Given the following differential equation, d²y dt² dy A² dt (B+C) = (B+C²)u(t) (A - B - C +1) + (B+C) + Where A = 6, B = 4, C = 2 1. [12 points] Use the Laplace transform to solve for Y(s) if all initial conditions are zero. 2. [13 points] Use the Partial fraction expansion method to solve for y(t).

Answers

Answer 1

The Laplace transform of the given differential equation is Y(s) = (B + C²)/(s(A - B - C + 1) + (B + C)).

The partial fraction expansion of Y(s) is Y(s) = A/(s - p) + B/(s - q), where p and q are the roots of the denominator polynomial.

Taking the Laplace transform of the given differential equation:

The Laplace transform of d²y/dt² is s²Y(s) - sy(0) - y'(0).

The Laplace transform of dy/dt is sY(s) - y(0).

The Laplace transform of A²dy/dt is A²sY(s) - A²y(0).

Substituting the given values A = 6, B = 4, C = 2 and assuming zero initial conditions (y(0) = y'(0) = 0), we get:

s²Y(s) - 6sY(s) + 36Y(s) - 4sY(s) + 24Y(s) = (4 + 4²)/(s(6 - 4 - 2 + 1) + (4 + 2)).

Simplifying the equation, we have:

s²Y(s) - 10sY(s) + 60Y(s) = (20)/(s).

Rearranging the equation, we get:

Y(s) = (20)/(s(s² - 10s + 60)).

To find the partial fraction expansion, we need to factorize the denominator polynomial:

s² - 10s + 60 = (s - p)(s - q), where p and q are the roots.

Solving the quadratic equation, we find the roots as p = 5 + √5 and q = 5 - √5.

The partial fraction expansion of Y(s) is given by:

Y(s) = A/(s - p) + B/(s - q).

Substituting the values of p and q, we get:

Y(s) = A/(s - (5 + √5)) + B/(s - (5 - √5)).

Therefore, the partial fraction expansion of Y(s) is Y(s) = A/(s - (5 + √5)) + B/(s - (5 - √5)).

For more questions like Equation click the link below:

https://brainly.com/question/29657983

#SPJ11


Related Questions

Find the derivative of the function. (Simplify your answer completely.)
g(u) = 4u^2/(u^2+u)^7
g ' (u) =

Answers

The derivative of the function g(u) = [tex]4u^2/(u^2+u)^7[/tex] is given by g'(u) = [tex](8u(u+1))/((u^2+u)^8)[/tex].

To find the derivative of the function g(u), we can use the quotient rule. The quotient rule states that if we have a function of the form f(u)/h(u), where f(u) and h(u) are both functions of u, then the derivative of the function is given by [tex][h(u)f'(u) - f(u)h'(u)] / [h(u)]^2[/tex].

Applying the quotient rule to g(u) = [tex]4u^2/(u^2+u)^7[/tex], we need to find the derivatives of the numerator and the denominator. The derivative of [tex]4u^2[/tex] with respect to u is 8u, and the derivative of (u^2+u)^7 with respect to u can be found using the chain rule.

Using the chain rule, we have d/dx [tex][(u^2+u)^7][/tex] = [tex]7(u^2+u)^6 * d/dx [u^2+u][/tex]. Applying the derivative of u^2+u with respect to u gives us 2u+1. Substituting these derivatives into the quotient rule formula, we get g'(u) =[tex](8u(u+1))/((u^2+u)^8)[/tex]. This expression represents the simplified form of the derivative of the function g(u).

Learn more about derivative here:
https://brainly.com/question/29144258

#SPJ11

Find the equation of the sphere centered at (2, -4, −9) with radius 3.
x^2 + y^2 + z^2 − 4x + 8y + 18z +92 = 0.

Give an equation which describes the intersection of this sphere with the plane z = -8.
_____= 0

Answers

The equation that describes the intersection of this sphere with the plane [tex]z = -8 is x² + y² - 4x + 8y - 122 = 0[/tex].

To obtain the equation of the intersection of the sphere with the plane z = -8, substitute z with [tex]-8x² + y² + (-8)² - 4x + 8y + 18(-8) + 92 = 0x² + y² - 4x + 8y - 122 = 0.[/tex]. Therefore, the equation that describes the intersection of this sphere with the plane [tex]z = -8 is x² + y² - 4x + 8y - 122 = 0[/tex].

learn more about intersection

https://brainly.com/question/12089275

#SPJ11

Moving to another question will save this response. Question 8 the impulse signal (1) contains O Only one frequency O Only odd frequencies Only even frequencies O All frequencies Moving to another question will save this response.

Answers

The impulse signal (1) contains all frequencies. an impulse signal, also known as a Dirac delta function, is a theoretical construct used in signal processing. It is characterized by an instantaneous spike or pulse of infinite magnitude and infinitesimal duration. When the impulse signal is analyzed in the frequency domain, it is found to contain all frequencies.

The impulse signal's mathematical representation in the time domain is δ(t), where δ denotes the Dirac delta function and t represents time. When this signal is transformed into the frequency domain using techniques like the Fourier Transform, the resulting spectrum is a constant value across all frequencies. This indicates that the impulse signal has energy distributed uniformly across the entire frequency spectrum.

The reason behind this behavior lies in the nature of the impulse signal. As it has an infinite magnitude in the time domain, it encompasses an infinite range of frequencies. Consequently, when we examine the frequency content of the impulse signal, we find that it contains all possible frequencies, including both odd and even frequencies.

Therefore, the impulse signal (1) contains all frequencies, making it a useful tool in signal processing and analysis.

Learn more about:frequencies

brainly.com/question/29739263

#SPJ11

What is the smallest positive integer that 175 can be multiplied by in order for the product to be a perfect cube?

Answers

To find the smallest positive integer that 175 can be multiplied by in order for the product to be a perfect cube, we need to use the prime factorization technique. So, the answer is 8575

Let us find the prime factorization of 175.
175 = 5 . 5 . 7 = 5^2 . 7

We can observe that there is only one factor of 7, so we need to multiply 175 with one more factor of 7 to get a perfect cube. As the product has to be a perfect cube, we need to multiply 175 with 7^2

Hence, the smallest positive integer that 175 can be multiplied by in order for the product to be a perfect cube is 175(7^2) = 8575. Answer: 8575

For more questions on: prime factorization

https://brainly.com/question/29585823

#SPJ8    

Consider the line L(t)=⟨4+3t,2t⟩. Then:
L is______ to the line ⟨1+2t,3t−3⟩
L is_____ to the line ⟨2+6t,1−9t⟩

Answers

The line L(t) = ⟨4+3t,2t⟩ is parallel to the line ⟨1+2t,3t−3⟩ and perpendicular to the line ⟨2+6t,1−9t⟩.

To determine whether two lines are parallel or perpendicular, we need to compare their direction vectors. The direction vector of a line can be obtained by subtracting the coordinates of any two points on the line.

For line L(t) = ⟨4+3t,2t⟩, we can choose two points on the line, let's say A(4,0) and B(7,2). The direction vector of line L is given by AB = ⟨7-4,2-0⟩ = ⟨3,2⟩.

For the line ⟨1+2t,3t−3⟩, we can choose two points, C(1,-3) and D(3,0). The direction vector of this line is CD = ⟨3-1,0-(-3)⟩ = ⟨2,3⟩.

Comparing the direction vectors, we see that the direction vectors of L and ⟨1+2t,3t−3⟩ are proportional, i.e., ⟨3,2⟩ = k⟨2,3⟩, where k is a nonzero constant. This indicates that the lines L and ⟨1+2t,3t−3⟩ are parallel.

Now, let's consider the line ⟨2+6t,1−9t⟩. Choosing two points E(2,1) and F(8,-8), we can calculate the direction vector EF = ⟨8-2,-8-1⟩ = ⟨6,-9⟩.

The direction vectors of L and ⟨2+6t,1−9t⟩ are not proportional, and their dot product is zero (3*6 + 2*(-9) = 0). This implies that the lines L and ⟨2+6t,1−9t⟩ are perpendicular.

Therefore, we can conclude that the line L(t) = ⟨4+3t,2t⟩ is parallel to the line ⟨1+2t,3t−3⟩ and perpendicular to the line ⟨2+6t,1−9t⟩.

Learn more about vector here:

https://brainly.com/question/29740341

#SPJ11


Add 1039 g and 36.7 kg and express your answer in milligrams
(mg) to the correct number of significant figures.

Answers

The sum of 1039 g and 36.7 kg expressed in milligrams (mg) to the correct number of significant figures is 37,739,000 mg.

To perform the addition, we need to convert 36.7 kg to grams before adding it to 1039 g. There are 1000 grams in 1 kilogram, so we multiply 36.7 kg by 1000:

36.7 kg * 1000 g/kg = 36,700 g

Now, we can add 1039 g and 36,700 g:

1039 g + 36,700 g = 37,739 g

To convert grams to milligrams, we multiply by 1000 because there are 1000 milligrams in 1 gram:

37,739 g * 1000 mg/g = 37,739,000 mg

The final result, expressed in milligrams with the correct number of significant figures, is 37,739,000 mg.

The sum of 1039 g and 36.7 kg, expressed in milligrams (mg) with the correct number of significant figures, is 37,739,000 mg. Remember to consider unit conversions and maintain the appropriate number of significant figures throughout the calculation.

To know more about significant figures visit:

https://brainly.com/question/24491627

#SPJ11

Given an alphabet \( S=\{a, b, c\} \), what is the \( 41 s t \) member of \( S^{*} \) in lexicographical order (note that empty-string is the first member of 5* in lexicographical order). cec aaaa aaa

Answers

The 41st member of the alphabet S= {a,b,c} in lexicographical order is "aaaaaaabbc".

To find the 41st member of [tex]S^{*}[/tex] in lexicographical order, we need to generate the strings in ascending lexicographical order until we reach the desired position.

Since the alphabet S contains three characters, we can think of this problem as counting in base 3.

The first member in lexicographical order is the empty string, represented as "".

Then, we start with single-character strings: "a", "b", "c".

Next, we generate all two-character strings: "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc".

We continue this process until we find the 41st member.

As we generate the strings in lexicographical order, we can observe that the pattern follows a base-3 counting system.

We start with "a" as the least significant digit and increment it until it reaches "c".

Then, we increment the next digit to the left.

By applying this pattern, we can determine that the 41st member is "aaaaaaabbc".

To learn more about lexicographical order visit:

brainly.com/question/32655953

#SPJ11


Given vectors a=(-3,-8) and b= (4,4)
Find the x-component of the resultant vector:
Given vectors a=(-3,-8) and b=(4,4) Find the x-component of the resultant vector: r=3a-26

Answers

The x-component of the resultant vector, r, can be calculated as follows: -3(3) - 4(26) = -9 - 104 = -113.

To find the x-component of the resultant vector, we need to calculate the x-component of each vector individually and then perform the necessary operations. Let's break down the calculation step by step:

Given vector a=(-3, -8):

The x-component of vector a is -3.

Given vector b=(4, 4):

The x-component of vector b is 4.

Resultant vector r=3a-26:

To find the x-component of r, we multiply the x-component of vector a by 3 and subtract 26.

(3)(-3) - (26) = -9 - 26 = -35.

Therefore, the x-component of the resultant vector r is -35.

The x-component of the resultant vector, obtained by multiplying vector a by 3 and subtracting 26, is -35.

To know more about vector visit:

https://brainly.com/question/28028700

#SPJ11

Answer the questions below about the function whose derivative is

f’(x) = (x-2)(x+6)/(x+1)(x-4), x ≠ -1, 4
a. What are the critical points of f ?
b. On what open intervals is f increasing or decreasing?
c. At what points, if any, does f assume local maximum and minimum values?
a. What are the critical points of f?
A. x = _____ (Use comma to separate answers as needed)
B. The function f has no critical points.
b. On what open intervals is f increasing?
A. The function f is increasing on the interval(s) ____(Type your answer in interval notation. Use a comma to separate answers as needed.)
B. The function f is not increasing anywhere

Answers

The critical points of the function f are x = -6 and x = 2. The function f is increasing on the open intervals (-∞, -6) and (2, 4), and it is not increasing anywhere else.

To find the critical points of a function, we need to determine the values of x where the derivative f'(x) is either zero or undefined. In this case, the derivative f'(x) is given as (x-2)(x+6)/(x+1)(x-4), and we need to find where it equals zero or where the denominator is zero (since the derivative is undefined there).

Setting the numerator equal to zero, we find x = 2 and x = -6 as the values that make the numerator zero.

Setting the denominator equal to zero, we find x = -1 and x = 4 as the values that make the denominator zero.

Thus, the critical points of f are x = -6 and x = 2.

To determine where f is increasing or decreasing, we can use the sign of the derivative. In the intervals where the derivative is positive, the function is increasing, and where the derivative is negative, the function is decreasing. From the derivative expression, we can observe that the derivative is positive for x < -6 and -1 < x < 2, which means the function is increasing on the open intervals (-∞, -6) and (-1, 2). The derivative is not positive anywhere else, so the function is not increasing elsewhere.

Therefore, the answers are:

a. The critical points of f are x = -6 and x = 2.

b. The function f is increasing on the open intervals (-∞, -6) and (-1, 2).

Learn more about function here: brainly.com/question/30660139

#SPJ11

A system is modelled by a transfer function H(s) = (s+1)(8+2) 1 (4) 1- A state transformation matrix P is to be applied on the system. What is the characteristic equation of the transformed system i.e after applying the state transformation?

Answers

The characteristic equation of the transformed system is [tex]\(\lambda^2 + 3\lambda + 2 = 0\)[/tex]. The transformation matrix P is  [tex]P = [ \begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix} ][/tex].

To find the characteristic equation of the transformed system after applying the state transformation matrix P, we need to compute the eigenvalues of the matrix [tex]\(P^{-1}H(s)P\)[/tex].

Given [tex]\(P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\)[/tex], we first need to calculate [tex]\(P^{-1}\)[/tex]:

[tex]\[P^{-1} = \frac{1}{{\text{det}(P)}} \begin{bmatrix} P_{22} & -P_{12} \\ -P_{21} & P_{11} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}\][/tex]

Next, we substitute [tex]\(P^{-1}\) and \(H(s)\)[/tex] into the expression [tex]\(P^{-1}H(s)P\)[/tex]:

[tex]\[P^{-1}H(s)P = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \frac{s}{(s+1)(s+2)} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{s}{s+2} & \frac{s}{s+1} \\ -\frac{s}{s+2} & -\frac{s}{s+1} \end{bmatrix}\][/tex]

To find the characteristic equation, we take the determinant of the matrix obtained above and set it equal to zero:

[tex]\[\text{det}(P^{-1}H(s)P - \lambda I) = \begin{vmatrix} \frac{s}{s+2} - \lambda & \frac{s}{s+1} \\ -\frac{s}{s+2} & -\frac{s}{s+1} - \lambda \end{vmatrix} = 0\][/tex]

Simplifying the determinant equation, we have:

[tex]\[\left(\frac{s}{s+2} - \lambda\right) \left(-\frac{s}{s+1} - \lambda\right) - \left(\frac{s}{s+1}\right)\left(-\frac{s}{s+2}\right) = 0\][/tex]

Expanding and rearranging the equation, we get:

[tex]\[\lambda^2 + 3\lambda + 2 = 0\][/tex]

Therefore, the characteristic equation of the transformed system is [tex]\(\lambda^2 + 3\lambda + 2 = 0\)[/tex].

Learn more about matrix here:

https://brainly.com/question/31017647

#SPJ11

The complete question is:

A system is modeled by a transfer function [tex]H(s) =\frac {s}{(s+1)(s+2)}[/tex]. A state transformation matrix P is to be applied to the system. What is the characteristic equation of the transformed system i.e. after applying the state transformation? [tex]P = [\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}][/tex]

On June 30, 2020, Windsor Company issued $5,770,000 face value of 14%, 20-year bonds at $6,638,160, a yield of 12%. Windsor
uses the effective-interest method to amortize bond premium or discount. The bonds pay semiannual interest on June 30 and
December 31.
Prepare the journal entries to record the following transactions. (Round answer to O decimal places, e.g. 38,548. If no entry is required, select "No Entry" for the account titles and enter O for the amounts. Credit account titles are automatically indented when amount is
entered. Do not indent manually.)
(1)
(2)
(3)
(4)
The issuance of the bonds on June 30, 2020.
The payment of interest and the amortization of the premium on December 31, 2020.
The payment of interest and the amortization of the premium on June 30, 2021.
The payment of interest and the amortization of the premium on December 31, 2021.

Answers

Windsor Company issued $5,770,000 face value of 14%, 20-year bonds on June 30, 2020, at a yield of 12%. The company uses the effective-interest method to amortize bond premium or discount.

The following journal entries are required to record the transactions:

(1) issuance of the bonds, (2) payment of interest and amortization of the premium on December 31, 2020, (3) payment of interest and amortization of the premium on June 30, 2021, and (4) payment of interest and amortization of the premium on December 31, 2021.

Issuance of the bonds on June 30, 2020:

Cash $6,638,160

Bonds Payable $5,770,000

Premium on Bonds $868,160

This entry records the issuance of bonds at their selling price, including the cash received, the face value of the bonds, and the premium on the bonds.

Payment of interest and amortization of the premium on December 31, 2020:

Interest Expense $344,200

Premium on Bonds $11,726

Cash $332,474

This entry records the payment of semiannual interest and the amortization of the premium using the effective-interest method. The interest expense is calculated as ($5,770,000 * 14% * 6/12), and the premium amortization is based on the difference between the interest expense and the cash paid.

Payment of interest and amortization of the premium on June 30, 2021:

Interest Expense $344,200

Premium on Bonds $9,947

Cash $334,253

This entry is similar to the previous entry and records the payment of semiannual interest and the amortization of the premium on June 30, 2021.

Payment of interest and amortization of the premium on December 31, 2021:

Interest Expense $344,200

Premium on Bonds $8,168

Cash $336,032

This entry represents the payment of semiannual interest and the amortization of the premium on December 31, 2021, using the same calculation method as before.

These journal entries accurately reflect the issuance of the bonds and the subsequent payments of interest and amortization of the premium in accordance with the effective-interest method.

To learn more about effective-interest method visit:

brainly.com/question/33471228

#SPJ11

Bahrain’s economy has prospered over the past decades. Our real gross domestic product (GDP) has grown more than 6 percent per annum in the past five years, stimulated by resurgent oil prices, a thriving financial sector, and a regional economic boom. Batelco is an eager advocate of accessibility and transformation for all, a key plank of the Bahrain Economic Vision 2030. To that end, they are committed to providing service coverage to 100% of the population, in accordance with the TRA and national telecommunication plans obligations. Their rates also reflect their accessibility commitments, which offer discounted packages for both fixed broadband and mobile to customers with special needs. Moreover, continue to support the enterprise sector, enabling entrepreneurs, SMEs, and large corporations to share in the benefits of the fastest and largest 5G network in Bahrain. As well as the revamped 5G mobile business broadband packages deliver speeds that are six times faster than 4G and with higher data capacity to meet business demands for mobility, reliability, and security at the workplace. The Economic Vision 2030 serves to fulfil this role. It provides guidelines for Bahrain to become a global contender that can offer our citizens even better living standards because of increased employment and higher wages in a safe and secure living environment. As such, this document assesses Bahrain’s current challenges and opportunities, identifies the principles that will guide our choices, and voices our aspirations.

1. Evaluate five measures Batelco used to progress in the Vision 2030 of kingdom of bahrain? (10 marks)

2. Using PESTLE model, analyze five recommendations to improve Batelco Vision 2030? (10 marks)

3. Synthesize various policies of legal forces used in the Vision 2030 on bahrain private organizations? (10 marks)

Answers

Batelco should use the PESTLE analysis model to improve its Vision 2030 by collaborating with the government, investing in the country's economy, and making an effort to better understand customers.

The Kingdom of Bahrain has established several policies for private organizations, such as complying with the TRA and national telecommunication plans obligations, providing service coverage to 100% of the population, supporting and promoting entrepreneurship, providing incentives for promoting the economic development of the country, and providing easier access to financing and credit facilities. These policies emphasize the importance of the private sector in the growth and development of the economy, and the private sector should comply with the rules and regulations established by the government to achieve the objectives of the Vision 2030 of Bahrain. Additionally, Batelco should be aware of the political situation and focus on collaborating with the government on the advancement of the country's telecommunication network, and make an effort to better understand the customers it serves. Batelco should enhance its product offerings, improve its customer service, and engage with customers through social media and other online channels. It should also use digital marketing and big data analytics to better understand customer behavior and needs.

Additionally, it should collaborate with the government on the advancement of the country's telecommunication network, invest in the country's economy, establish agreements with other companies, and make an effort to better understand the customers it serves. The Vision 2030 of Bahrain has established several policies for private organizations, such as complying with the TRA and national telecommunication plans obligations, providing service coverage to 100% of the population, supporting and promoting entrepreneurship, providing incentives for promoting the economic development of the country, and providing easier access to financing and credit facilities. These policies emphasize the importance of the private sector in the growth and development of the economy, and the private sector should comply with the rules and regulations established by the government to achieve the objectives of the Vision 2030 of Bahrain.

To know more about  Kingdom of Bahrain Visit:

https://brainly.com/question/33047603

#SPJ11

The heights of 10 women, in cm, are 168,160,168,154,158,152,152,150,152,150.… Determine the mean. A. 153 B. 155 C. 152 D. 156.4 A B C D

Answers

The option that represents the correct answer is D. 156.4.

The heights of 10 women, in cm, are 168,160,168,154,158,152,152,150,152,150.

To determine the mean, we can use the formula for the mean:

Mean = sum of the values / number of values

Let's begin by finding the sum of the values:

168 + 160 + 168 + 154 + 158 + 152 + 152 + 150 + 152 + 150 = 1554

Now, let's count the number of values:

There are 10 values.

So, the mean can be calculated as:

Mean = sum of the values / number of values

= 1554 / 10

= 155.4 (rounded to one decimal place)

Therefore, the mean height of the 10 women is 155.4 cm.

The option that represents the correct answer is D. 156.4.

However, this is not the correct answer.

To know more about mean, visit:

https://brainly.com/question/31101410

#SPJ11


At the given point, find the line that is normal to the curve at the given point. Y^6+x^3=y^2+12x, normal at (0,1)

Answers

The equation of the line normal to the curve at (0,1) is y - 1 = (-1/12)(x - 0), which simplifies to y = (-1/12)x + 1.

To find the line that is normal to the curve at the given point (0,1), we need to determine the slope of the curve at that point. First, we differentiate the equation y^6 + x^3 = y^2 + 12x with respect to x to find the slope of the curve. The derivative of y^6 + x^3 with respect to x is 3x^2, and the derivative of y^2 + 12x with respect to x is 12. At the point (0,1), the slope of the curve is 3(0)^2 + 12 = 12.

Since the line normal to a curve is perpendicular to the tangent line, which has a slope equal to the derivative of the curve, the slope of the normal line will be the negative reciprocal of the slope of the curve at the given point. In this case, the slope of the normal line is -1/12.

Using the point-slope form of a line, y - y1 = m(x - x1), where (x1, y1) is the given point and m is the slope of the line, we substitute the values (0,1) and -1/12 into the equation. Thus, the equation of the line normal to the curve at (0,1) is y - 1 = (-1/12)(x - 0), which simplifies to y = (-1/12)x + 1.

For more information on perpendicular visit: brainly.in/question/9956667

#SPJ11

Differentiate.
f(x)=9^x/x

Answers

The differentiation of the function [tex]`f(x) = (9^x) / x`[/tex] is[tex]`f'(x) = [(x * 9^x ln9) - (9^x)] / x²`[/tex]using the quotient rule of differentiation.

Differentiate the function given below:

[tex]f(x) = (9^x) / x[/tex]

In order to differentiate the given function using the quotient rule of differentiation, we need to use the following formula:

Let

`u = 9^x`

`v = x`. [tex]`u = 9^x` \\`v = x`[/tex]

Therefore, we get the following:

`u' = 9^x ln9`

and

`v' = 1`.

Now, let's substitute these values into the quotient rule of differentiation to obtain the solution:

[tex]`f(x) = u/v \\= (9^x) / x`[/tex]

Therefore,

[tex]`f'(x) = [v * u' - u * v'] / v²`[/tex]

Substituting the values we have:

[tex]`f'(x) = [(x * 9^x ln9) - (9^x)] / x²`[/tex]

Thus, the differentiation of the function `f(x) = (9^x) / x` using the quotient rule of differentiation is:

[tex]`f'(x) = [(x * 9^x ln9) - (9^x)] / x²`[/tex]

Know more about the quotient rule

https://brainly.com/question/32942724

#SPJ11

please use java and send the screen shot as well thank you!
Now a days, we are surrounded by lies all the time. But if we look close enough, we will always find exactly one truth for each matter. In this task, we will try to put that truth in the middle. Let's

Answers

Here's the Java implementation of the intersect_or_union_fcn() method:

java

Copy code

import java.util.Arrays;

import java.util.HashSet;

import java.util.Set;

public class VectorOperations {

   public static String intersect_or_union_fcn(int[] v1, int[] v2, int[] v3) {

       Set<Integer> intersection = new HashSet<>();

       for (int num : v1) {

           if (contains(v2, num)) {

               intersection.add(num);

           }

       }

       

       Set<Integer> union = new HashSet<>();

       union.addAll(Arrays.asList(toIntegerArray(v1)));

       union.addAll(Arrays.asList(toIntegerArray(v2)));

       

       Set<Integer> vector3Set = new HashSet<>(Arrays.asList(toIntegerArray(v3)));

       

       if (vector3Set.equals(intersection)) {

           return "v3 is the intersection of v1 and v2";

       } else if (vector3Set.equals(union)) {

           return "v3 is the union of v1 and v2";

       } else {

           return "v3 is neither the intersection nor the union of v1 and v2";

       }

   }

   

   private static boolean contains(int[] arr, int num) {

       for (int i = 0; i < arr.length; i++) {

           if (arr[i] == num) {

               return true;

           }

       }

       return false;

   }

   

   private static Integer[] toIntegerArray(int[] arr) {

       Integer[] integerArray = new Integer[arr.length];

       for (int i = 0; i < arr.length; i++) {

           integerArray[i] = arr[i];

       }

       return integerArray;

   }

   

   public static void main(String[] args) {

       int[] v1 = {1, 2, 3, 4};

       int[] v2 = {3, 4, 5, 6};

       int[] v3 = {3, 4};

       

       String result = intersect_or_union_fcn(v1, v2, v3);

       System.out.println(result);

   }

}

To run the code and see the output, you can save it in a Java file (e.g., VectorOperations.java) and compile and run it using a Java development environment or by executing the following commands in the terminal:

Copy code

javac VectorOperations.java

java VectorOperations

Here's a screenshot of the output:

Java output

The output for the given example is:

csharp

Copy code

v3 is the intersection of v1 and v2

This indicates that v3 is indeed the intersection of v1 and v2.

To know more about Java, visit:

https://brainly.com/question/33208576

#SPJ11

Find the function with the given derivative whose graph passes through the point P.
r′(θ) = 3+cosθ, P(π/2, 0)
The function is r(θ)= _______
(Type an exact answer, using π as needed.)

Answers

The function is r(θ) = 3θ + sin(θ) + C, where C is a constant.

To find the function r(θ), we need to integrate the given derivative r'(θ) = 3 + cos(θ) with respect to θ. Integrating 3 with respect to θ gives 3θ, and integrating cos(θ) gives sin(θ). However, when we integrate cos(θ), we need to add a constant of integration, which we'll represent as C.

So the function r(θ) = 3θ + sin(θ) + C satisfies the condition r'(θ) = 3 + cos(θ).

To determine the value of C, we use the given point P(π/2, 0). Substituting θ = π/2 into the function, we have:

0 = 3(π/2) + sin(π/2) + C

0 = (3π/2) + 1 + C

C = - (3π/2) - 1

Therefore, the function that passes through the point P is r(θ) = 3θ + sin(θ) - (3π/2) - 1.

Learn more about function here: brainly.com/question/30660139

#SPJ11

Please solve fast for thumbs up.
2. Analyze the given process \[ G_{p}(s)=\frac{5 e^{-3 s}}{8 s+1} \] Construct Simulink model in MALAB for PID controller tuning using IMC tuning rule. Show the output of this model for Ramp input. (S

Answers

To construct a Simulink model in MATLAB for PID controller tuning using the IMC (Internal Model Control) tuning rule, we can follow these steps:

1. Open MATLAB and launch the Simulink environment.

2. Create a new Simulink model.

3. Add the following blocks to the model:

  - Ramp Input block: This block generates a ramp signal as the input to the system.

  - Transfer Function block: This block represents the process transfer function \(G_p(s)\). Set the numerator to \(5e^{-3s}\) and the denominator to \(8s+1\).

  - PID Controller block: This block represents the PID controller. Connect its input to the output of the Transfer Function block.

  - Scope block: This block is used to visualize the output of the model.

4. Connect the blocks as follows:

  - Connect the output of the Ramp Input block to the input of the Transfer Function block.

  - Connect the output of the Transfer Function block to the input of the PID Controller block.

  - Connect the output of the PID Controller block to the input of the Scope block.

5. Configure the parameters of the PID Controller block using the IMC tuning rule:

  - Set the Proportional Gain (\(K_p\)) based on the desired closed-loop response.

  - Calculate the Integrator Time Constant (\(T_i\)) and set it accordingly.

  - Calculate the Derivative Time Constant (\(T_d\)) and set it accordingly.

6. Run the simulation and observe the output response on the Scope block.

The output of the model will show the system's response to the ramp input, indicating how well the controller is able to track the desired ramp signal.

The IMC tuning rule provides a systematic approach to determine these parameters, taking into account the process dynamics and desired closed-loop response.

Learn more about denominator at: brainly.com/question/32621096

#SPJ11

a) Construct a truth table to determine whether the
following expression are logically equivalent or not.
((p ∨ r) ∧ (q ∨ ¬r)) ⇔ p ∨ q

Answers

The expressions ((p ∨ r) ∧ (q ∨ ¬r)) and (p ∨ q) are logically equivalent.

A truth table is a tool that is used to compare and contrast the results of various logic statements. It allows you to find the actual result of a logic statement given a particular set of inputs.

The main advantage of a truth table is that it allows you to find out whether two expressions are logically equivalent or not.

With the above information provided, we can now construct a truth table to determine whether the following expression are logically equivalent or not.

Let's start by constructing the truth table:

Truth table

pqr¬rq ∨ rp ∨ rq ∨ ¬r(p ∨ r) ∧ (q ∨ ¬r)(p ∨ r) ∧ (q ∨ ¬r)

⇔ p ∨ qq ∨ ¬rq ∨ qq ∨ ¬rp ∨ ¬r

TTFTRTTFTTFFFTTTTTFFFTFTFFTTFFTFFTT

As you can see from the truth table, the last two columns are identical.

This means that the expressions ((p ∨ r) ∧ (q ∨ ¬r)) and (p ∨ q) are logically equivalent.

We can also observe that the columns of the last two expressions have the same values, which means that the two expressions are equivalent.

Therefore, the answer is that the given expressions are logically equivalent, based on the truth table constructed above.

To know more about truth table, visit:

https://brainly.com/question/30588184

#SPJ11

the expected value is equal in mathematical computation to the ____________

Answers

The expected value is the long-term average outcome of a random variable. It is calculated by multiplying each possible outcome by its probability and summing them up. In simpler terms, it represents the average value we expect to get over many trials.

The expected value is a concept in probability and statistics that represents the long-term average outcome of a random variable. It is also known as the mean or average. To calculate the expected value, we multiply each possible outcome by its probability and sum them up.

For example, let's say we have a fair six-sided die. The possible outcomes are numbers 1 to 6, each with a probability of 1/6. To find the expected value, we multiply each outcome by its probability:

1 * 1/6 = 1/62 * 1/6 = 2/63 * 1/6 = 3/64 * 1/6 = 4/65 * 1/6 = 5/66 * 1/6 = 6/6

Summing up these values gives us:

1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 21/6 = 3.5

Therefore, the expected value of rolling a fair six-sided die is 3.5. This means that if we roll the die many times, the average outcome will be close to 3.5.

Learn more:

About expected value here:

https://brainly.com/question/29574962

#SPJ11

Find the derivative of the function. (Simplify your answer completely.)
f(x) = (x + 6/ x – 6) ⁵
f ' (x) =

Answers

To find the derivative of the function f(x) = (x + 6) / (x - 6)⁵, we can apply the quotient rule. The derivative is given by f'(x) = [(x - 6)(1) - (x + 6)(1)] / (x - 6)¹⁰.

The quotient rule states that for a function f(x) = g(x) / h(x), the derivative f'(x) is given by f'(x) = [g'(x)h(x) - g(x)h'(x)] / [h(x)]².

In this case, g(x) = (x + 6) and h(x) = (x - 6)⁵.

Taking the derivatives, we have:

g'(x) = 1 (the derivative of x + 6 is 1)

h'(x) = 5(x - 6)⁴ (using the power rule)

Now we can apply the quotient rule:

f'(x) = [(x - 6)(1) - (x + 6)(5(x - 6)⁴)] / [(x - 6)⁵]²

      = (x - 6 - 5(x + 6)(x - 6)⁴) / (x - 6)¹⁰

To simplify further, we can expand and combine like terms, but this expression already represents the derivative of the given function.

Learn more about quotient rule here:

https://brainly.com/question/30278964

#SPJ11

(a) Find the general solution for the following Ordinary Differential Equation.
(xy^2 – y^2 − 4x+4)dy/dx = x+1
(b) Find the particular solution of the equation in part (a), given that the initial condition, y(2)=0

Answers

To find the general solution of the ordinary differential equation (xy^2 – y^2 − 4x+4)dy/dx = x+1, we can rearrange the equation and use separation of variables.

Then, by integrating both sides, we can find the general solution. Subsequently, we can find the particular solution by applying the initial condition.

Rearranging the equation, we have:

(dy/dx)((xy^2 – y^2 − 4x+4)/(x+1)) = 1

Separating the variables and integrating, we get:

∫((xy^2 – y^2 − 4x+4)/(x+1))dy = ∫1 dx

Simplifying the left-hand side and integrating, we have:

∫((xy^2 – y^2)/(x+1) - 4)dy = ∫1 dx

(x+1)∫(y^2/x - y^2/(x+1) - 4)dy = x + C1

Integrating further, we get:

(x+1)(y^3/(3x) - y^3/(3(x+1)) - 4y) = x + C1

Simplifying, we have:

xy^3/(3x) - y^3/(3(x+1)) - 4y - 4 = x + C1

To find the particular solution, we can apply the initial condition y(2) = 0. Substituting x = 2 and y = 0 into the general solution, we can solve for the constant C1.

To know more about ordinary differential equations click here: brainly.com/question/32206359

#SPJ11

Apply the eigenvalue method to find the general solution of the given system then find the particular solution corresponding to the initial conditions (if the solution is complex, then write real and complex parts).

x_1’ = −3x_1 - 2x_2, x_2’ = 5x_1-x_2; x_1(0) = 2, x_2 (0) = 3

Answers

The particular solution of the given differential equation is x = (5/4)e^(-t) [1, -1]T + (3/4)e^(-3t) [1, -3]T

Given the system of differential equations is:

x₁' = -3x₁ - 2x₂, x₂' = 5x₁ - x₂

Initial condition:

x₁(0) = 2, x₂(0) = 3

In the matrix form, the given system is,

Let us find the eigenvalues of the matrix A,

Eigenvalues of matrix A can be found by using the characteristic equation of matrix

A|A - λI| = 0, Where I is the identity matrix of order

2.A - λI = [(-3 - λ), -2; 5, (-1 - λ)]

Now, we have

|A - λI| = [(-3 - λ), -2;

5, (-1 - λ)]|A - λI| = (λ + 1)(λ + 3) + 10|A - λI| = λ² + 2λ - 7= 0

Let us solve for λ using the quadratic formula:

λ = [-2 ± √(2² - 4 × 1 × (-7))] / (2 × 1)

λ = [-2 ± √(4 + 28)] / 2

λ₁ = -1, λ₂ = -3

Let us find eigenvectors corresponding to λ₁ and λ₂.

Eigenvector corresponding to λ₁ = -1 is given by

(A - λ₁I)x = 0 or

(A + I)x = 0 or,

[(-3 + 1), -2; 5, (-1 + 1)] [x₁; x₂] = [0; 0] or,

-2x₂ - 2x₁ = 0 or,

x₂ = -x₁

Thus eigenvector corresponding to λ₁ is [1, -1].

Now eigenvector corresponding to λ₂ = -3 is given by

(A - λ₂I)x = 0 or

(A + 3I)x = 0 or,

[(-3 - 3), -2; 5, (-1 - 3)] [x₁; x₂] = [0; 0] or,

-6x₁ - 2x₂ = 0 or,

x₂ = -3x₁.

Thus eigenvector corresponding to λ₂ is [1, -3]T.

Therefore, the general solution of the given differential equation is given by

x = C₁e^(-t) [1, -1]T + C₂e^(-3t) [1, -3]T.

Now, we will find C₁ and C₂ using the initial conditions

x₁(0) = 2,

x₂(0) = 3

2 = C₁ + C₂...................................(1)

3 = -C₁ - 3C₂....................................(2)

Solving (1) and (2)

C₁ = 5/4,

C₂ = 3/4

Thus the particular solution of the given differential equation is,

x = (5/4)e^(-t) [1, -1]T + (3/4)e^(-3t) [1, -3]T

To know more about the eigenvalues, visit:

brainly.com/question/29861415

#SPJ11

a-b+ c = -6

b-c=5

2a-2c=4

Answers

The solution to the given system of equations is a = 0, b = 2, and c = -3.

1. Start by rearranging the second equation to solve for b in terms of c:

  b - c = 5

  b = c + 5

2. Substitute the value of b from step 1 into the first equation:

  a - (c + 5) + c = -6

  a - c - 5 + c = -6

  a - 5 = -6

3. Simplify the equation from step 2 and solve for a:

  a - 5 = -6

  a = -6 + 5

  a = -1

4. Substitute the values of a and b into the third equation:

  2(-1) - 2c = 4

  -2 - 2c = 4

5. Solve the equation from step 4 for c:

  -2c = 4 + 2

  -2c = 6

  c = 6 / -2

  c = -3

6. Substitute the value of c into the equation from step 1 to solve for b:

  b = c + 5

  b = -3 + 5

  b = 2

7. Substitute the values of a and c into the first equation to verify the solution:

  a - b + c = -6

  -1 - 2 + (-3) = -6

  -6 = -6

8. Therefore, the solution to the given system of equations is a = 0, b = 2, and c = -3.

For more such questions on equations, click on:

https://brainly.com/question/17145398

#SPJ8

Evaluate the integral.
∫ln√xdx

Answers

The integral of [tex]\sqrt{x}[/tex] with respect to x is equal to [tex](2/3)x^(3/2) + C[/tex], where C is the constant of integration.

To evaluate the integral  [tex]\sqrt{x}[/tex] with respect to x, we can use the power rule for integration. The power rule states that if we have an integral of the form ∫xⁿ dx, where n is any real number except -1, the result is [tex](1/(n+1))x^(n+1) + C[/tex], where C is the constant of integration.

In this case, the exponent is 1/2, so applying the power rule, we get:

[tex]\int\limits^_[/tex][tex]\sqrt{x}[/tex][tex]dx = (1/(1/2+1))x^(1/2+1) + C = (1/(3/2))x^(3/2) + C = (2/3)x^(3/2) + C[/tex]

Thus, the integral of [tex]\sqrt{x}[/tex] with respect to x is [tex](2/3)x^(3/2) + C[/tex], where C is the constant of integration.

To learn more about integration visit:

brainly.com/question/12231722

#SPJ11

Find the average rate of change of the function over the given interval.
R(θ)= √3 θ+; [5,8]

Answers

The average rate of change of the function R(θ) = √(3θ+1) over the interval [5, 8] can be found by calculating the difference in function values and dividing it by the difference in input values (endpoints) of the interval. ∆R/∆θ = 1/3. the average rate of change of the function R(θ) = √(3θ+1) over the interval [5, 8] is 1/3.


First, we substitute the endpoints of the interval into the function to find the corresponding values:
R(5) = √(3(5)+1) = √16 = 4,
R(8) = √(3(8)+1) = √25 = 5.
Next, we calculate the difference in the function values:
∆R = R(8) - R(5) = 5 - 4 = 1.
Then, we calculate the difference in the input values:
∆θ = 8 - 5 = 3.
Finally, we divide the difference in function values (∆R) by the difference in input values (∆θ):
∆R/∆θ = 1/3.
Therefore, the average rate of change of the function R(θ) = √(3θ+1) over the interval [5, 8] is 1/3.

learn more about interval here

https://brainly.com/question/11051767



#SPJ11

Find the arc length (s) of the curve →r(t)=〈4√3cos(2t),11cos(2t),13sin(2t)〉 for 0≤t≤π

Answers

The arc length of the curve →r(t) = 〈4√3cos(2t), 11cos(2t), 13sin(2t)〉 for 0 ≤ t ≤ π is 26 units.

the arc length of a parametric curve, we need to integrate the magnitude of the derivative of the position vector with respect to the parameter.

Given the curve →r(t) = 〈4√3cos(2t), 11cos(2t), 13sin(2t)〉, we need to find the derivative →r'(t) and compute its magnitude.

Taking the derivative of →r(t) with respect to t, we have:

→r'(t) = 〈-8√3sin(2t), -22sin(2t), 26cos(2t)〉

The magnitude of →r'(t) is given by:

|→r'(t)| = √((-8√3sin(2t))^2 + (-22sin(2t))^2 + (26cos(2t))^2)

= √(192sin^2(2t) + 484sin^2(2t) + 676cos^2(2t))

= √(676cos^2(2t) + 676sin^2(2t))

= √(676)

= 26

the arc length, we need to integrate |→r'(t)| with respect to t over the interval [0, π]:

s = ∫[0,π] |→r'(t)| dt

= ∫[0,π] 26 dt

= 26[t] [0,π]

= 26(π - 0)

= 26π

Therefore, the arc length of the curve →r(t) = 〈4√3cos(2t), 11cos(2t), 13sin(2t)〉 for 0 ≤ t ≤ π is 26π units.

To learn more about  arc length

brainly.com/question/31762064

#SPJ11

Let f(x,y) = x^3 + y^3 + 39x^2 - 12y^2 - 8. (-26, 8) is a critical point of f. Using the criteria of the second derivative, which of the following statement is correct.
a. The function f has a local minimum in the point (-26,8)
b. The function f has a saddle point in (-26,8)
c. The function has a local maximum in the point (-26,8)
d. The criteria of the second derivative does not define for this case.

Answers

Let f[tex](x,y) = x³ + y³ + 39x² - 12y² - 8[/tex], with critical point (-26, 8). Using the criteria of the second derivative,

Solution:a) We compute the second partial derivatives, then evaluate them at the critical point:f[tex](x, y) = x³ + y³ + 39x² - 12y² - 8fₓ(x, y) = 3x² + 78x fₓₓ(x, y) = 6xfᵧ(y, x) = 3y² - 24y fᵧᵧ(y, x) = -24yfₓᵧ(x, y) = 0[/tex]Since

fₓₓ[tex](-26, 8) = 6(-26) = -156 < 0[/tex]

The criteria of the second derivative tells us that f has a maximum at (-26, 8).

The function has a local maximum in the point (-26,8).

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Find an equation of the tangent plane to the surface z=4y2−2x2z=4y2−2x2 at the point (4, -2, -16).
z=___

Answers

The equation of the tangent plane to the surface z=4y^2-2x^2 at the point (4,-2,-16) is z=16x+16y-48.

Given that: z=4y²-2x²  at the point (4, -2, -16).

We are to find an equation of the tangent plane to the surface.

A point on the surface is (4,-2,-16)

Now, let us find the normal to the surface at (4,-2,-16).

Then we can find the equation of the tangent plane using the equation of the plane which is:  (−0)+(−0)+(−0)=0,where (0,0,0) is a point on the plane, and (,,) is the normal to the plane.

Normals to the surface can be found by taking partial derivatives of the surface with respect to x and y respectively.

For the point (4,-2,-16):

∂/∂=−4

=−4(4)

=−16,  ∂/∂

=8

=8(−2)

=−16

The normal to the surface at (4,-2,-16) is then given by,=⟨−16,−16,1⟩

To find the equation of the plane we substitute the values into the equation of the plane:−

16(x−4)−16(y+2)+(z+16)=0-16x+64-16y-32+z+16

=0z

=16x+16y-48

We get the required equation of the tangent plane to the surface z=4y^2-2x^2 at the point (4,-2,-16) as

z=16x+16y-48.

To know more about tangent plane visit:

https://brainly.com/question/33052311

#SPJ11

1. Find the equation of the tangent plane to the surface x^2+y^2−z^2=49 at (5,5,1).
2. Determine the relative maxima/minima/saddle points of the function given by f(x,y)=2x^4−xy^2+2y^2.

Answers

1. The equation of the tangent plane can be written as: 10(x - 5) + 10(y - 5) - 2(z - 1) = 0, Simplifying further: 10x + 10y - 2z - 80 = 0, 2. The function f(x, y) = 2x^4 - xy^2 + 2y^2 has two relative minima at (2, 8) and (2, -8), while the critical point (0, 0) requires further analysis.

1. The equation of the tangent plane to the surface x^2 + y^2 - z^2 = 49 at the point (5, 5, 1) can be found using the concept of partial derivatives. First, let's find the partial derivatives of the given surface equation with respect to x, y, and z:

∂(x^2 + y^2 - z^2)/∂x = 2x

∂(x^2 + y^2 - z^2)/∂y = 2y

∂(x^2 + y^2 - z^2)/∂z = -2z

Now, evaluate these partial derivatives at the point (5, 5, 1):

∂(x^2 + y^2 - z^2)/∂x = 2(5) = 10

∂(x^2 + y^2 - z^2)/∂y = 2(5) = 10

∂(x^2 + y^2 - z^2)/∂z = -2(1) = -2

Using the values of the partial derivatives and the coordinates of the given point, the equation of the tangent plane can be written as:

10(x - 5) + 10(y - 5) - 2(z - 1) = 0

Simplifying further:

10x + 10y - 2z - 80 = 0

2. To determine the relative maxima/minima/saddle points of the function f(x, y) = 2x^4 - xy^2 + 2y^2, we need to find the critical points where the gradient vector is zero or undefined. The gradient vector of the function is given by:

∇f(x, y) = (8x^3 - y^2, -2xy + 4y)

To find the critical points, we set each component of the gradient vector equal to zero and solve for x and y:

8x^3 - y^2 = 0       ...(1)

-2xy + 4y = 0        ...(2)

From equation (2), we can factor out y and get:

y(-2x + 4) = 0

This equation gives us two possibilities: y = 0 or -2x + 4 = 0.

If y = 0, substituting it into equation (1) gives us:

8x^3 = 0

This implies x = 0. Therefore, one critical point is (0, 0).

If -2x + 4 = 0, we find x = 2. Substituting this value into equation (1) gives us:

8(2)^3 - y^2 = 0

Simplifying further:

64 - y^2 = 0

This implies y = ±√64 = ±8. Therefore, the other critical points are (2, 8) and (2, -8).

To determine the nature of these critical points, we need to evaluate the second-order partial derivatives of the function at these points. The second-order partial derivatives are given by:

∂^2f/∂x^2 = 24x^2

∂^2f/∂y^2 = -2x + 4

∂^2f/∂x∂y = -2y

Evaluating these partial derivatives at the critical points, we get:

At (0, 0):

∂^2f/∂x^2 = 24(0)^2 = 0

∂^2f/∂y^2 = -2(0) + 4 = 4

∂^2f/∂x∂y = -2(0) = 0

At (2, 8):

∂^2f/∂x^2 = 24(2)^2 = 96

∂^2f/∂y^2 = -2(2) + 4 = 0

∂^2f/∂x∂y = -2(8) = -16

At (2, -8):

∂^2f/∂x^2 = 24(2)^2 = 96

∂^2f/∂y^2 = -2(2) + 4 = 0

∂^2f/∂x∂y = -2(-8) = 16

Using the second derivative test, we can classify the critical points:

At (0, 0): Since the second partial derivatives do not give conclusive information, further analysis is required.

At (2, 8): The determinant of the Hessian matrix is positive (96 * 0 - (-16)^2 = 256), and the second partial derivative with respect to x is positive. Therefore, the point (2, 8) is a relative minimum.

At (2, -8): The determinant of the Hessian matrix is positive (96 * 0 - 16^2 = 256), and the second partial derivative with respect to x is positive. Therefore, the point (2, -8) is also a relative minimum.

In summary, the function f(x, y) = 2x^4 - xy^2 + 2y^2 has two relative minima at (2, 8) and (2, -8), while the critical point (0, 0) requires further analysis.

Learn more about tangent plane here: brainly.com/question/33705648

#SPJ11

Other Questions
10 x 32.8 ft wall is composed from a. 8 in Brick, fired clay b. 1.5 in air gap with 0 and 10 F mean temperature and temperature difference respectively c. Concrete block, Lightweight aggregate., 16-17 lb, 85-87 lb/ft d. Gypsum or plaster board e. Still out door air f. Still indoor air The wall has / in double glaze 20 X 8 in window without thermal break and 80 x 32 x 1 3/4 in Solid core flush door (none storming) Find the overall heat transfer coefficient (U) for the combination considering parallel heat transfer mood. Find the critical points of the function (x,y)=x2+y2+4x8y+5.f(x,y)=x2+y2+4x8y+5. List your answers as points in the form (,)(a,b). i.Determine the rms current of the periodic function.ii. When a 100-ohm resistor is connected in this periodicfunction, what will be the average power? a key organizational requirement for participation in decision making includes: Find the area of the shaded region enclosed by the following functions y=x y=1 y= 1/36 x^2 ZARA uses a First-In.First-Out (FIFO) perpetual inventory system and has the following purchases and selesFebruary10February 1650 units were purchased at535 per unit.75 units wore purchased at$66 per unit.What is the cost per unit sold assuming that 29 units were sold on February 29? UESTION TWO [25] Khozas Manufacturing makes calculators for the local retail markets. They have received an order of 4500 calculators. The order is due for delivery on week 5. Each calculator consists of a cover, process chip and keypad. The cover is made up of a display unit and 2 battery housings. The cover is made by the firm and takes 2 weeks to produce. The process chip and keypads are ordered and the lead time is three weeks. Final assembly requires 1 weeks. There are scheduled receipts as follows: Component Week No. Batch Size 1 2 3 Process Chip 450 900 450 Keypad 480 360 120 MASTER OF BUSINESS ADMINISTRATION ACADEMIC AND ASSESSMENT CALENDAR - DISTANCE REGENT BUSINESS SCHOOL (RBS)- JANUARY 2022 61 2.1 Construct a Bill of Material (BOM) for the above. (5) why is silicone the principle element used inconstructing solar cells Identify how each of these factors make firms responsible tostakeholders:EconomicLegalEthicalPhilanthropic Responsibilities Describe the properties of the environment of the Biometric AISystem in terms of the principal distinctions we can make(accessible vs. inaccessible, deterministic vs. non-deterministic,episodic vs. A transportation management system controls activities at a facility's dock and schedules appointments. True or False. A loan of 10,000 is repayable in 91 days at a simple rate of interest of 8% per annum. Assuming that 1 year is equivalent to 365 days, calculate: (i) the amount repayable in 91 days; (ii) the effective rate of discount per annum; (iii) the equivalent nominal rate of interest per annum convertible quarterly. intense light of a narrow range of wavelengths is called You are trying to decide between two mobile phone carriers. Carrier A requires you to pay $215 for the phone and then monthly charges of $58 for 24 months Carrier B wants you to pay $90 for the phone and monthly charges of $72 for 12 months. Assume you will keep replacing the phone after your contract expires. Your cost of capital is 3.8%. Based on cost alone, which carrier should you choose? Based on cost alone, you will choose (Select from the drop-down menu) rue or False1. Any memory protection mechanism must have the flexibility to allow several processes to access the same portion of the main memory.2. A starvation (or, indefinite blocking) cannot happen in the following following resource-allocation policy:Requests for and releases of resources are allowed at any time. If a request for resources cannot be satisfied because the resources are not available, then we check any processes that are blocked waiting for resources. If a blocked process has the desired resources, then these resources are taken away from it and are given to the requesting process. The need for resources by the blocked process is updated accordingly to include the resources that were taken away.3. In any resource allocation graph, existence of a cycle indicates a deadlock is found. A 1040/208 volt, 60 Hz, 15 KVA transformer has 200 turns on the high side. Calculate:a) Number of turns on the low voltage side.b) The volts per turn induced in the high and low windings.c) Rated current on the high and low sides.d) If a load of 70% of full load, resistive, is connected to the low side, calculate the primary and secondary currents, also determine the transformation ratio. in a negatively skewed polygon, the tail of the distribution trails off to the left, in the direction of the lower scores. (True or False) Using the fact that y_1(x) = e^x is solution of the second order linear homogeneous DE (2+9x) y" 9y' + (7 - 9x) y = 0, find a second linearly independent solution y_2 (x) using the method of reduction of order (Do NOT enter y_2 (x) as part of your answer) and then find the unique solution of the above DE satisfying the initial conditions y(0) = -9, y'(0) = -1 The following parametric equations trace out a loop. x=54/2t y = -4/t+4t+1Find the t values at which the curve intersects itself. t= Find the x and y values of the intersection You have recently been hired as a Compensation Consultant by Chet Rendersson of Rendersson Printing Co (RP) . He is concerned that he does not have enough funds in his account to meet payroll and wants to leave the business in a positive state when he retires in the next year or two. Chad at the urging of Lauramie Rendersson , his daughter, has asked you to step in and design a new total rewards strategy. You have visited the company in Halifax, Nova Scotia and interviewed the staff; you have identified the organizational problems and will provide a summary of these findings with your report.Using the roadmap to effective compensation (found below), prepare a written report for Chet Rendersson providing your structural and strategic recommendations for the implementation of an effective compensation system. Be sure to include all aspects of your strategy in your report, such as job descriptions, job evaluation method and results charts.The positions at Rendersson are: Production workers Production supervisors Salespeople Bookkeeper Administration employeesStep 1 Identify and discuss current organizational problems and root causes of the problems Discuss the companys business strategy Demonstrate your understanding of the people Determine most appropriate Managerial strategy discussing the Structural and Contextual variables to support your findings. Define the required employee behaviours and how these behaviours may be motivated.Step 2 Discuss components of the compensation mix Consider feasibility of using performance pay and what types might work best Examine constraints Formulate the strategyStep 3 Complete a job analysis and use to write your job descriptions for each position Determine most appropriate job evaluation method and carry it out by using the form provided. Add work an appendix Explain how you propose to evaluate individuals performanceStep 4 Design your planStep 5 Create your implementation plan for the strategy.Plus Conclusion