How many kg of gas fill a 11.6 gal gas tank

Answers

Answer 1

Answer:

43.964

Explanation:

i think i used a calculator so let me know if its wrong

Answer 2

Answer:

39.49 kg

Explanation:

:)


Related Questions

What would form a solution?
O A. Mixing two insoluble substances
O B. Mixing a solute and a solvent
O C. Mixing a solute and a precipitate
O D. Mixing two solutes together

Answers

Answer:

B. Mixing a solute and a solvent

Explanation:

Hello,

In this case, solutions are defined as liquid homogeneous mixtures formed when two substances having affinity are mixed. It is important to notice that the two substances are known as solute, which is added to other substance that is the solvent. Therefore, answer is B. Mixing a solute and a solvent.

Notice that when two insoluble substances are mixed no solution is formed. Furthermore, if two solutes together or a solute and a precipitate are mixed, no liquid homogeneous solution is formed, as commonly solutes are solid, nevertheless, when liquid, one should have to act as the solvent.

Best regards.

Answer:

B. Mixing a solute and a solvent

Explanation:

ap3x

List three ways the rate of solvation of sodium chloride in water may be
increased

Answers

Answer:

1) Increasing temperature

2) Stirring

3) Increasing surface area  of salt by grinding it

When researchers need to prepare many reactions for polymerase chain reaction (PCR) amplification, they often create a "master mix" solution. A master mix contains the reagents common to all the planned PCR amplifications, regardless of the target DNA. Making a master mix is a way to minimize the number of pipetting steps.Suppose a researcher needs to PCR amplify seven different genes of interest from different organisms. The researcher prepares a master mix and dispenses it to seven different PCR tubes, one for each gene of interest.Select the PCR components the researcher must add to each of the seven tubes of master mix to selectively amplify each gene of interest.dNTPsMg2+-Mg2+-based bufferprimersDNA polymeraseDNA template

Answers

Answer:

The master mix contains the following reagents: dNTPs, DNA Polymerase, PCR buffer and MgCl2.

Explanation:

The DNA templates are the gene fragments to amplify by PCR, thereby they have to be added separately in each tube. Moreover, the primer pairs are specific for each gene, thereby they have to be added separately in each tube.  

Deoxynucleotide triphosphates (dNTPs) are the building blocks of the DNA molecules: dGTP, dATP, TTP, and dCTP.

The PCR buffer provides a suitable medium for the activity of the DNA polymerase, often it contains Tris-Hcl and KCl.

MgCl2 is a cofactor for the activity of the DNA Polymerase.

The DNA Polymerase is an enzyme that amplifies DNA by adding nucleotides to the 3' end.

The type of nuclear decay an unstable nucleus will undergo depends on its ratio of neutrons to protons. The radioisotope cobalt-65 has a ratio of neutrons to protons of 1.41, which is too high for a nucleus of this size. What nuclear changes could reduce this ratio

Answers

Answer:

Explanation:

In cobalt - 65 ,

no of protons is 27 ( p )

no of neutron = 65 - 27 ( n )

= 38

n / p ratio

=  38 / 27

= 1.41

If case of emission of alpha particle

no of proton p = 27 - 2 = 25

no of neutrons = 38 - 2 = 36

n / p ratio = 36 / 25

= 1.44

So it increases

In case of emission of beta particle

No of neutron n = 38 - 1 = 37

No of proton = 27 + 1 = 28

n / p ratio = 37 / 28

= 1.32

Hence ratio decreases.

Hence beta ray decay will result in decrease in n / p ratio.

8) What is the molarity (M) of an aqueous solution containing 22.5 g of sucrose (C12H22011) in 35.5 mL of solution?
A) 3.52 M
B) 1.85 x 10-2M
C) 0.104 M
D) 0.0657 M
E) 1.85 M

Answers

Answer:

E) 1.85 M

Explanation:

M(C12H22O11) = 342.3 g/mol

22.5 g * 1mol/342.3 g = 0.0657 mol

35.5 mL = 0.0355 L

Molarity = mol solute/L solution = 0.0657 mol/0.0355L =1.85 mol/L = 1.85 M

The molarity of the aqueous solution is 1.85 M. The correct option is E) 1.85 M

From the question,

We are to determine the molarity (that is, concentration) of the given sucrose solution

First, we will determine the number of moles present in the given mass of sucrose

Mass of sucrose = 22.5 g

Using the formula

[tex]Number\ of\ moles = \frac{Mass}{Molar\ mass}[/tex]

Molar mass of sucrose = 342.2965 g/mol

∴ Number of moles of sucrose present = [tex]\frac{22.5}{342.2965}[/tex]

Number of moles of sucrose present = 0.0657325 moles

Now, for the molarity (concentration) of the sucrose solution

From the formula

Number of moles = Concentration × Volume

Then,

[tex]Concentration = \frac{Number\ of\ moles}{Volume}[/tex]

From the question,

Volume = 35.5 mL = 0.0355 L

∴ [tex]Concentration = \frac{0.0657325}{0.0355}[/tex]

Concentration = 1.85 M

Hence, the molarity of the aqueous solution is 1.85 M. The correct option is E) 1.85 M

Learn more here: https://brainly.com/question/23861180

Identify the person who made the correct statement.

Mike said petrified fossils are hard and heavy like rock.

Bobby said that petrified fossils have the same appearance as when they were alive.

Neither Mike nor Bobby is correct.
Mike is correct.
Bobby is correct.
Both Mike and Bobby are correct.

Answers

Answer: Both Mike and Bobby are correct.

Explanation:

Petrifcation can be defined as the process in which the organic material of the dead living being becomes fossil by the replacement of mineral deposition in the bony, hard material.

Thus although the body components gets decomposed wiped out due to this process. The body shape of the dead organism remains the same as that was in living.

Thus the statements made by Mike and Bobby both are correct. The fossils are hard and have the same appearance as when they were alive.

ultraviolet photon (λ = 58.4nm) from a helium gas discharge tube is absorbed by a hydrogen molecule which is at rest. Since momentum is conserved, what is the velocity of the hydrogen molecule after absorbing the photon? What is the translational energy of the hydrogen molecule in Jmol-1.
[h = 6.626 x 10-34 Js; NA = 6.022 x 1023 mol-1]

Answers

Answer:

Translation energy of 1 mole of H2 molecules = KE x Avogadros number

[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]

Explanation:

Photon wavelength [tex]= 58.4 nm = 58.4 * 10^{-9} m[/tex]

Photon momentum = h/wavelength

[tex]= (6.626 * 10^{-34})/(58.4 * 10^{-9})\\\\ = 1.1346 * 10^{-26} \ kg.m/s[/tex]

Mass of H2 molecule m = molar mass/Avogadros number

[tex]= (2.016)/(6.022 * 10^{23})\\\\= 3.3477 * 10^{-24} \ g = 3.3477 * 10^{-27} \ kg[/tex]

Since momentum is conserved:

Photon momentum = H2 molecule momentum = mass x velocity of H2

[tex]1.1346 * 10^{-26} = 3.3477 * 10^{-27} * v[/tex]

velocity [tex]v = 3.389 m/s = 3.39 m/s[/tex]

Translation energy of 1 H2 molecule = kinectic energy (KE) = (1/2)mv^2

[tex]= 1/2 * 3.3477 * 10^{-27} * 3.389^2\\\\= 1.923 * 10^{-26} J[/tex]

Translation energy of 1 mole of H2 molecules = KE x Avogadros number

[tex]= 1.923 * 10^{-26} * 6.022 * 10^{23}\\\\= 0.0116 J \\\\= 1.16 * 10^{-2} \ J[/tex]

How many grams of 02 are needed to react with 7.50g of ethanol

Answers

write eqn, find mols, compare ratio and take mols times mr of O2 to find mass

How many protons are in an ion with 36 electrons and a -1 charge

Answers

Answer:

Explanation:

There are 35 protons.

The number of electrons = 36 electrons gives a -1 charge.

Where did all the other minus charges go?

They must be balanced by 35 protons.

Ni
Express your answer in condensed form in the order of orbital filling as a string without blank space between orbitals. For example, [He]2s22p2 should be entered as [He]2s^22p^2.

Answers

Answer:

[Ar]3d^84s^2

Explanation:

From the question given, we are asked to write the condensed form of electronic configuration of nickel, Ni.

To do this, we simply write the symbol of the noble gas element before Ni in a squared bracket followed by the remaining electrons to make up the atomic number of Ni.

This is illustrated below:

The atomic number of Ni is 28.

The noble gas before Ni is Argon, Ar.

Therefore, the condensed electronic configuration of Ni is written as:

Ni(28) => [Ar]3d^84s^2

Answer:

[Ar] 4s^23d^8

Explanation:

A balanced equation has

Answers

Answer:

A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge is the same for both the reactants and the products.In other words, the mass and the charge are balanced on both sides of the reaction.

Explanation:

Phosphofructokinase is a four‑subunit protein with four active sites. Phosphofructokinase catalyzes step 3 of glycolysis, converting fructose‑6‑phosphate to fructose‑1,6‑bisphosphate. Phosphoenolpyruvate (PEP) is the product of step 9 of glycolysis. The PEP concentration in the cell affects phosphofructokinase activity.Select the true statements about PEP regulation of phosphofructokinase.
1. PEP is a feedback inhibitor of phosphofructokinase.
2. The apparent affinity of phosphofructokinase for its substrate increases when PEP binds.
3. PEP is a positive effector of phosphofructokinase.
4. PEP inhibition of phosphofructokinase yields a sigmoidal velocity versus substrate curve.
5. PEP competes with fructose-6-phosphate for the active site of phosphofructokinase.
6. The binding of PEP to one phosphofructokinase subunit causes a conformation change that affects the ability of the substrate to bind to the other subunits.

Answers

Answer:

1. PEP is a feedback inhibitor of phosphofructokinase.

4. PEP inhibition of phosphofructokinase yields a sigmoidal velocity versus substrate curve.

6. The binding of PEP to one phosphofructokinase subunit causes a conformation change that affects the ability of the substrate to bind to the other subunits.

Explanation:

Phosphofructokinase-1, PFK-1, is an allosteric enzymes composed of four protein subunits.

Allosteric enzymes are enzymes that function through non-covalent binding of allosteric modulators which may be activators or inhibitors. They produce a characteristic velocity versus substrate sigmoidal curve. PFK-1 has a separate binding site for its substrate, fructose-6-phosphate and it's allosteric modulators: ATP, ADP or phosphoenolpyruvate, PEP.

The enzyme can exist in two conformations, the T-state (tense) or the R-state (resting). Binding of substrate causes a conformational change from T-state to R-state, whereas binding of allosteric inhibitors returns it to the T-state.

PEP, the product of step 9 in glycolysis, is an allosteric inhibitor of PFK-1. When it binds to the the allosteric site, it leads to conformational changes in PFK-1 from the R-state to the T-state which reduces the enzymes ability to bind the substrate. These changes are responsible for the sigmoidal velocity/substrate curve in allosteric enzymes.

Therefore, the true statements from the options above are 1, 4, 6.

Options 2,3 and 5 are wrong because PEP is a negative effector of PFK-1, thus its binding reduces the affinity of PFK-1 for its substrate. Also, PFK-1 being an allosteric enzyme has separate binding sites for its substrate and its modulators. Thus, there is no competition for active site binding by substrate and modulators.

Photochromic lenses contain Group of answer choices both AgCl and CuCl embedded in the glass. only AgCl embedded in the glass. neither AgCl nor CuCl embedded in the glass. only CuCl embedded in the glass.

Answers

Answer:

both AgCl and CuCl embedded in the glass

Explanation:

Photochromic lenses contain both AgCl and CuCl embedded in the glass.

They are light-sensitive lenses that adapt to environmental changes. They appear clear when in an apartment or a building and automatically darken when outside as a result of exposure to sunlight. The darkening is activated by the UV component of the sunlight.

Photochromic lenses are otherwise known as light-adaptive or intelligent lenses and they are formed by coating lenses with silver chloride compounds whose concentration ranges from 0.01 to 0.001 %. Copper (I) chloride is also included in addition to the silver halide.

In summary, photochromic lenses contain both AgCl and CuCl.

Determine the amount of heat (in kJ) associated with the production of 5.71 × 104 g of ammonia according to the following equation. N2(g) + 3H2(g) 2NH3ΔH°rxn = −92.6 kJ Assume that the reaction takes place under standard-state conditions at 25°C.

Answers

Answer:

[tex]Q=-3.11x10^5kJ[/tex]

Explanation:

Hello,

In this case, for the given reaction, we are given the standard enthalpy of reaction per mole of ammonia that is -92.6 kJ, it means, that forming one mole of ammonia will release 92.6 kJ of energy. In such a way, for the formation of 5.71x10⁴ g of ammonia, the following amount of heat will be released:

[tex]Q=5.71x10^4gNH_3*\frac{1molNH_3}{17gNH_3}*-92.6\frac{kJ}{molNH_3}\\ \\Q=-3.11x10^5kJ[/tex]

Best regards.

The amount of the heat associated with the production of 5.71×10⁴ g of ammonia, NH₃ is –311026.732 KJ

We'll begin by calculating the number of mole in 5.71×10⁴ g of NH₃

Mass of NH₃ = 5.71×10⁴ g

Molar mass of NH₃ = 14 + (3×1) = 17 g/mol

Mole of NH₃ =?

Mole = mass / molar mass

Mole of NH₃ = 5.71×10⁴ / 17

Mole of NH₃ = 3358.82 moles

Finally, we shall determine the heat required to produce 3358.82 moles (i.e 5.71×10⁴ g) of NH₃. This can be obtained as follow:

N₂(g) + 3H₂(g) —> 2NH₃(g) ΔH°rxn = −92.6 kJ

Since reaction took place at standard conditions, it means:

1 moles of NH₃ required −92.6 kJ

Therefore,

3358.82 moles of NH₃ will require = 3358.82 × –92.6 = –311026.732 KJ

Thus, the amount of the heat associated with the production of 5.71×10⁴ g of ammonia, NH₃ is –311026.732 KJ

Learn more: https://brainly.com/question/17332795

iron oxide + oxygen equals to ?

Answers

Answer:

It's ferric oxide Fe2O3

Explanation:

I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thank me plz...

Iron+ oxygen= Fe+ 3O2 hopefully this will help!

What is the molar mass of P2O5?

Answers

Answer:

142 grams

Explanation:

To find the molar mass of a molecule or compound, you simply need to add together the molar masses of all of the atoms that comprise it. Phosphorus has a molar mass of about 31, while oxygen has one of about 16, meaning that the molar mass of this molecule is:

2(31)+5(16)=62+80=142

Hope this helps!

When 25ml of sulphuric acid, was titrated with 0.0820 mol/L sodium hydroxide solution the end point was detected (with phenolphthalein) at 22.5ml . Calculate the concentration of sulphuric
acid in mol/L.​

Answers

Answer:

the concentration of sulphuric acid is 14mol/l

Suppose the amount of a certain radioactive substance in a sample decays from to over a period of days. Calculate the half life of the substance. Round your answer to significant digit.

Answers

The given question is incomplete, the complete question is:

Suppose the amount of a certain radioactive substance in a sample decays from 1.30 mg to 100. ug over a period of 29.5 days. Calculate the half life of the substance Round your answer to 2 significant digits.

Answer:

The correct answer is 7.974 days.

Explanation:

Based on the given question, the concentration of a radioactive substance present in a sample get decays to 100 micro grams from 1.30 milligrams in 29.5 days. There is a need to find the half-life of the substance.  

Radioactive decay is an illustration of first order reaction.  

K = (2.303 / t) log [a/(a-x)]

Here a is 1.30 mg and (a-x) is 100 micrograms = 100 * 10^-3 mg or 0.1 mg, and t is 29.5 days. Now putting the values we get,  

K = (2.303 /29.5)log (1.30/0.1)

= 2.303/29.5 log13

= 2.303/29.5 * 1.1139

K = 0.0869

The half-life or t1/2 is calculated by using the formula, 0.693 / K

= 0.693 / 0.0869

= 7.974 days.  

Fill in the blank: If an atom is in column V (or 15), it will most likely ____________ to fulfill the octet rule.

Gain 3 electrons

Lose 5 electrons

Gain 5 electrons

Lose 5 protons

Gain 3 protons

Answers

Answer:

If an atom is in column V (or 15), it will most likely gain 3 electrons to fulfill the octet rule.

Explanation:

The octet rule defines the property that atoms have to complete their last energy level with eight electrons to achieve stability through an ionic, covalent or metallic bond.

The pair of electrons that are transferred or gained belong to the last shell of the atom. If an atom is in column V (or 15), it means that it has 5 electrons in its last shell. So an atom in this group is more likely to gain 3 electrons to achieve stability than to lose the 5 electrons it has.

If an atom is in column V (or 15), it will most likely gain 3 electrons to fulfill the octet rule.

A.  Gain 3 electrons

What does Octet rule say?

The octet rule defines the property that atoms have to complete their last energy level with eight electrons to achieve stability through an ionic, covalent or metallic bond.

The pair of electrons that are transferred or gained belong to the last shell of the atom. If an atom is in column V (or 15), it means that it has 5 electrons in its last shell. So an atom in this group is more likely to gain 3 electrons to achieve stability than to lose the 5 electrons it has.

Thus, correct option is A.

Find more information about Octet rule here:

brainly.com/question/865531

Indicate whether each of the following indicates that a physical or chemical change has taken place when a piece of magnesium metal is studied: (a) Can be cut into tiny pieces (b) Fizzling occurs when placed water (c) Light is emitted when burned (d) Turns to ash

Answers

Answer:

a) Can be cut into tiny pieces - Physical Change

b) Fizzling occurs when placed water -Chemical Change

c) Light is emitted when burned -Chemical Change

d) Turns to ash -Chemical Change

Explanation:

Precision can be defined as the?

Answers

Answer:Precision can be defined as the. reproducibility of a measured value. Precision is how close the measured values are to each others. In contrast with accuracy, accuracy is the agreement between a measured value and an accepted value.

Explanation:

. The pI is called ________________. The rule of calculating pI of an amino acid is that first, write the dissociation equation from fully protonated form to fully deprotonated form, label the charge of each form; second, identify the zwitterionic form (zero charge) and find the closest pKs (left and right side in the dissociation equation); third, average these two pKs. Write the dissociation equations for amino acids, glutamate, histidine, and calculate their pIs.

Answers

Answer:

The isoelectric point is that the pH at which the compound is in an electronically neutral form.

For diss equations, please find them in the enclosed file.

The pIs of 2 amino acids:

Glutamate: pI = 3,2Histidine: pI = 7,6

Explanation:

Formula for the pI calculation: pI = (pKa1 + pKa2)/2

Given 3 pKa :

Acid glutamic with an acid sidechain:

Use the lower 2  pKas (corresponding with 2 -COOH groups)

pKa1 = 2,19; pKa2 = 4,25; so pI = 3,2

Histidine with 2 amino groups:

Use the higher 2 pKas ( -COOH group and -NH= group)

pKa1 = 6; pKa2 = 9,17; so pI = 7,6

Given the information you now know, what is the effect of hyperventilation on blood pH?pH? During hyperventilation, the rapid in the blood CO2CO2 concentration shifts the equilibrium to the which the concentration of H+,H+, thereby the blood pH.

Answers

Answer:

When hypercapnia processes occur, where the concentration of carbon dioxide gas increases in the blood, the protonization of the blood increases, this means that the H + ions increase in concentration, thus generating metabolic acidosis.

This metabolic acidosis is regulated by various systems, but the respiratory system collaborates by generating hyperventilation, to increase blood oxygen pressures, decrease CO2 emissions, and indirectly decrease acidity.

Explanation:

This method of regulating the body is crucial, since the proteins in our body will not be altered if they do not happen.

The enzymes, the red globules, and many more fundamental things for life ARE PROTEINS, that in front of acidic media these modify their structure by denaturing themselves and ceasing to fulfill their functions. This is the reason why it seeks to neutralize the blood pH when it comes to an increase in CO2.

Mass is:

measured in kilograms
measured using a scale
affected by gravity
all of the above

Answers

Measured in kilograms

g Reduction involves the A) loss of neutrons, gain of electrons, and an increase in oxidation state. B) loss of neutrons. C) increase in oxidation state. D) gain of electrons and an increase in oxidation state. E) gain of electrons.

Answers

Answer:

E. Gain of electrons

Explanation:

A reduction reaction is one part of the two concurrent reactions that take place in a redox (reduction-oxidation) reaction.

During reduction, an atom gains electrons from a donor atom, and it's oxidation number becomes smaller.

Option A is wrong because reduction does not increase oxidation state nor are neutrons involved

Option B is wrong because reduction is not a nuclear reaction (does not involve the nucleons)

Option C is wrong because reduction leads to reduction in oxidation state

Option D is wrong leads to a reduction in oxidation state when electrons are gained

Option E is correct because reduction involves gain of electrons

The equilibrium constant for the reaction NO2(g)+NO3(g)→N2O5(g) is 2.1x10-20 , therefore: a. At equilibrium, the concentration of products and reactants is about the same. b. At equilibrium, the concentration of products is greater than the reactants. c. At equilibrium, the concentration of reactants is greater than the products

Answers

Answer: c. At equilibrium, the concentration of reactants is greater than the products

Explanation:

Equilibrium constant for a reaction is the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.

For the reaction:

[tex]NO_2(g)+NO_3(g)\rightleftharpoons N_2O_5(g)[/tex]

Equilibrium constant is given as:

[tex]K_{eq}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}[/tex]

[tex]2.1\times 10^{-20}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}[/tex]

When

a) K > 1, the concentration of products is greater than the concentration of reactants

b) K < 1, the concentration of reactants is greater than the concentration of products

c) K= 1, the reaction is at equilibrium, the concentration of reactants is equal to the concentration of products

Thus as [tex]K_{eq}[/tex] is [tex]2.1\times 10^{-20}[/tex] which is less than 1,

the concentration of reactants is greater than the concentration of products

A pure sample of the R enantiomer of a compound has a specific rotation, [ α], of +20 °. A solution containing 0.2 g/mL of a mixture of enantiomers rotates plane polarized light by −2 ° in a 1 dm polarimeter. What is the enantiomeric excess (%ee) of the mixture?

Answers

Answer:

Explanation:

The specific rotation of the sample is -2 degrees/0.2 g/mL of mixture

This equals -10 degrees/g/mL of sample.

let the proportion of the R (+) enantiomer be x. The proportion of the S (-) enantiomer in the mixture will be given by (1-x).

specific rotation of the mixture = proportion of R enantiomer* its specific rotation + proportion of S enantiome * its specific rotation

i.e.

-10 = x *(+20) + (1-x)*(-20)

-10 = 20x-20 + 20x

-10+20 = 40x

+10 = 40 x

x=10/40 = 25%

Since the proportion of the other enantiomer is 1-x, it is 0.75 or 75%

So the mixture contains 25% R, 75% S, giving you an excess of 50%.

Answer:

10%

Explanation:

Enantiomeric excess is a way of describing how optically pure a mixture is by calculating the purity of the major enantiomer. It can range from 0%-100%. Enantiomeric excess ( ee ) can also be defined as the absolute difference between the mole fractions of two enantiomers.

Enantiomeric excess is also called optical purity. This is because chiral molecules cause the rotation of plane-polarized light and are said to be optically active. An enantiomerically pure sample has an enantiomeric excess of 100 percent

Enantiomeric excess = observed specific rotation/specific rotation of the pure enantiomer x 100

From the data given in the question;

observed specific rotation= -2°

specific rotation of the pure enantiomer = +20°

Therefore;

ee= 2/20 ×100

ee= 10%

Question 8
1 pts
A closed flask contains a 0.25 moles of O2 which exerts a pressure of
0.50 atm. If 0.75 moles of CO, is added to the container what is the
total pressure in the flask?​

Answers

Answer:

\large \boxed{\text{2.0 atm}}  

Explanation:

We can use Dalton's Law of Partial Pressures:

Each gas in a mixture of gases exerts its pressure separately from the other gases.

0.25 mol of O₂ exerts 0.50 atm.

If you add 0.75 mol of CO, the total amount of gas is  

0.25 mol + 0.75 mol = 1.00 mol

[tex]p_{\text{total}} = \text{1.00 mol} \times \dfrac{\text{0.50 atm}}{\text{0.25 mol}}= \textbf{2.0 atm}\\\\\text{The total pressure in the flask is $\large \boxed{\textbf{2.0 atm}}$}[/tex]

 

The pressure of the closed flask after the addition of 0.75 moles of CO has been 2 atm.

Partial pressure can be defined as the pressure exerted by each gas in a given solution.

The total moles of gas in the container by the addition of CO has been:

Total moles = moles of oxygen + moles of CO

Total moles = 0.25 + 0.75

Total moles = 1 mol.

By using Dalton's law of partial pressure:

Total pressure = total moles [tex]\rm \times\;\dfrac{pressure\;of\;oxygen}{moles\;of\;oxygen}[/tex]

Total pressure = 1 [tex]\rm \times\;\dfrac{0.50}{0.25}[/tex]

Total pressure = 2 atm.

The pressure of the closed flask after the addition of 0.75 moles of CO has been 2 atm.

For more information about partial pressure, refer to the link:

https://brainly.com/question/14281129

Now construct a different electrochemical cell. You put a zinc metal anode in contact with a 0.052 M solution of zinc nitrate and a silver cathode in contact with a 0.0042 M solution of silver(I) nitrate. What is the value of the electric potential at the moment the reaction begins

Answers

Answer:

[tex]1.66~V[/tex]

Explanation:

We have to start with the half-reactions for both ions:

[tex]Zn^+^2~+2e^-~->Zn[/tex] V= -0.76

[tex]Ag^+~e^-~->~Ag[/tex] V= +0.80

If we want a spontaneous reaction (galvanic cell) we have to flip the first reaction, so:

[tex]Zn~->~Zn^+^2~+2e^-~[/tex] V= +0.76

[tex]Ag^+~+~e^-~->~Ag[/tex] V= +0.80

If we want to calculate ºE we have to add the two values, so:

ºE=0.76+0.80 = 1.56 V

Now, we have different concentrations. So, if we want to calculate E we have to use the nerts equation:

[tex]E=ºE~+~\frac{0.059}{n}LogQ[/tex]

On this case, Q is equal to:

[tex]Q=\frac{[Zn^+^2]}{[Ag^+]^2}[/tex]

Because the total reaction is:

[tex]Zn~+~2Ag^+~->~Zn^+^2~+~2Ag[/tex]

So, the value of "Q" is:

[tex]Q=\frac{[0.052 M]}{[0.0042]^2}=2947.84[/tex]

Now, we can plug all the values in the equation (n=2, because the amount of electrons transferred is 2). So:

[tex]E=1.56~V~+~\frac{0.059}{2}Log(2947.84)=1.66~V[/tex]

I hope it helps!

Consider the following reaction. I– 2 H2O2 (l) 2 H2O (l) + O2 (g) A solution contains 15 mL 0.1 M KI, 15 mL of DI water and 5 mL of 3% H2O2. After the decomposition of H2O2 is complete, you titrate the solution with 0.1 M AgNO3. If the catalyst, I–, is not consumed in the reaction and is completely recovered, what volume of the 0.1 M AgNO3 is required to reach the end point?

Answers

Answer:

Explanation:

The given chemical reaction is:

[tex]2H_2O_{(l)} \to^{I^-}} 2H_2O_{(l)}+O_2_{(g)}[/tex]

From above equation  [tex]I^-[/tex] serves as catalyst which is not consumed by the reaction and also it is completely recovered; as a result to that , the full volume of KI will definitely react with AgNO₃.

Given that :

the volume of potassium iodide [tex]V_{KI} = 15 \ ml[/tex]

the molarity of potassium [tex]M_{KI} = 0.1 \ M[/tex]

the volume of distilled water [tex]V_W = 15 \ mL[/tex]

The volume of 3% [tex]H_2O_2 \ \ V_{H_2O_2} = 5 \ mL[/tex]

Molarity of AgNO₃ [tex]M_{AgNO_3} = 0.1 \ M[/tex]

Let take an integral look with the reaction between KI and AgNO₃; we have

[tex]KI + AgNO_3 \to KNO_3 + AgI[/tex]

At the end point; the moles of KI will definitely be equal to the moles of AgNO₃

So;

[tex]M_{KI}V_{KI}= M_{AgNO_3}V_{AgNO_3} \\ \\ V_{AgNO_3} = \dfrac{M_{KI}V_{KI}}{M_{AgNO_3}} \\ \\ \\ V_{AgNO_3} = \dfrac{ 0.1*15}{0.1}[/tex]

[tex]V_{AgNO_3} = 15 \ ml[/tex]

Thus; the volume of 0.1 M AgNO₃  needed to reach the end point is 15 mL

Other Questions
If a=-3/2 b=5/4 and c=7/8 prove that a(b+c) = ab +ac.Thank you in advance is a number written with a variable to indicate the product of the number and the variable in a term. The German scientist,_____________ is considered the father of the American space program.Wernher von BraunWernher von HindenburgWernher von Bismarck Please what is the literary device for .The boys can not eat the fruit An average what takes about 5 kilograms of Carbon Dioxide a year and makes about the same amount of oxygen for us to breathe. Parallelogram L M N O is shown. Angle M is (3 x minus 55) degrees, angle N is (5 y) degrees, and angle O is (2 x) degrees. In parallelogram LMNO, what are the values of x and y? 6. The Grand Theater has 13,451 seats. If 15,340 people need to be seated in the theater for a music concert, write and solvean equation to find the number of seats that need to be added to the theater to accommodate all the people. One can reduce injuries, prevent post-exercise pain, reduce chances of low back pain, and help relieveemotional tension by having an adequate degree of? What is the value of g-1(7) Veda is in the lab and wants to do some imaging of participants memorizing picture cards. Because she doesn't have access to an fMRI machine, what is the next best technique she could use to get information about brain activity during the card task What is the answer ? 1. There are 15 girls and 12 boys in Mrs. Johnson's mathclass. Express the ratio of boys to girls in simplest form. I will give the brainiest answer What is the solution to 2x2+8x=x2-16? A moving train comes to a stop at the station. What happened tomake the train change motion?1)The train experienced an unbalanced force.2)The train experienced a balanced force.3)The train would stop with or without forces.4)The train does not experience forces acting on it. if a function is one to one then the range becomes the what of the inverse function please need help I will be MARKING as BRIANILIST. thank you so much. PLEASE HURRY I DONT KNOW THE ANSWER Sophia provides you with a list of business transactions that occurred during the year. You must use these transactions to demonstrate the first four steps in the accounting cycle: analyzing each transaction, using double entry accounting to record these transactions in the general journal, and posting them to their respective accounts. Finally, you prepare a trial balance, the fourth step in the accounting cycle, which ensures that the first three steps in the accounting cycle have been completed currently. A. The Sisters invest $15,000 in cash in Happy Home Environmental Cleaning (HHEC) B. HHEC buys a building for $10,000 in cash. C. HHEC buys office equipment for $1,800 for cash. D. HHEC buys cleaning supplies for $2,800, agreeing to pay the upplier in 30 days. E. HHEC earns cleaning revenues of $16,460 in cash. F. HHEC earns cleaning revenues of $2,200 on account. G. HHEc paid the following expenses in cash: Wages $4275 Utilities $985 Miscellaneous $195 H. HHEC pays $950 in cash to creditors on account. I. HHEC purchases a two year insurance policy for $2,400 in cash J. At the end of the year, the cost of cleaning supplies on hand is $2040. K. The sisters withdrew $2,000 in cash. f(x) = -4x2 + 12x 9What is the value of the discriminant of f?How many x-intercepts does the graph of f have?