Let Y₁,..., Yn N(μ,0²). State the sampling distribution of Y = n=¹_₁ Y₁. -1 i=1 n1, Σ (Υ; – Υ)2. State the sampling distribution of S² = State the mean and variance of Y and S².

Answers

Answer 1

1. The sampling distribution of Y is a normal distribution with mean nμ and variance nσ².

2. The mean of the sampling distribution of S² is σ², and the variance is 2σ⁴ / (n-1).

In the given notation, Y₁, Y₂, ..., Yₙ are independent and identically distributed (i.i.d.) random variables following a normal distribution with mean μ and variance σ².

1. Sampling Distribution of Y = ∑(i=1 to n) Yᵢ:

The random variable Y represents the sum of n independent normal random variables. The sampling distribution of Y is also a normal distribution. The mean of the sampling distribution of Y can be obtained by the linearity of expectation:

E(Y) = E(∑(i=1 to n) Yᵢ) = ∑(i=1 to n) E(Yᵢ) = ∑(i=1 to n) μ = nμ

The variance of the sampling distribution of Y can be obtained by the linearity of variance:

Var(Y) = Var(∑(i=1 to n) Yᵢ) = ∑(i=1 to n) Var(Yᵢ) = ∑(i=1 to n) σ² = nσ²

Therefore, the sampling distribution of Y is a normal distribution with mean nμ and variance nσ².

2. Sampling Distribution of S²:

The random variable S² represents the sample variance calculated from a sample of n observations. The sampling distribution of S² follows a chi-square distribution with (n-1) degrees of freedom.The mean of the sampling distribution of S² is given by:

E(S²) = σ²

The variance of the sampling distribution of S² is given by:

Var(S²) = 2σ⁴ / (n-1)

Therefore, the mean of the sampling distribution of S² is σ², and the variance is 2σ⁴ / (n-1).

To know more about Mean refer here:

https://brainly.com/question/15323584#

#SPJ11


Related Questions

Inverses of Functions 7. Find fᵒg and gᵒf, if they exist. f = {(-4,-5), (0, 3), (1,6)} and g = {(6, 1), (-5,0), (3,-4)}. 8. Find [gᵒh] (x) and [hg](x), if they exist. g(x) = x + 6 and h(x) = 3x². 9. Find the inverse of this relation. {(-5,-4), (1, 2), (3, 4), (7,8)} 10. Find the inverse of each function. Then graph the function and its inverse. g(x) = 3 + x

Answers

The inverse function is g⁻¹(x) = x - 3.

Let us begin with fᵒg, which stands for f composite g. To calculate this, we first need to apply the function g to the domain of f. f = {(-4,-5), (0, 3), (1,6)} and

g = {(6, 1), (-5,0), (3,-4)}.

So, g(-4) = 1, g(0) = 0, and g(1) = -4. Then,

fᵒg = {(-4,6), (0,-5), (1,1)}.

Now, let's calculate gᵒf, which stands for g composite f. To calculate this, we first need to apply the function f to the domain of

g. f = {(-4,-5), (0, 3), (1,6)} and g = {(6, 1), (-5,0), (3,-4)}.

So, f(6) is undefined, f(-5) = 3, and f(3) is undefined. Then, gᵒf is undefined.

8. Here, we have to calculate [gᵒh] (x) and [hg](x), if they exist.

g(x) = x + 6 and h(x) = 3x².So,

[gᵒh] (x) = g(h(x))

= g(3x²) = 3x² + 6.

Now, [hg](x) = h(g(x))

= h(x+6)

= 3(x+6)²

= 3(x² + 12x + 36).

9. To find the inverse of this relation, we have to swap the x and y values and solve for y.{(-5,-4), (1, 2), (3, 4), (7,8)} becomes {(-4,-5), (2,1), (4,3), (8,7)}.

10. g(x) = 3 + x

The inverse of this function can be found by swapping the x and y values. Then, solving for y:

x = 3 + y

y = x - 3

Therefore, the inverse function is g⁻¹(x) = x - 3.

We have learned about inverses of functions and how to calculate f composite g and g composite f. We have also learned how to find the inverse of a relation and how to find the inverse of a function and graph it.

To know more about the inverse function, visit:

brainly.com/question/25614985

#SPJ11

lim (x,y)→(0,0)

x 2
+y 2

9xy

= A. −1 B. 1 C. 0 D. π E. does not exist mevcut değil

Answers

The limit does not exist. Therefore, the correct answer is (E) does not exist.

Given expression islim (x,y)→(0,0)

x 2
+y 2

9xy

We have to determine the limit of this expression as (x,y) tends to (0,0).

Let's evaluate the limit using polar coordinates:

Substituting x=r cos θ, y=r sin θ, the expression becomes:lim (r,θ)→(0,0)

(r cos θ) 2
+(r sin θ) 2

9(r cos θ)(r sin θ)

After simplification, the expression becomes:

lim (r,θ)→(0,0)

r cos θ sin θ
9

This limit depends on the choice of θ.

Therefore, the limit does not exist. Therefore, the correct answer is (E) does not exist.

Know more about limit here:

https://brainly.com/question/30679261

#SPJ11

A contour map is shown for a function f(x,y) on the rectangle R=[−3,6]×[−1,4]. a. Use the midpoint rule with m=2 and n=3 to estimate the value of ∬R​f(x,y)dA. b. Estimate the average value of the function f(x,y). fave​≈ Hint

Answers

a. The estimated value of ∬R​f(x,y)dA is 105

b. The estimated average value of the function f(x, y) is 7.

a. The rectangle R=[−3,6]×[−1,4] is divided into m = 2 subintervals along the x-axis and n = 3 subintervals along the y-axis. Therefore, each subinterval has a width of Δx = (6 - (-3))/2 = 9/2 and a height of Δy = (4 - (-1))/3 = 5/3.

We can calculate the midpoint of each subrectangle using the formula:

[tex]x_i = x_min + (i - 0.5) * \Delta x\\y_j = y_min + (j - 0.5) * \Delta y[/tex]

where i = 1, 2, ..., m and j = 1, 2, ..., n.

Using the midpoint rule, the estimate of the double integral is given by:

∬R​f(x,y)dA ≈ Δx * Δy * ∑∑[tex]f(x_i, y_j)[/tex]

where the double summation is taken over all the midpoints (x_i, y_j) of the subrectangles.

Calculate the midpoints of the subrectangles.

[tex]x_1 = -3 + (1 - 0.5) * (9/2) = -3 + 4.5 = 1.5\\x_2 = -3 + (2 - 0.5) * (9/2) = -3 + 9 = 6\\y_1 = -1 + (1 - 0.5) * (5/3) = -1 + (1/2) * (5/3) = -1 + 5/6 = -1/6\\y_2 = -1 + (2 - 0.5) * (5/3) = -1 + (3/2) * (5/3) = -1 + 5/2 = 9/2\\y_3 = -1 + (3 - 0.5) * (5/3) = -1 + (5/2) * (5/3) = -1 + 25/6 = 19/6[/tex]

Evaluate the function at each midpoint.

[tex]f(x_1, y_1) = 2\\f(x_1, y_2) = -1\\f(x_1, y_3) = 0\\f(x_2, y_1) = 1\\f(x_2, y_2) = 3\\f(x_2, y_3) = 2[/tex]

∬R​f(x,y)dA ≈ Δx * Δy * ∑∑[tex]f(x_i, y_j)[/tex]

           = (9/2) * (5/3) * (2 + (-1) + 0 + 1 + 3 + 2)

           = (9/2) * (5/3) * 7

           = 15 * 7

           =  105

b. To estimate the average value of the function f(x, y), we can divide the double integral by the area of the rectangle R, which is A = Δx * Δy * m * n.

The average value is then given by:

f_ave ≈ (∬R​f(x,y)dA) / A

Now let's perform the calculations:

Step 1: Calculate the area of the rectangle.

A = Δx * Δy * m * n

 = (9/2) * (5/3) * 2 * 3

 = 15

Step 2: Calculate the average value.

f_ave ≈ (∬R​f(x,y)dA) / A

     = 105 / 15

     = 7

Therefore, the estimated value of ∬R​f(x,y)dA is 105 and the estimated average value of the function f(x, y) is 7.

To know more about estimated value, refer here:

https://brainly.com/question/32263011

#SPJ4

How does sample size affect determinations of statistical significance? The _________ the sample, the ________.
a. larger; greater probability that the variable has an effect
b. smaller; greater probability that the variable has an effect
c. larger; the more confident you can be in your decision to reject or retain the null hypothesis
d. smaller; the more confident you can be in your decision to reject or retain the null hypothesis

Answers

The larger; the sample, the greater probability that the variable has an effect. The correct option is (a).

When it comes to determining statistical significance, a larger sample size increases the statistical power of the analysis.

This means that with a larger sample size, there is a greater probability of detecting a true effect or relationship between variables.

This is because a larger sample size provides more information and reduces the impact of random variability.

Option (a) correctly identifies that a larger sample size leads to a greater probability that the variable has an effect. With a larger sample size, the analysis has more statistical power to detect and accurately estimate the effects or relationships being investigated.

A larger sample size also increases the precision of the estimates and reduces the sampling error, making the results more reliable and representative of the population. It allows for more accurate inference and increases the confidence in the findings.

Therefore, option (c) is also partially correct, as a larger sample size provides more confidence in the decision to reject or retain the null hypothesis.

In summary, a larger sample size improves the ability to detect effects and increases the confidence in the statistical analysis and decision-making process. The correct option is (a).

To know more about "Sampling error" refer here:

https://brainly.com/question/30765764#

#SPJ11

∫ x 11
30(− x 10
3
−5) 4
dx 5
1
(− x 10
3
−5) 5
+C b) 5
1
(− x 10
3
−5) 5
x+C (− x 10
3
−5) 4
x+C d) 4
1
(− x 10
3
−5) 4
+C

Answers

The correct option that represents the antiderivative of the given integral ∫ [tex](x^{11}/(30(-x^{10}/3 - 5))^4) dx[/tex] is option c)[tex](-x^{10}/3 - 5)^5/(5(-x^{10}/3 - 5)^5) + C.[/tex]

To find the antiderivative of the given integral ∫ [tex](x^{11}/(30(-x^{10}/3 - 5))^4)[/tex]dx, we can simplify the expression inside the integral first.

Let's rewrite the integral as ∫ [tex](x^{11}/(30(-x^{10}/3 - 5))^4)[/tex] dx.

Now, let [tex]u = -x^{10}/3 - 5.[/tex] Taking the derivative of u with respect to x, we get:

[tex]du/dx = -10/3 * x^{(10/3 - 1)}[/tex]

[tex]= -10/3 * x^{(7/3)}[/tex]

Next, we can rewrite the integral in terms of u:

∫ [tex](x^{11}/(30(-x^{10}/3 - 5))^4) dx[/tex] = ∫ [tex](x^{11}/(30u)^4) dx.[/tex]

Substituting u and du into the integral, we get:

∫ [tex](x^{11}/(30u)^4) dx[/tex] = ∫ [tex](x^{11}/(30(-x^{10}/3 - 5))^4) dx[/tex]

= -∫[tex](1/(30u)^4) du.[/tex]

Now, we can simplify further:

-∫[tex](1/(30u)^4) du[/tex]= -∫ [tex](1/(30(-x^{10}/3 - 5))^4) du[/tex]

= -∫[tex](1/(30(-x^{10}/3 - 5))^4) (-10/3 * x^(7/3)) dx[/tex]

= 10/3 ∫ ([tex]x^{(7/3)}/(30(-x^{10}/3 - 5))^4) dx.[/tex]

Finally, we can simplify the expression inside the integral:

10/3 ∫[tex](x^{(7/3)}/(30(-x^{10}/3 - 5))^4) dx[/tex] = [tex](10/3) * (-(x^{10}/3 + 5))^5/5 + C[/tex]

[tex]= (-1/3) * (-(x^{10}/3 + 5))^5 + C.[/tex]

To know more about integral,

https://brainly.com/question/31055649

#SPJ11

Complete question:

Solve the following integrals:

∫ x 11 30(− x 10 3 −5) 4 dx 5 1 (− x 10 3 −5) 5 +C

b)∫ 5 1 (− x 10 3 −5) 5 x+C (− x 10 3 −5) 4 x+C

d)∫ 4 1 (− x 10 3 −5) 4 +C

Polygons that are similar have the same shape, but are a different size. Select one: O True O False

Answers

True.Polygons that are similar have the same shape, but are of a different size.

The relationship between corresponding angles and the corresponding side lengths of similar polygons is that they are proportional to each other. So, if a shape is enlarged or reduced, but it retains the same shape, it is considered to be similar to the original shape. Therefore, the statement is true that polygons that are similar have the same shape, but are a different size.

Let us understand polygons in detail:A polygon is a closed figure that has many sides, and it is made up of line segments that are connected end-to-end. In the plane, a polygon can be classified as a simple polygon or a complex polygon. In simple polygons, no line segment intersects another line segment that is not an endpoint of the segment.

Any polygon that is not simple is known as a complex polygon. Similarly, polygons can be classified according to their number of sides, and they are named accordingly. Triangles, quadrilaterals, pentagons, hexagons, heptagons, octagons, and so on are the most frequent polygons.

To know more about Polygons visit:

https://brainly.com/question/17756657

#SPJ11

Solve the following LP model using graphical method: Maximize Z=x−2y
s.t.


x−y≥0
x+2y≤4
x≥0
y≥−1

Answers

The optimal solution is x = 2, y = 0, and the maximum value of Z is Z = 2 - 2(0) = 2. To solve the given linear programming (LP) model using the graphical method, we need to graphically represent the feasible region and find the optimal solution by maximizing the objective function.

Step 1: Graph the Constraints

We start by graphing each constraint individually on a coordinate plane.

The first constraint is x - y ≥ 0, which represents the line y = x. We can draw this line on the plane.

The second constraint is x + 2y ≤ 4. To graph this, we can rewrite it as 2y ≤ -x + 4 and then solve for y, which gives y ≤ (-1/2)x + 2. We can plot this line on the graph as well.

The third constraint x ≥ 0 represents the x-axis, and the fourth constraint y ≥ -1 represents the horizontal line y = -1.

Step 2: Identify the Feasible Region

The feasible region is the area where all constraints are satisfied. It is the intersection of the shaded regions formed by the constraints.

Step 3: Identify the Optimal Solution

To find the optimal solution, we need to maximize the objective function Z = x - 2y. The objective function is represented by a line with a positive slope.

By sliding the objective function line parallel to itself from left to right or right to left, we can observe the points of intersection between the objective function line and the feasible region. The point that gives the maximum value of Z within the feasible region is the optimal solution.

Step 4: Determine the Optimal Solution

By visually inspecting the graph, we can see that the objective function line will intersect the feasible region at the corner point (2, 0). This is the optimal solution for the given LP model.

Therefore, the optimal solution is x = 2, y = 0, and the maximum value of Z is Z = 2 - 2(0) = 2.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

e demand function for a particular product is given by the function \( D(x)=\frac{-2}{9} x^{2}+400 \). Find the consumers' surplus if \( x_{E}=30 \) units.

Answers

The consumer's surplus for [tex]\(x_E = 30\)[/tex] units is [tex]\(-\frac{2000}{3}\)[/tex] or approximately [tex]\(-666.67\)[/tex] units.

To find the consumer's surplus, we first need to determine the demand function. The demand function for a particular product is given by the function [tex]\(D(x) = \frac{-2}{9}x^2 + 400\),[/tex] where [tex]\(x\)[/tex] represents the quantity of the product.

The consumer's surplus represents the difference between what consumers are willing to pay for a product and what they actually pay. Mathematically, it can be calculated by finding the area between the demand curve and the price line for a given quantity.

Given that [tex]\(x_E = 30\)[/tex] units, the consumer's surplus can be calculated as follows:

The price line for [tex]\(x_E\)[/tex] units is determined by evaluating the demand function at [tex]\(x = x_E\):[/tex]

[tex]\[P(x_E) = D(x_E) = \frac{-2}{9}(30)^2 + 400\][/tex]

To find the consumer's surplus, we need to integrate the difference between the demand function and the price line over the range [tex]\([0, x_E]\):[/tex]

[tex]\[CS = \int_{0}^{x_E} (D(x) - P(x_E)) \, dx\][/tex]

Substituting the given demand function and the price line:

[tex]\[CS = \int_{0}^{30} \left(\frac{-2}{9}x^2 + 400 - \left(\frac{-2}{9}(30)^2 + 400\right)\right) \, dx\][/tex]

Simplifying:

[tex]\[CS = \int_{0}^{30} \left(\frac{-2}{9}x^2 + 400 + \frac{2}{9}(30)^2 - 400\right) \, dx\][/tex]

[tex]\[CS = \int_{0}^{30} \left(\frac{-2}{9}x^2 + \frac{2}{9}(30)^2\right) \, dx\][/tex]

[tex]\[CS = \int_{0}^{30} \frac{-2}{9}(x^2 - (30)^2) \, dx\][/tex]

[tex]\[CS = \frac{-2}{9} \int_{0}^{30} (x^2 - 900) \, dx\][/tex]

Integrating term by term:

[tex]\[CS = \frac{-2}{9} \left(\frac{x^3}{3} - 900x\right)\Bigr|_{0}^{30}\][/tex]

Evaluating the definite integral:

[tex]\[CS = \frac{-2}{9} \left(\frac{30^3}{3} - 900 \cdot 30 - 0^3 + 900 \cdot 0\right)\][/tex]

Simplifying further:

[tex]\[CS = \frac{-2}{9} \left(30000 - 27000\right)\][/tex]

[tex]\[CS = \frac{-2}{9} \cdot 3000\][/tex]

[tex]\[CS = -\frac{2000}{3}\][/tex]

Therefore, the consumer's surplus for [tex]\(x_E = 30\)[/tex] units is [tex]\(-\frac{2000}{3}\)[/tex] or approximately [tex]\(-666.67\)[/tex] units.

To know more about surplus visit-

brainly.com/question/31401628

#SPJ11

4500-p² 4 The demand equation for a product is found to be a = price of the product in dollars and q is the quantity. a. Find the price elasticity of demand when the price is $40. b. Is the demand el

Answers

The demand equation for a product is a function that represents the relationship between the price of a product and the quantity demanded by consumers. The price elasticity of demand when the price is $40 is E= (40/Q) (dQ/dP) = (40/Q) (q/40) = 1 Therefore, demand is unit elastic.

The price elasticity of demand measures the responsiveness of the quantity demanded of a product to a change in its price.

It is a crucial concept in economics, particularly in understanding how consumers react to changes in prices.

To answer this question, we use the formula for price elasticity of demand:

E= (P/Q) (dQ/dP) where E is the elasticity,

P is the price of the product, Q is the quantity demanded, and

dQ/dP is the derivative of the quantity demanded with respect to the price.

Given the demand equation,

a = price of the product in dollars and q is the quantity.

Therefore, we can rewrite the equation as follows:

a = Pq Taking the derivative of both sides, we get:

da/dP

= q + P (dq/dP)  Solving for dq/dP,

we get: dq/dP

= (da/dP - q)/P

Plugging in the values, we get:

dq/dP

= (1q - 0)/40

= q/40

Hence, the price elasticity of demand when the price is $40 is

E= (40/Q) (dQ/dP)

= (40/Q) (q/40)

= 1

Therefore, demand is unit elastic.

The demand is unit elastic if the percentage change in quantity demanded is equal to the percentage change in price.

Therefore, a change in price will lead to an equal change in quantity demanded.

If the elasticity is greater than 1, the demand is elastic.

If the elasticity is less than 1, the demand is inelastic.

To know more about Equation  visit :

https://brainly.com/question/29538993

#SPJ11

) A function f(x) and interval [a, b] are given. Check if the Mean Value Theorem can be applied tof on [a, b]. If so, find all values c in [a, b] guaranteed by the Mean Value Theorem Note, If the Mean Value Theorem does not apply, enter DNE for the c value. CM f(x)=2x²-3x²-72x+6 (Separate multiple answers by commas.) on [-5,9]

Answers

According to the Mean Value Theorem, there exists at least one value c in the interval (-5, 9) such that f'(c) = -23.71. The approximate value of c is -24.14.

To check if the Mean Value Theorem (MVT) can be applied to the function f(x) = 2x² - 3x² - 72x + 6 on the interval [-5, 9], we need to verify two conditions:

The function f(x) must be continuous on the closed interval [a, b].The function f(x) must be differentiable on the open interval (a, b).

Let's check these conditions:

Continuity: The function f(x) is a polynomial, and polynomials are continuous for all values of x. Therefore, f(x) is continuous on the interval [-5, 9].Differentiability: The function f(x) is also a polynomial, and polynomials are differentiable for all values of x. Therefore, f(x) is differentiable on the interval (-5, 9).

Since both conditions are satisfied, we can conclude that the Mean Value Theorem applies to f(x) on the interval [-5, 9].

According to the Mean Value Theorem, there exists at least one value c in the interval (-5, 9) such that the derivative of f evaluated at c is equal to the average rate of change of f over the interval [-5, 9].

To find the value(s) of c, we need to find the derivative of f(x) and set it equal to the average rate of change.

f(x) = 2x² - 3x² - 72x + 6

Taking the derivative:

f'(x) = 4x - 6x - 72

Simplifying:

f'(x) = -2x - 72

Now, we calculate the average rate of change of f over the interval [-5, 9]:

Average rate of change = (f(b) - f(a)) / (b - a)

= (f(9) - f(-5)) / (9 - (-5))

= (2(9)² - 3(9)² - 72(9) + 6 - [2(-5)² - 3(-5)² - 72(-5) + 6]) / (9 - (-5))

= (162 - 243 - 648 + 6 - 50 + 75 + 360 + 6) / 14

= -332 / 14

= -23.71

We need to find the value(s) of c such that f'(c) = -23.71.

Solving -2c - 72 = -23.71, we find:

-2c = -23.71 + 72

-2c = 48.29

c ≈ -24.14

Therefore, according to the Mean Value Theorem, there exists at least one value c in the interval (-5, 9) such that f'(c) = -23.71. The approximate value of c is -24.14.

To know more about Mean Value Theorem, visit:

https://brainly.com/question/31033828

#SPJ11

Jacobi wants to install an underground sprinkler system in her backyard the backyard is rectangular with side length 17 m and 26 m .the water pipe will run diagonally across the yard about how many metres of water pipe does Jacobi need .

Answers

The length of the pipe required would be 31.06 meters

The length of the pipe is the hypotenus of the triangle formed :

hypotenus = √opposite² + adjacent²

substituting the values into our equation:

length of pipe = √17² + 26²

length of pipe = √965 = 31.06

Therefore, the length of the pipe needed is 31.06 meters

Learn more on length : https://brainly.com/question/2217700

#SPJ1

The graph shows the function f(x) = |x – h| + k. What is the value of k?

Answers

The calculated value of k is -2.5

How to determine the value of k?

From the question, we have the following parameters that can be used in our computation:

The graph

(see attachment)

Also, we have

f(x) = |x - h| + k

From the graph, we have the vertex to be

(h, k) = (1, -2.5)

By comparison, we have

k = -2.5

Read mroe about functions at

https://brainly.com/question/27915724

#SPJ1

Question Find dx2d2y​ if x2+3y2=−8

Answers

By using differentiation we can find that the value of dx²d²y is 3.

The equationis x² + 3y² = -8

Differentiate both sides of the equation with respect to x: 2x + 6yy' = 0

Differentiate the above equation with respect to x again:

2 + 6(y')² + 6yy'' = 0

Substitute y' = dy/dx into the equation:

2 + 6(dy/dx)² + 6yy'' = 0

Substitute the given equation x² + 3y² = -8 into the above equation:

2 + 6(dy/dx)² - 4x = 0

Differentiate the above equation once more with respect to x:

12(dy/dx)(d²y/dx²) - 4 = 0

Solve for d²y/dx²:

12(dy/dx)(d²y/dx²) = 4

Divide both sides by 12:

(dy/dx)(d²y/dx²) = 4/12

Simplify:

(dy/dx)(d²y/dx²) = 1/3

Therefore, the value of d²y/dx² is 1 divided by 3 times the derivative of y with respect to x.

learn more about Derivative here:

https://brainly.com/question/25324584

#SPJ4

Other Questions
What strategies did enslaved people employ to resist, revolt, and sustain their own independent communities and cultures? How did enslaved individuals use White southerners own philosophiespaternalism and Christianity, for exampleto their advantage in these efforts Pen A B C Length (1) 12 m 8 m 6 m Breadth (b) 2 m 3 m 4 m (i) Which pen would take most fencing? (ii) Which pen would you like to minimize the cost of fencing? The pictorial representation of a conceptual data model is called a(n): database entity diagram. relationship systems design entity relationship diagram, database model D Which is not true of indexes? An index is a table containing the key and the address of the records that contain that key value. Indexes are used to improve performance for information retrieval. It is typical that an index would be created for the primary key of each table. Creating any index changes the order in which records are plysically stored on secondary storage: You are considering an investment in Justus Corporation's stock, which is expected to pay a dividend of $2.75 a share at the end of the year (D1=$2.75) and has a beta of 0.9. The risk-free rate is 4.7%, and the market risk premium is 5.5%. Justus currently sells for $47.00 a share, and its dividend is expected to grow at some constant rate, 0 . The data has been collected in the Microsoft Excel Online file below. Open the spreadsheet and perform the required analysis to angwer the question below. Open spreadsheit? Assuming the market is in equilibrium, what does the market believe will be the stock price at the end of 3 years? (That is, what is P3 ?) Round your answer to two decinal places. Do not round your intermediate calculationa. Decide which of the following properties apply to the function. (More than one property may apply to a function. Select all that apply.) y = ln x The function is one-to-one. The domain of the function is (-0, 00). The function is a polynomial function. The graph has an asymptote. The function is increasing on its entire domain. The function is decreasing on its entire domain. The function has a turning point. The range of the function is (-00,00). Now that you have an understanding of the concepts of VLANs and Subnetting, briefly tell me why would you choose one over the other? Are there advantages/disadvantages between Subnetting and VLANs? If you were setting up an Enterprise Level Network today, which would you choose? How did a law passed in 1680 try to prevent rebellions by enslaved people? A customer needs 4-Liter bottles with handles made of HDPE, what technique could be your first choice as a bottle manufacturer?a) Extrusion blow moldingb) Injection blow moldingc) Thermoformingd) Injection molding Which rule of the constitutional convention allow delegates to speak openly? Solve the rational inequality. x4x+3> x+5x([infinity],5)( 45,4) (5,[infinity])(5, 45)(4,[infinity])(4, 45)(5,[infinity])(5,4)( 45,[infinity]) Find the area of the region bounded by the curves y = x(x 0), y = x(x 0) and the line y = 2. [13 marks] Let R be the region bounded by the curve y = x + 1 and the line y = 2x + 4. Find the volume of the solid generated by revolving the region R about the line y = -1. [17 marks] Discuss how scarcity of economic resourcesleads to tradeoffs Two sheets of " plywood are being used to make a 1" thick floor for an orchestra conductor platform. How much stiffer are they if they are glued together to make a "composite" 1" thick floor than if they are just laid one on top of the other? The width of plywood is 48". HelpppReplace the letter \( A \) in the integral \( \int A\left(2 x^{5}-2\right)^{4} d x \) so that the integral evaluates to \( \frac{1}{5}\left(2 x^{5}-2\right)^{5}+C \). \[ A= \] Get Help: What can you tell me about the polarity of the xanthophylls compared to carotene? 8. What are the mobile and stationary phases in the chlorophyll TLC experiment? Why are the mobile and stationary phased named that way? 9. Many kinds of intermolecular forces cause organic molecules to bind to the adsorbent on a TLC plate. Rank the strengths of these interactions (use 1 for the WEAKEST; 4 for the STRONGEST). H-bonding van der Waals salt formation dipole-dipole Euler equations are based on the following assumptions: . The column is perfectly straight, with no initial crookedness. . The load is axial, with no eccentricity. . The column is pinned at both ends. For this reason, what are we doing to correct the calculation? a) Use flange b) Using the effective length c)Use slenderness ratio d)Use buckling A researcher has conducted a market survey to test fuel efficiency performance on different brands of cars. Five cars for each brand were each test-driven in kilometers. The data obtained are as follows: Score (kilometers per liter) Total Mean Brand A 7.6 8.4 8.5 7.8 9.4 41.7 8.3 Brand B 7.8 8.0 9.2 9.5 8.6 43.2 8.6 Brand C 9.6 10.4 8.2 8.7 10.3 47.2 9.4a) Indicate the null and alternative hypotheses. b) Compute test statistics using ANOVA (including the SST, SSA, SSW and F test). c) Identify the ANOVA procedure of whether there is enough decision to say that the means are equal (= 0.05) Why are there 2-bonds and 1-bond in the p-orbital (MOT)? A certain llquid X has a normal freezing point of 6.50 C and a freezing point depression constant K f=2.68 " Ckg 'mol 1. Calculate the freezing point of a solution made of 42.2 g of potassium bromide (KBr) dissolved in 500 . g of X. Round your answer to 3 significant digits. How does individual change, team change, and organizational change play into this case?What could Daisy have learned through leading change? How could she have achieved better buy-in and institutionalized a faster recruitment process?What role would a change agent play?