a. Oxygen electron configuration: H val. shell electrons: b. Fluorine electron configuration: # val. shell electrons: c. Cl −
electron configuration: # val. shell electrons: d. Magnesium electron configuration: # val. shell electrons: e. Mg g

+ electron configuration: # val. shell electrons:

Answers

In the electron configurations provided, the superscript numbers represent the number of electrons present in each energy level (shell), while the valence shell electrons refer to the electrons present in the outermost energy level (valence shell).umber of electrons present in each energy level (shell), while the valence shell electrons refer to the electrons present in the outermost energy level (valence shell).

a. Oxygen:

Electron configuration: 1s^2 2s^2 2p^4

Number of valence shell electrons: 6

b. Fluorine:

Electron configuration: 1s^2 2s^2 2p^5

Number of valence shell electrons: 7

c. Cl^-

Electron configuration: 1s^2 2s^2 2p^6 3s^2 3p^6

Number of valence shell electrons: 8

d. Magnesium:

Electron configuration: 1s^2 2s^2 2p^6 3s^2

Number of valence shell electrons: 2

e. Mg^2+

Electron configuration: 1s^2 2s^2 2p^6

Number of valence shell electrons: 0

To learn more about electron configurations click here: brainly.com/question/26084288

#SPJ11

A black mineral is really shiny but you not sure if its a metallic or non-metallic luster but it leaves a white to very pale gray streak, is barely able to scratch glass, you're not sure it it has cleavage or not but there are some small flat faces, looks splintery (like wood grain) is -biotite -calcium plagioclase feldspar -augite -potassium feldspar (K-spar_ -sodium plagioclase feldspar -hornblende -quartz -muscovite

Answers

Among the given options, muscovite is the best match for the described mineral characteristics.

Based on the given observations, the mineral that fits the description is "muscovite." Here's why:

Metallic or non-metallic luster: Muscovite typically exhibits a non-metallic luster. It appears shiny, but without a metallic reflection.

Streak color: Muscovite has a white to very pale gray streak, which matches the description provided.

Hardness: Muscovite has a hardness of around 2.5 to 3 on the Mohs scale, which means it is barely able to scratch glass.

Cleavage: Muscovite has excellent basal cleavage, which means it tends to break along flat, thin sheets or layers.

Splintery appearance: Muscovite often displays a splintery or micaceous appearance due to its characteristic sheet-like structure, resembling wood grain.

To know more about minerals, refer:

https://brainly.com/question/26705337

#SPJ4

What is the pressure (in bars) exerted by 1.00 mol of CH4(g) that
occupies a 250-mL container at 0 ° C? Assume methane is an ideal
gas in this case. (R = 0.082058 L- atm/K-mol = 8.3145 J/K-mol; 1
atm

Answers

The pressure exerted by 1.00 mol of CH4(g) that occupies a 250-mL container at 0°C is 6.834 bar.

In this problem, we have to find the pressure (in bars) exerted by 1.00 mol of CH4(g) that occupies a 250-mL container at 0°C. Let us first find the volume of 1 mol of CH4(g) using the ideal gas law: PV = nRT whereP = pressureV = volume of gasn = number of moles R = gas constantT = temperature of the gas in kelvins

The given conditions are:

P = unknown

V = 250 mL

= 0.250 L (since 1 L = 1000 mL)n

= 1 mol

R = 0.082058 L-atm/K-mol (gas constant)

T = 0°C = 273 K (since 0°C = 273 K)

Therefore, PV = nRT becomes P(0.250)

= (1)(0.082058)(273)

Solving for P, we get:

P = 6.7412 atm Since the pressure is given in bars, we have to convert the pressure from atm to bars using the conversion factor: 1 atm = 1.01325 bar

P (in bars) = 6.7412 atm x (1.01325 bar/1 atm)

P = 6.834 bar (rounded to 3 significant figures)

To know more about pressure  visit:-

https://brainly.com/question/30673967

#SPJ11

5. A student performs a dilution by taking 5.00- mL of an unknown stock solution of acetic acid and diluting it with water to a volume of 250.0−mL. The diluted solution was found to bare a molarity of 0.07996M. Calculate the molarity of the unknown stock solution of acetic acid.

Answers

The molarity of the unknown stock solution of acetic acid is approximately 3.998 M.

The molarity of the unknown stock solution of acetic acid, we can use the equation for dilution:

M1V1 = M2V2

Where:

M1 = initial molarity of the stock solution

V1 = initial volume of the stock solution

M2 = final molarity of the diluted solution

V2 = final volume of the diluted solution

Let's assign the given values:

M1 = unknown

V1 = 5.00 mL

M2 = 0.07996 M

V2 = 250.0 mL

First, we need to convert the volumes to liters:

V1 = 5.00 mL * (1 L / 1000 mL)

V1 = 0.00500 L

V2 = 250.0 mL * (1 L / 1000 mL)

V2 = 0.2500 L

Now, we can plug the values into the dilution equation:

M1 * V1 = M2 * V2

M1 = (M2 * V2) / V1

M1 = (0.07996 M * 0.2500 L) / 0.00500 L

Calculating the value of M1 will give us the molarity of the unknown stock solution of acetic acid.

Note: Ensure that the units used are consistent throughout the calculation (e.g., liters for volume).

To know more about molarity refer here

https://brainly.com/question/8823627#

#SPJ11

Show how you can synthesize 3-methyl-2-butanone from ethyl
acetoacetate. Provide all of the necessary reagents.

Answers

To synthesize 3-methyl-2-butanone from ethyl acetoacetate, the necessary reagents are sodium ethoxide and methyl iodide.

The synthesis of 3-methyl-2-butanone from ethyl acetoacetate involves the alkylation of the enolate ion formed from ethyl acetoacetate with methyl iodide. The enolate ion is generated by treating ethyl acetoacetate with a strong base, sodium ethoxide (C₂H₅ONa).

Here are the steps of the synthesis:

1. Prepare the enolate ion: Add sodium ethoxide (C₂H₅ONa) to ethyl acetoacetate, which results in the deprotonation of the α-hydrogen, forming the enolate ion.

2. Alkylation: Add methyl iodide (CH₃I) to the reaction mixture containing the enolate ion. The enolate ion acts as a nucleophile and attacks the methyl iodide, resulting in the substitution of the iodine atom with the enolate group.

3. Acid work-up: After the alkylation reaction, the resulting product, 3-methyl-2-butanone, can be isolated by performing an acid work-up. This step involves the addition of a dilute acid, such as hydrochloric acid (HCl), to neutralize the reaction mixture.

Overall, the reaction can be summarized as follows:

Ethyl acetoacetate + Sodium ethoxide → Enolate ion

Enolate ion + Methyl iodide → 3-methyl-2-butanone

By using sodium ethoxide and methyl iodide, we can successfully synthesize 3-methyl-2-butanone from ethyl acetoacetate.

learn more about enolate ion here:

https://brainly.com/question/15853875

#SPJ11

Give formula and name of the compound you would expect if Fe+3 and Cr₂072 were to combine.

Answers

When [tex]Fe^{3+}[/tex] and [tex]Cr_2O_7^{2-}[/tex] combine, they undergo a redox reaction, resulting in the formation of iron(II) chromate ([tex]FeCr_2O_4[/tex]). This compound consists of two [tex]Fe^{2+}[/tex] ions and one [tex]Cr^{3+}[/tex] ion, with iron's oxidation state being +2 and chromium's oxidation state being +3.

When [tex]Fe^{3+}[/tex]and [tex]Cr_2O_7^{2-}[/tex] combine, they undergo a redox reaction to form a compound. The oxidation state of Fe is +3, while the oxidation state of Cr in [tex]Cr_2O_7^{2-}[/tex] is +6. To balance the charges, two [tex]Fe^{3+}[/tex] ions are needed for every [tex]Cr_2O_7^{2-}[/tex] ion.

The balanced chemical equation for the reaction is as follows:

[tex]6Fe^{3+} + Cr_2O_7^{2-} -- > 6Fe^{2+} + 2Cr^{3+}[/tex]

In this reaction, [tex]Fe^{3+}[/tex] is reduced to [tex]Fe^{2+}[/tex] by gaining three electrons, while [tex]Cr_2O_7^{2-}[/tex] is reduced to [tex]Cr^{3+}[/tex] by losing three electrons.

The compound formed as a result of this reaction is iron(II) chromate, with the chemical formula [tex]FeCr_2O_4[/tex]. It consists of two [tex]Fe^{2+}[/tex] ions and one [tex]Cr^{3+}[/tex] ion. The ratio of Fe to Cr is 2:1, and the oxidation state of iron is +2, while the oxidation state of chromium is +3.

Iron(II) chromate is a brownish solid that is sparingly soluble in water. It is used in pigments and as a corrosion inhibitor.

To know more about redox reaction refer here:

https://brainly.com/question/28300253#

#SPJ11

you balanced the equation. You must show your work to receive full credit. H 2

O 2

(I)+ClO 2

(aq)→ClO 2
−1

(aq)+O 2

(g)

Answers

The balanced equation for the reaction is:

2H2O2(aq) + ClO2(aq) -> ClO2-1(aq) + O2(g)

To balance the equation, we need to ensure that the number of atoms of each element is the same on both sides of the equation.

Let's start with the hydrogen atoms (H). There are 2 hydrogen atoms on the left side and 4 hydrogen atoms on the right side due to the coefficient 2 in front of H2O2.

To balance the hydrogen atoms, we need to put a coefficient of 2 in front of H2O2 on the left side:

2H2O2(aq) + ClO2(aq) -> ClO2-1(aq) + O2(g)

Now, let's balance the oxygen atoms (O). There are 4 oxygen atoms on the left side (2 from H2O2 and 2 from ClO2) and 4 oxygen atoms on the right side (2 from ClO2-1 and 2 from O2). The oxygen atoms are already balanced.

Finally, let's balance the chlorine atom (Cl). There is 1 chlorine atom on the left side (from ClO2) and 1 chlorine atom on the right side (from ClO2-1). The chlorine atom is already balanced.

Therefore, the balanced equation is:

2H2O2(aq) + ClO2(aq) -> ClO2-1(aq) + O2(g)

To know more about "Balanced equation" refer here:

https://brainly.com/question/10733032#

#SPJ11

Other Questions
X Let X and Y be independent random variables and distributed as Uniform distribution on the interval (0,2). Derive the probability density function of V=x/y using the transformation technique. Show your work clearly on Y a) defining your new random variables, b) getting the Jacobian transformation, c) obtaining the new space of your random variables on the graph, d) finding the joint probability density function and the probability density function of the random variable V. Discuss the evolution of Voltage used and Clock rate in CPU during the last 30 years. (At least 5 lines of text) Calculate bond price if the coupon payment is 7%, yield for the bond is 3%, bond's face value is 1,000 and matures in 3, if paid semi-annually (Enter the answer in dollar format without $ sign or thousands comma -> 3519.23 and not $3,519.23 or 3,519.23) Question 2 1 pts Calculate the annual coupon payment if the semi-annual coupon paying bond price is $803, the yield for the bond is 5%, the bond's face value is $1,000 and matures in 6 years. (Enter the answer in dollar format without $ sign or thousands comma -> 3519.23 and not $3,519.23 or 3,519.23) How many border in the world??? For the average age, form a 95% confidence interval:o What distribution should be used?o What is the critical value?o What is the error bound?o What is the lower bound?o What is the upper bound? James Blunt is a model employee. He has not missed a day of work in the last five years. He even forfeits his vacation time to make sure that things run smoothly. James literally does the work of two people. He started out working as the purchasing agent in charge of buying raw materials for a small manufacturing company. Approximately five years ago the inventory control agent in the receiving department resigned. James agreed to resume the duties of the control agent until a replacement could be hired. After all, James said that he knew what was supposed to be delivered to the company because as the purchasing agent he had been the person who placed orders for the inventory purchases. James did such a good job that the company never got around to hiring a replacement. James received the employee of the year award five out of the last six years. James is also very active in his community. He works with underprivileged children. His weekends are always filled with community service. Indeed, his commitment to social consciousness is described by some people as bordering on fanatical.James recently had a serious heart attack. People said that he had overworked himself. His hospital room was filled with flowers and steady stream of friends visited him. So, people were in shock when James was charged with embezzlement. Ultimately, it was revealed that while James was in the hospital his replacement discovered that James had been purchasing excess quantities of raw materials. He then sold the extra materials and kept the money for himself. This became apparent when the companies to whom James had been selling the excess called to place new orders. It was difficult to determine the extent of the embezzlement. After the accounting department paid for James's excess purchases, he would remove the paid voucher forms from the accounting files and destroy them. Since the forms were not numbered, it was impossible to determine how many of the paid forms were missing. At his trial, James's only explanation was: "I did it for the children. They needed the money far more than the company needed it."Required:If the internal control procedures have been followed, this embezzlement could have been avoided. Name the internal control practices and co- relate with Standards of Ethical Conducts that were violated in this case.Make recommendations on the company and on the person involve how to avoid and solve this kind of endeavor. balance the equand show your work. thank you1. Balance the following reactions (show your work): a) \( +\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \) \( \mathrm{CO}_{2}+ \) \( \mathrm{H}_{2} \mathrm{O} \) Which of the following describes the compound SOCl 2? Choose all answers that apply. If the compound dissolved in water, it would be expected to be a strong electrolyte. The compound would be expected to have a relatively high melting point. The compound would be expected to have a relatively low melting point. The compound is molecular. The compound is ionic. Which of the following pairs of functions are inverses of each other?12O A. f(x)=2-18 and g(x)= x+18O B. f(x)=+10 and g(x) = 4x-10 C. f(x)=2x +9 and g(x)=3--9D. f(x)-6x -7 and g(x)=x +7 question content area the charter of a corporation provides for the issuance of 119,264 shares of common stock. assume that 40,706 shares were originally issued and 4,465 were subsequently reacquired. what is the amount of cash dividends to be paid if a $2-per-share dividend is declared? Compute the distance between the following data types.a. P1 (1,2,3,4) and P2(1, 0, 2, 0).(5 marks)b. S1= (Fail, Good, Better) and S2= (Good, Better, Good)where: The range data type is {Fail, Pass, Good, V. Good, Better}.(5 marks)c. p = 1 0 0 1 0 0 1 0 0 1 and q = 1 1 0 0 1 0 1 0 0 1(5 marks)d. ID1= 12345678 and ID2= 12346789(5 marks) 16 March, 2017 Problem No. 2 It is estimated that 20 of the 36 students in your class vote against taking the first exam next week. If 5 students are selected at random and asked their opinion, what is the probability that at most 3 of them are in favor of taking the exam next week? You plan to borrow $35,000 at a 7.5% annual interest rate. The terms require you to amortize the loan with 7 equal end-of-year payments. How much interest would you be paying in Year 2? $1,994.49 $2,099.46 $2,209.96 $2,326.27 $2,442.59 Integration Instructions: Show all work and write your solution to the problems neatly on this handout. Bax your final answer. If you need help, feel free to consult with your professor or go to the Math Lab for assistance. 1. Find the cost function for the given marginal cost function. You are given that 2 units costs $5.50. C'(x) = x+ 1/x2. The rate of growth of the profit (in millions of dollars) from a new technology is approximated by P'(t) = te-t where t represents time measured in years. The total profit in the third year that the new technology is in operation is $10,000. a. Find the total profit function. b. What happens to the total profit in the long run, as t gets bigger? Find the area between the curve and the \( \mathrm{x} \)-axis over the indicated interval. \[ y=8 \quad[1,7] \] Also concerning the black Indian group who helped settle the west what best describes their service? Never lost any of their men or had any seriously wounded in battle; WON several Medals of Honor and several hundred of their descendents are still alive today Unknown as no official records were kept of their services See attached for the math problem find the coordinates of the points of intersection of the graph y=13-x with the axes. Find the area of the right triangle formed by this line and the coordinate axis "q2 Explain the followingdiagenesis process and it is affects on permeability andporosity.b) cementation ( mineral cement) " Selena and Drake are evaluating the expression (StartFraction r s Superscript negative 2 Baseline Over r squared s Superscript negative 3 Baseline EndFraction) Superscript negative 1, when r = negative 1 and s = negative 2.Selenas WorkDrakes Work(StartFraction r s Superscript negative 2 Baseline Over r squared s Superscript negative 3 Baseline EndFraction) Superscript negative 1 Baseline = (r Superscript negative 1 Baseline s) Superscript negative 1 Baseline = StartFraction r Over s EndFraction = StartFraction negative 1 Over negative 2 EndFraction = one-half(StartFraction (negative 1) (negative 2) Superscript negative 2 Baseline Over (negative 1) squared (negative 2) Superscript negative 3 EndFraction) Superscript negative 1 = (StartFraction (negative 1) (negative 2) cubed Over (negative 1) squared (negative 2) squared EndFraction) Superscript negative 1 = (StartFraction negative 8 Over 4 Endfraction) Superscript negative 1 Baseline = StartFraction 4 Over negative 8 EndFraction = negative one-halfWho is correct and why?Selena is incorrect because she should have substituted the values for the variables first, and then simplifed.Selena is correct because she simplified correctly and then evaluated correctly after substituting the values for the variables.Drake is incorrect because he should have simplified first, before substituting the values for the variables.Drake is correct because he substituted the values for the variables first, and simplified correctly.