Nowdothesameproblemwiththepivotatthe toes. A Ballet dancer puts all her weight on the toes of one foot. If her mass is 60 kg, what is the force that has to be exerted by her leg muscle to hold that pose? Assume the pivot is at the toes.

Answers

Answer 1

Answer:

The force is  [tex]F = 2400 \ N[/tex]

Explanation:

The diagram for this question is shown on the first uploaded image

 From the question we are told that

   The mass of the dancer is  [tex]m_d = 60 \ kg[/tex]

From the diagram the

      The first distance is [tex]l_1 = 20 \ cm[/tex]

      The second distance is  [tex]l_2 = 5 \ cm[/tex]

At equilibrium the moment about the center of the dancers  feet  is mathematically represented as

      [tex]F * l_2 - (mg* l_1)[/tex]

   Where [tex]g= 10 \ m/s^2[/tex]

substituting values

      [tex]F * 5 - (60* 9.8 * 20)[/tex]

=>    [tex]F = \frac{60 * 10 * 30}{5}[/tex]

=>      [tex]F = 2400 \ N[/tex]

   

Nowdothesameproblemwiththepivotatthe Toes. A Ballet Dancer Puts All Her Weight On The Toes Of One Foot.

Related Questions

A 2-kilogram toy car is traveling forward at 1 meter per second when it is hit in the rear by a 3-kilogram toy truck that was traveling at 3 meters per second just before impact. If the two toys stick together, their speed immediately after the collision is

Answers

Answer:

v = 1.4 m/s

Explanation:

This problem is about an inelastic collision. The total momentum before the collision is equal to total momentum after (because of the conservation of momentum law):

[tex]m_1v_1-m_2v_2=(m_1+m_2)v[/tex]  (1)

m1: mass of the toy car = 2 kg

m2: mass of the toy truck = 3 kg

v1: speed of the toy car = 1 m/s

v2: speed of the truck car = 3 m/s

v: speed of both car and truck after the collision = ?

In the equation (1) the negative sign of m2v2 is because of the opposite direction of the toy truck respect to the toy car.

You solve the equation (1) for v, and you replace the values of all variables involved:

[tex]v=\frac{m_1v_1-m_2v_2}{m_1+m_2}\\\\v=\frac{(2kg)(1m/s)-(3kg)(3m/s)}{2kg+3kg}=-1.4\frac{m}{s}[/tex]

this velocity is negative, then, the direction of motion of both car and truck is in the direction of the truck

Hence, the speed of both car and truck toys is 1.4 m/s

I really need help with this question someone plz help !

Answers

Answer:

The answer is option 2.

Explanation:

Both sides are pulling the rope with equal force where the rope doesn't move. So they have a balanced forces.

Coherent light that contains two wavelengths, 660 nm and 470 nm , passes through two narrow slits with a separation of 0.280 mm and an interference pattern is observed on a screen which is a distance 5.50 m from the slits.

Required:
What is the disatnce on the screen between the first order bright fringe for each wavelength?

Answers

Answer:

λ1 = 0.0129m = 1.29cm

λ2 = 0.00923m = 0.92 cm

Explanation:

To find the distance between the first order bright fringe and the central peak, can be calculated by using the following formula:

[tex]y_m=\frac{m\lambda D}{d}[/tex]    (1)

m: order of the bright fringe = 1

λ: wavelength of the light = 660 nm, 470 nm

D: distance from the screen = 5.50 m

d: distance between slits = 0.280mm = 0.280 *10^⁻3 m

ym: height of the m-th fringe

You replace the values of the variables in the equation (1) for each wavelength:

For λ = 660 nm = 660*10^-9 m

[tex]y_1=\frac{(1)(660*10^{-9}m)(5.50m)}{0.280*10^{-3}m}=0.0129m=1.29cm[/tex]

For λ = 470 nm = 470*10^-9 m

[tex]y_1=\frac{(1)(470*10^{-9}m)(5.50m)}{0.280*10^{-3}m}=0.00923m=0.92cm[/tex]

If a metal rod is moved through magnetic field, the charged particles will feel a force, and if there is a complete circuit, a current will flow. We talk about the induced emf of the rod. The rod essentially acts like a battery, and the induced emf is the voltage of the battery. A magnetic field with a strength of 0.732 T is pointing into the page and a metal rod L=0.362 m in length is moved to the right at a speed v of 15.1m/s.

Required:
a. What is the induced emf in the rod?
b. Suppose the rod is sliding on conducting rails, and a complete circuit is formed. If the load resistance is 5.74Ω , what is the magnitude and direction (clockwise or counterclockwise) of the current flowing in the circuit?

Answers

Answer:

a.  4 V

b. 0.697 A

Explanation:

Magnetic field strength B =  0.732 T

length of rod l = 0.362 m

velocity of rod v = 15.1 m/s

a.  EMF can be calculated as

E = Blv = 0.732 x 0.362 x 15.1 = 4 V

b. If the rod is connected to a conducting rail, with resistance R = 5.74Ω

current I = V/R = 4/5.74 = 0.697 A

the current flows in a clockwise direction

help yall 13 points!!

Answers

Answer:

Explanation:

12.)

A. Opposite poles attract

B. Same poles repel

13.)

IDK

A 9.0-V battery (with nonzero resistance) and switch are connected in series across the primary coil of a transformer. The secondary coil is connected to a light bulb that operates on 120 V. Determine the ratio of the secondary to primary turns needed for the bells transformer. Determine the ratio of the secondary to primary turns needed for the bells transformer. Ns/Np=?

Answers

Answer:

N₂ / N₁ = 13.3

Explanation:

A transformer is a system that induces a voltage in the secondary due to the variation of voltage in the primary, the ratio of voltages is determined by the expression

           ΔV₂ = N₂ /N₁  ΔV₁

where ΔV₂ and ΔV₁ are the voltage in the secondary and primary respectively and N is the number of windings on each side.

In this case, they indicate that the primary voltage is 9.0 V and the secondary voltage is 120 V

therefore we calculate the winding ratio

         ΔV₂ /ΔV₁ = N₂ / N₁

         N₂ / N₁ = 120/9

         N₂ / N₁ = 13.3

s good clarify that in transformers the voltage must be alternating (AC)

When the distance between a point source of light and a light meter is reduced from 6.0m to 2.0 m, the intensity of illumination at the meter will be the original value multiplied by _____.

Answers

Answer:

Explanation:

Let the point source have power P .

At distance r , the intensity I

I = P / 4πr² . If intensity at 6 m and 2 m be I₁ and I₂

I₁ = P / 4π x 6²

I₂ =  P / 4π x 2²

I₁ / I₂ = 2² / 6²

= 1 / 9

I₂ = 9 I₁

Intensity will be 9 times that at 6 m .

Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 3.5 mV/m. At what rate is the magnetic field changing?

Answers

Answer

The rate at which the magnetic field is changing is  [tex][\frac{dB}{dt} ] = 0.000467 T/s[/tex]

Explanation

From the question we are told that

   The electric field strength is [tex]E = 3.5mV/m = 3.5 *10^{-3} \ V/m[/tex]

    The radius is  [tex]r = 1.5 \ m[/tex]

The rate of change of the  magnetic  field  is mathematically represented as

        [tex]\frac{d \phi }{dt} = \int\limits^{} {E \cdot dl}[/tex]

Where [tex]dl[/tex] is change of a unit length

     [tex]\frac{d \phi}{dt} = A * \frac{dB}{dt}[/tex]

Where A is the area which is mathematically represented as

     [tex]A = \pi r^2[/tex]

    So

    [tex]E \int\limits^{} { dl} = ( \pi r^2) (\frac{dB}{dt} )[/tex]  

  [tex]E L = ( \pi r^2) (\frac{dB}{dt} )[/tex]  

where L is the circumference of the circle which is mathematically represented as

     [tex]L = 2 \pi r[/tex]

So

     [tex]E (2 \pi r ) = (\pi r^2 ) [\frac{dB}{dt} ][/tex]

      [tex]E = \frac{r}{2} [\frac{dB}{dt} ][/tex]

       [tex][\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }[/tex]

substituting values

      [tex][\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }[/tex]

      [tex][\frac{dB}{dt} ] = 0.000467 T/s[/tex]    

a ballistic pendulum is used to measure the speed of high-speed projectiles. A 6 g bullet A is fired into a 1 kg wood block B suspended by a cord of length l =2.2m. The block then swings through a maximum angle of theta = 60. Determine (a) the initial speed of the bullet vo, (b) the impulse imparted by the bullet on the block, (c) the force on the cord immediately after the impact

Answers

Answer:

(a) v-bullet = 399.04 m/s

(b) I = 2.38 kg m/s

(c) T = 2.59 N

Explanation:

(a) To calculate the initial speed of the bullet, you first take into account that the kinetic energy of both wood block and bullet, just after the bullet impacts the block, is equal to the potential gravitational energy of block and bullet when the cord is at 60° respect to the vertical.

The potential energy is given by:

[tex]U=(M+m)gh[/tex]       (1)

U: potential energy

M: mass of the wood block = 1 kg

m: mass of the bullet = 6g = 6.0*10^-3 kg

g: gravitational constant = 9.8m/s^2

h: distance to the ground

The distance to the ground is calculate d by using the information about the length of the cord and the degrees of the cord respect to the vertical:

[tex]h=l-lsin\theta\\\\h=2.2m-2,2m\ sin60\°=0.29m[/tex]

The potential energy is:

[tex]U=(1kg+6*10^{-3}kg)(9.8m/s^2)(0.29m)=2.85J[/tex]

Next, the potential energy is equal to kinetic energy of the block and the bullet at the beginning of its motion:

[tex]U=\frac{1}{2}(M+m)v^2\\\\v=\sqrt{2\frac{U}{M+m}}=\sqrt{2\frac{2.85J}{1kg+6*10^{-3}kg}}=2.38\frac{m}{s}[/tex]

Next, you use the momentum conservation law, in order to calculate the speed of the bullet before the impact:

[tex]Mv_1+mv_2=(M+m)v[/tex]    (2)

v1: initial velocity of the wood block = 0m/s

v2: initial speed of the bullet

v: speed of bullet and block = 2.38m/s

You solve the equation (2) for v2:

[tex]M(0)+mv_2=(M+m)v[/tex]    

[tex]v_2=\frac{M+m}{m}v=\frac{1kg+6*10^{-3}kg}{6*10^{-3}kg}(2.38m/s)\\\\v_2=399.04\frac{m}{s}[/tex]

The speed of the bullet before the impact with the wood block is 399.04 m/s

(b) The impulse is gibe by the change in the velocity of the block, multiplied by the mass of the block:

[tex]I=M\Delta v=M(v-v_1)=(1kg)(2.38m/s-0m/s)=2.38kg\frac{m}{s}[/tex]

The impulse is 2.38 kgm/s

(c) The force on the cord after the impact is equal to the centripetal force over the block and bullet. That is:

[tex]T=F_c=(M+m)\frac{v^2}{l}=(1.006kg)\frac{(2.38m/s)^2}{2.2m}=2.59N[/tex]    

The force on the cord after the impact is 2.59N

Answer:

The initial speed of the bullet [tex]V_o = 777.97m/s[/tex]The force on the cord immediately after the impact = [tex]19.71N[/tex]

Explanation:

Apply the law of conversion of energy

[tex]V_f = \sqrt{2gh}[/tex]

where,

h = height of which the bullet and block rise after impact

[tex]h = L - Lcos\theta\\\\h = 2.2 - (2.2*cos60)\\\\h = 1.1m[/tex]

Therefore,

[tex]V_f = \sqrt{2gh}\\\\V_f = \sqrt{2*9.8*1.1}\\\\V_f = 4.64m/s[/tex]

From conservation of momentum principle, [tex]m_Bv_B = 0[/tex]

[tex]m_ov_o + m_Bv_B = (m_b+m_B)V_f\\\\0.006V_o = (0.006+1)*4.64\\\\V_o = 777.97m/s[/tex]

C) The force in the cable is due to the centrfugal force of the system, which is due to the motion of the system is a curved path and weight of the system

[tex]F = \frac{m_b+m_B}{L}V_f^2 + (m_b+m_B)g\\\\F = \frac{0.006+1}{2.2}*4.64^2 + (0.006+1)9.81\\\\F = 19.71N[/tex]

For more information on this visit

https://brainly.com/question/17756498

two blocks with masses 2 kg and 4 kg are pushed from rest by the same amount of fore for a distance of 100 m on a frictionless floor. the final kinetic energy of the 2 kg block after the 100 m distance is

Answers

Answer:

the kinetic energy of the 2 kg mass after the 100 m is equal to 1962 J

Explanation:

mass of block A = 2 kg

mass of block B = 4 kg

distance the blocks were pushed = 100 m

NB: Blocks were pushed the same distance at the same equal time period. And the ground is without friction.

Work done in moving the 2 kg mass along the 100 m distance is,

work = force x distance moved

force exerted by the 2 kg mass = 2 x 9.81 m/s^2(acceleration due to gravity)

force = 19.62 N

therefore,

work done = 19.62 x 100 = 1962 Joules of work.

According to energy conservation principles, the kinetic energy impacted of the 2 kg mass through this distance will be equal to the work done in moving the 2 kg mass through this distance.

Therefore, the kinetic energy of the 2 kg mass after the 100 m is equal to 1962 J

A scuba diver and her gear displace a volume of 68.5 L and have a total mass of 71.8 kg . Part A What is the buoyant force on the diver in sea water? FB = nothing N Request Answer Part B Will the diver sink or float?

Answers

Answer:

A) Fb = 671.3 N

B) The diver will sink.

Explanation:

A)

The buoyant force applied on an object by a fluid is given by the following formula:

Fb = Vρg

where,

Fb = Buoyant Force = ?

V = Volume of the water displaced by the object = 68.5 L = 0.0685 m³

ρ = Density of Water = 1000 kg/m³

g = 9.8 m/s²

Therefore,

Fb = (0.0685 m³)(1000 kg/m³)(9.8 m/s²)

Fb = 671.3 N

B)

Now, in order to find out whether the diver sinks or float, we need to find weight of the diver with gear.

W = mg = (71.8 kg)(9.8 m/s²)

W = 703.64 N

Since, W > Fb. Therefore, the downward force of weight will make the diver sink.

The diver will sink.

An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associated with this wave points vertically up. The direction of the electric field vector of this wave is:___________

Answers

Answer:

either +z direction or -z direction.

Explanation:

The direction of the electric field, in an electromagnetic wave always is perpendicular to the direction of the magnetic field and the direction of propagation of the wave.

You assume a system of coordinates with the negative x axis as the west direction, and the y axis as the up direction

In this case, the wave is propagating toward the west (- x direction), and the magnetic field vector points up (+ y direction), then, it is mandatory that the electric field vector points either +z direction or -z direction.

Positive charge Q is placed on a conducting spherical shell with inner radius R1 and outer radius R2. A particle with charge q is placed at the center of the cavity. The net charge on the inner surface of the conducting shell is

Answers

Answer: in this question, the only charge in the cavity is Q. Inside the conducting spherical shell, the electric field is zero.

While outside the shell, the electric field is given by: k(q + Q)/r²

Where;

K= is a constant which is given as, 8.99 x 10^9 N m² / C².

Q= source charge which creates the electric field

q= is the test charge which is used to measure the strength of the electric field at a given location.

r= is the radius

Explanation: Inside the conducting spherical shell, the electric field is zero since the Electric field vanishes everywhere inside the volume of a good conductor.

Use the Bohr model to address this question. When a hydrogen atom makes a transition from the 5 th energy level to the 2nd, counting the ground level as the first,
A. What is the energy E of the emitted photon in electron volts?、
B. What is the wavelength in nanometers of the emitted photon?
C. What is the radius of the hydrogen atom in nanometers in its initial 5th energy level?

Answers

Answer:

A. 2.82 eV

B. 439nm

C. 59.5 angstroms

Explanation:

A. To calculate the energy of the photon emitted you use the following formula:

[tex]E_{n1,n2}=-13.4(\frac{1}{n_2^2}-\frac{1}{n_1^2})[/tex]     (1)

n1: final state = 5

n2: initial state = 2

Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):

[tex]E_{5,2}=-13.6(\frac{1}{5^2}-\frac{1}{2^2})=2.82eV[/tex]

B. The energy of the emitted photon is given by the following formula:

[tex]E=h\frac{c}{\lambda}[/tex]   (2)

h: Planck's constant = 6.62*10^{-34} kgm^2/s

c: speed of light = 3*10^8 m/s

λ: wavelength of the photon

You first convert the energy from eV to J:

[tex]2.82eV*\frac{1J}{6.242*10^{18}eV}=4.517*10^{-19}J[/tex]

Next, you use the equation (2) and solve for λ:

[tex]\lambda=\frac{hc}{E}=\frac{(6.62*10^{-34} kg m^2/s)(3*10^8m/s)}{4.517*10^{-19}J}=4.39*10^{-7}m=439*10^{-9}m=439nm[/tex]

C. The radius of the orbit is given by:

[tex]r_n=n^2a_o[/tex]   (3)

where ao is the Bohr's radius = 2.380 Angstroms

You use the equation (3) with n=5:

[tex]r_5=5^2(2.380)=59.5[/tex]

hence, the radius of the atom in its 5-th state is 59.5 anstrongs

A) The energy E of the emitted photon in electron volts is; E = 2.856 eV

B) The wavelength in nanometers of the emitted photon is; λ = 434.4nm

C) The radius of the hydrogen atom in nanometers in its initial 5th energy level is; rₙ = 1.323 nm

A) Formula for the energy E of the emitted photons is;

E = -13.6([tex]\frac{1}{n_{2}^2} - \frac{1}{n_{1}^2}[/tex])

We are given;

n₂ = 5

n₁ = 2

Thus;

E = -13.6([tex]\frac{1}{5^2} - \frac{1}{2^2}[/tex])

E = 2.856 eV

B) The formula for the wavelength is;

λ = hc/E

where;

h is Planck's constant = 6.626 × 10⁻³⁴ m².kg/s

c is speed of light = 3 × 10⁸ m/s

E is energy of photon

λ is wavelength of the photon

Earlier we saw that E = 2.856 eV. Converting to Joules gives;

E = 4.5758 × 10⁻¹⁹ J

Thus;

λ = (6.626 × 10⁻³⁴ × 3 × 10⁸)/(4.5758 × 10⁻¹⁹)

λ = 4.344 × 10⁻⁷ m

Converting to nm gives;

λ = 434.4nm

C) Formula for the radius of the hydrogen atom is;

rₙ = n²a₀

where;

a₀ is bohr's radius = 5.292 × 10⁻¹¹ m

n = 5

Thus;

rₙ = 5² × 5.292 × 10⁻¹¹

rₙ = 1.323 × 10⁻⁹

rₙ = 1.323 nm

Read more at; https://brainly.com/question/17227537

A student at another university repeats the experiment you did in lab. Her target ball is 0.860 m above the floor when it is in the target holder and the steel ball she uses has a mass of 0.0120 kg. She finds that the target ball travels a distance of 1.40 m after it is struck. Assume g = 9.80 m/s2. What is the kinetic energy (in joules) of the target ball just after it is struck?

Answers

Answer:

11.8 Joules

Explanation:

Given:-

- The height of the target ball, si = 0.860 m

- The mass of target and steel ball, m = 0.012 kg

- The target ball travels a distance ( x ) after being struck = 1.40 m

Find:-

What is the kinetic energy (in joules) of the target ball just after it is struck?

Solution:-

- We are given the initial distance of the target ball as 0.86 m above the floor which travels a distance ( x ) after being struck.

- We will employ the one dimensional kinematic equation of motion to determine the initial velocity ( vi ) of the target ball as follows:

                        [tex]vf^2 = vi^2 - 2*g*x[/tex]

Where,

                  vf: The final velocity of target ball at maximum height = 0

                  g: The gravitational acceleration constant = 9.8 m/s^2

- Plug in the required parameters and evaluate the ( vi ) as follows:

                      [tex]0^2 = vi^2 - 2*( 9.80 )*( 1.40 )\\\\vi^2 = 27.44\\\\vi = \sqrt{27.44} = 5.24 m/s[/tex]

- The kinetic energy ( Ek ) of an object with mass ( m ) and initial velocity ( vi ) is expressed as:

                       [tex]E_k = 0.5*m*(vi)^2\\\\E_k = 0.5*0.86*27.44\\\\E_k = 11.8 J[/tex]

Answer: The kinetic energy of the target ball just after it is struck is 11.8 Joules.

describe Piaget's four stages of cognitive development. Include the major hallmarks of each stage.

Answers

Answer:

Explanation:

Sensorimotor Infants "think" by acting on the world with their eyes, ears, hands, and mouth.

Preoperational. Development of language and make-believe play takes place.

Concrete Operational children think in a logical, organized fashion only when dealing with concrete information they can perceive directly.

Formal Operational.  Adolescences  can also evaluate the logic of verbal statements without referring to real-world circumstances.

Sensorimotor, preoperational, concrete operational, and formal operational are Piaget's four phases of cognitive development.

What is cognitive development?

The way youngsters think, investigate, and figure things out is referred to as cognitive development.

Piaget defined four stages of cognitive development:

1. Sensorimotor. From birth through the age of 18-24 months.

2. Preoperational.From infancy (18-24 months) until toddlerhood (age 7)

3. Operational concrete. 7 to 11 years old

4. Formal operational. From adolescence to adulthood

Hence, sensorimotor, preoperational, concrete operational, and formal operational are Piaget's four phases of cognitive development.

To learn more about the cognitive development refer to:

https://brainly.com/question/14282522

#SPJ2

A transverse wave is traveling through a canal. If the distance between two successive crests is 2.37 m and four crests of the wave pass a buoy along the direction of travel every 22.6 s, determine the following.
(a) frequency of the wave. Hz
(b) speed at which the wave is traveling through the canal. m/s

Answers

Answer:

(a) 0.0885 Hz

(b) 0.21 m/s

Explanation:

(a) Frequency: This can  be defined as the number of cycle completed in one seconds.

From the question,

Note: 2 crest = one cycle,

If four crest = 22.6 s,

Then two crest = (22.6/2) s

= 11.3 s.

T = 11.3 s

But,

F = 1/T

F = 1/11.3

F = 0.0885 Hz.

(b)

Using,

V = λF...................... Equation 1

Where V = speed of wave, F = Frequency of wave, λ = wave length.

Given: F = 0.0885 Hz, λ = 2.37 m.

Substitute these values into equation 1

V = 2.37(0.0885)

V = 0.21 m/s.

A woman weighs 129 lb. If she is standing on a spring scale in an elevator that is traveling downward, but slowing up, the scale will read:___________.
A) more than 129 lb
B) 129 lb
C) less than 129 lb
D) It is impossible to answer this question without knowing the acceleration of the elevator.

Answers

Answer:

C) less than 129 lb.

Explanation:

Let the elevator be slowing up with magnitude of a . That means it is accelerating downwards  with magnitude a .

If R be the reaction force

For the elevator is going downwards with acceleration a

mg - R = ma

R = mg - ma

R measures its apparent weight . Spring scale will measure his apparent weight.

So its apparent weight is less than 129 lb .

A 2.8 kg block slides with a speed of 2.4 m/s on a frictionless horizontal surface until it encounters a spring. Part A If the block compresses the spring 5.6 cm before coming to rest, what is the force constant of the spring

Answers

Answer:

5,142.86

Explanation:

The kinetic energy possessed by the block when sliding will be equal to the energy needed to compress the string.

Kinetic energy = 1/2 mv² and energy stored in the spring = 1/2 ke²

m = mass of the block (in kg) = 2.8 kg

v = speed of the block (in m/s) = 2.4 m/s

k = force constant of the spring

e = extension (in metres) = 0.056m

Since KE = energy stored in the spring

1/2 mv² = 1/2 ke²

mv² = ke²

2.8(2.4)²  = k(0.056)²

16.128 = 0.003136k

k = 16.128/0.003136

k =  5,142.86

The force constant of the spring is 5,236.36

The force that constant of the spring is 5,142.86.

Calculation of the force:

The kinetic energy that should be possessed by the block at the time when sliding will be equivalent to the energy required to compress the string.

Here

Kinetic energy = 1/2 mv² and energy stored in the spring = 1/2 ke²

m = mass of the block (in kg) = 2.8 kg

v = speed of the block (in m/s) = 2.4 m/s

k = force constant of the spring

e = extension (in metres) = 0.056m

Since KE = energy stored in the spring

So,

1/2 mv² = 1/2 ke²

mv² = ke²

Now

2.8(2.4)²  = k(0.056)²

16.128 = 0.003136k

k = 16.128/0.003136

k =  5,142.86

Learn more about force here: https://brainly.com/question/3398162

A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic field that produces on it an upward force exactly equal in magnitude to the wire's weight, causing the wire to "levitate."

Required:
a. What is the field's magnitude?
b. What is the field's direction?

Answers

Answer:

The classification of that same issue in question is characterized below.

Explanation:

The given values are:

Current, I = 50.0 A

Diameter, d = 0.10 cm

(a)...

As we know,

⇒  Magnetic force = Copper wire's weight

So,

⇒   [tex]B\times I\times L=M\times g[/tex]

On putting the estimated values, we get

⇒  [tex]B\times 50\times 1=7.037\times 10^{-3}\times 9.81[/tex]

⇒  [tex]50B=69.03297\times 10^{-3}[/tex]

⇒  [tex]B=1.38\times 10^{-3} \ T[/tex]

(b)...

As we know,

⇒  [tex]m=\delta\times L\times \frac{\pi \ d^2}{4}[/tex]

⇒      [tex]=8960\times 1\times \frac{\pi \ (0.001)^2}{4}[/tex]

⇒      [tex]=2240\times \pi \ 0.000001[/tex]

⇒      [tex]=7.037\times 10^{-3} \ kg[/tex]

What is the relationship between electric force and distance between charged objects and the amount of charge?

Answers

Explanation:

The relationship between electric force and distance between charged objects is given by the formula as follows :

[tex]F=\dfrac{kq_1q_2}{d^2}[/tex]

k is electrostatic constant and d is distance between charges

The electric force between charges is inversely proportional to the square of distance between them.

In this problem you will consider the balance of thermal energy radiated and absorbed by a person.Assume that the person is wearing only a skimpy bathing suit of negligible area. As a rough approximation, the area of a human body may be considered to be that of the sides of a cylinder of length L=2.0m and circumference C=0.8m.For the Stefan-Boltzmann constant use σ=5.67×10−8W/m2/K4.Part aIf the surface temperature of the skin is taken to be Tbody=30∘C, how much thermal power Prb does the body described in the introduction radiate?Take the emissivity to be e=0.6.Express the power radiated into the room by the body numerically, rounded to the nearest 10 W.part bFind Pnet, the net power radiated by the person when in a room with temperature Troom=20∘C

Answers

Answer:

The thermal power emitted by the body is [tex]P_t = 286.8 \ Wm^{-2}[/tex]

The net power radiated is  [tex]P_{net} = 460 \ W[/tex]

Explanation:

From the question we are told that

   The length of the assumed hum[tex]T_{room} = 20 ^oC[/tex]an body is  L =  2.0 m

   The circumference of the assumed human body is  [tex]C = 0.8 \ m[/tex]

   The  Stefan-Boltzmann constant is  [tex]\sigma = 5.67 * 10^{-8 } \ W\cdot m^{-2} \cdot K^{-4}.[/tex]

    The temperature of skin [tex]T_{body} = 30^oC[/tex]

     The temperature of the room is  

    The emissivity is  e=0.6

The thermal power radiated by the body is mathematically represented as

           [tex]P_t = e * \sigma * T_{body}^4[/tex]

substituting value

        [tex]P_t = 0.6 * 5.67*10^{-8} * (303)^4[/tex]

        [tex]P_t = 286.8 \ Wm^{-2}[/tex]

The net power radiated by the body is mathematically evaluated as

    [tex]P_{net} = P_t * A[/tex]

Where A is the surface area of the body which is mathematically evaluated as

     [tex]A = C* L[/tex]

substituting values

      [tex]A = 0.8 * 2[/tex]

      [tex]A = 1.6 m^2[/tex]

=>    [tex]P_{net} = 286.8 * 1.6[/tex]

=>   [tex]P_{net} = 460 \ W[/tex]

when the same amount of heat is added to equal masses of water and copper at the same temperature the copper is heated to a higher final temperature than water. on a molecular level what explains this difference

a. the average kinetic energy of water molecules is greater than the average kinetic energy of the copper
b.more of the heat is transferred to the potential energy of the water molecules than the potential energy of the copper atoms
c.the intermolecular forces between copper atoms are stronger than those between water molecules
d.more of the heat is transferred to the kinetic energy of the water molecules than to the kinetic energy of the copper atoms​

Answers

Answer:

C

Explanation:

The intermolecular forces between the water molecule is less binding than that of the copper molecule. Hence the water would take a shorter time to be converted to vapour where the temperature of boiling is constant however the temperature of that of the copper molecule keeps increasing.

50 points!! please help :((

Answers

for decrease: it’s the first and last one and for increase it’s the middle two

Answer:

Loudness: decreases

Amplitude: decreases

Pitch: stays the same

Frequency: stays the same

Explanation:

1.

An oscilloscope measures how much the microphone is vibrating, or how much electricity it is sending. This means that a louder noise will register higher on the oscilloscope. Since the size of the waves at Y is lower than at X, the loudness of the sound has decreased.

2.

Similarly to loudness, amplitude measures how far the crests of the waves are from the nodes. Since Y is closer to the center line than X, it has a lower amplitude.

3 and 4.

The pitch and frequency, for our purposes, are essentially the same thing here. They are dependent on how close together the waves on the oscilloscope are, or how quickly the microphone is vibrated. Since this stays the same throughout the entire sound, they both stay the same.

Hope this helps!

A uniform disk with a 25 cm radius swings without friction about a nail through the rim. If it is released from rest from a position with the center level with the nail, then what is its angular velocity as it swings through the point where the center is below the na

Answers

Answer:

Explanation:

During the swing , the center of mass will go down due to which disc will lose potential energy which will be converted into rotational kinetic energy

mgh = 1/2 I ω² where m is mass of the disc , h is height by which c.m goes down which will be equal to radius of disc , I is moment of inertia of disc about the nail at rim , ω is angular velocity .

mgr  = 1/2 x ( 1/2 m r²+ mr²) x ω²

gr  = 1/2 x 1/2  r² x ω² + 1/2r² x ω²

g = 1 / 4 x ω² r + 1 / 2 x ω² r

g = 3  x ω² r/ 4

ω² = 4g /3 r

= 4 x 9.8 /  3 x  .25

= 52.26

ω = 7.23  rad / s .

At an intersection of hospital hallways, a convex spherical mirror is mounted high on a wall to help people avoid collisions. The magnitude of the mirror's radius of curvature is 0.560 m.
A) Locate the image of a patient10.6m from the mirror. B) Indicate whether the image is upright or inverted.C) Determine the magnification of the image.

Answers

Answer:

Explanation:

For a convex mirror, the value of its image distance and its focal length are negative.

using the mirror formula 1/f = 1/u+1/v

f is the focal length = Radius of curvature/2 = 0.560/2

f= 0.28m

u is the object distance = 10.6m

v is the position of the image = ?

On substitution;

1/0.28 = 1/10.6 + 1/-v

3.57 = 0.094 - 1/v

3.57 - 0.094 = -1/v

3.476 = -1/v

v = -1/3.476

v = -0.2877m

B) Since the image distance is negative, this means that the image is an upright and a virtual image. All Upright images has their image distance to be negative.

C) Magnification = Image distance/object distance

Magnification  = 0.2877/10.6

Magnification = 0.0271

A skater wearing in – line skates (no friction) is standing in the middle of the aisle inside a bus and is not holding on to anything. Which way would the skater move in reaction to the bus as it pulls away from the bus stopA skater wearing in – line skates (no friction) is standing in the middle of the aisle inside a bus and is not holding on to anything. Which way would the skater move in reaction to the bus as it pulls away from the bus stop

Answers

Before the bus starts moving, the bus and the skater are both standing still.

When the bus starts moving and pulls away from the bus-stop, the skater stays right where she is.  

The people outside on the sidewalk see her standing still, and they see the bus moving out from under her.  

The other passengers on the bus see her rolling backwards down the aisle, toward the back of the bus.

A block is supported on a compressed spring, which projects the block straight up in the air at velocity . The spring and ledge it sits on then retract. You can win a prize by hitting the block with a ball. When should you throw the ball and in what direction to be sure the ball hits the block? (Assume the ball can reach the block before the blochk reaches the ground and that the ball is thrown from a height equal to the release position of the block.)
A. At the instant when the block is at the highest point, directed at the spring.
B. At the instant when the block is at the highest point, directed at the block.
C. At the instant when the block leaves the spring, directed at the spring.
D. At the instant when the block leaves the spring, directed at the block.
E. When the block is back at the spring's original position, directed at that position.

Answers

Answer:

B. At the instant when the block is at the highest point, directed at the block.

Explanation:

Motion of an object is the change in the position of the object with respect to time. On the earth, gravity has a great influence on the motion of an object (especially in a vertical direction).

When the block is projected up in the air, it moves with a varying velocity until the velocity becomes zero due to gravity. Which make the object to rest a little in the air (when velocity = gravity) and starts to fall freely.

To ensure hitting the block by the ball, it is thrown at the block when the block is at its highest point in the air. Since the block would be at rest at this instant before it start to fall at a constant acceleration under gravity.

A woman with mass 50 kg is standing on the rim of a large disk that is rotating at 0.80 rev/s about an axis through its center. The disk has mass 110 kg and radius 4.0 m. Calculate the magnitude of the total angular momentum of the woman–disk system. (Assume that you can treat the woman as a point.)

Answers

Answer:

The angular momentum is  [tex]L = 8440.32 \ kg \cdot m^2 \cdot s^{-1}[/tex]

Explanation:

From the question we are told that

    The mass of the woman is  [tex]m = 50 \ kg[/tex]

     The angular  speed of the rim is  [tex]w = 0.80 \ rev/s = 0.8 * [\frac{2 \pi}{1} ] = 5.024 \ rad \cdot s^{-1}[/tex]

      The mass of the disk is  [tex]m_d = 110 \ kg[/tex]

       The radius of the disk is [tex]r_d = 4.0 \ m[/tex]

The moment of inertia of the disk is mathematically represented as

        [tex]I_D = \frac{1}{2} m_d r^2_d[/tex]

substituting values

          [tex]I_D = \frac{1}{2} * 110 * 4^2[/tex]

          [tex]I_D = 880 \ kg \cdot m^2[/tex]

The moment of inertia of the woman is  

          [tex]I_w = m * r_d^2[/tex]

substituting values

        [tex]I_w = 50 * 4^2[/tex]

       [tex]I_w =800\ kg[/tex]

The moment of inertia of the system (the woman + the large disk ) is  

        [tex]I_t = I_w + I_D[/tex]

substituting values  

      [tex]I_t = 880 +800[/tex]

     [tex]I_t =1680 \ kg \cdot m^2[/tex]

The angular momentum of the system is

      [tex]L = I_t w[/tex]

substituting values  

      [tex]L = 1680 * 5.024[/tex]

      [tex]L = 8440.32 \ kg \cdot m^2 \cdot s^{-1}[/tex]

g it as been suggested that solar powered space ships could get a boost from a laser either on earth or in orbit around earth. the laser would have to be very powerful to give any measurable benefit to the ship. if the laser produces a 0.18-m diameter beam of 490-nm light, what is the minimum angular spread of the beam?

Answers

Answer:

The minimum angular spread of the laser beam is 3.32 × [tex]10^{-6}[/tex] radians (or 3.32 μrad).

Explanation:

The minimum angular spread of a wave is the ratio of its narrowest diameter to its wavelength.

From Rayleigh's formula,

Angular spread = 1.22 (wavelength ÷ diameter)

                          = 1.22 (λ ÷ D)

Given that:

diameter, D = 0.18 m and wavelength, λ = 490 nm, then;

Angular spread of the laser beam = 1.22 (λ ÷ D)

                         = 1.22[tex](\frac{490*10^{-9} }{0.18})[/tex]

                         = 1.22× 2.7222 × [tex]10^{-6}[/tex]

                        = 3.3211 × [tex]10^{-6}[/tex] rad

The minimum angular spread of the laser beam is 3.32 × [tex]10^{-6}[/tex] radians.

Other Questions
HELP!!Determine if the triangles in the figure are congruent if so right the congruency statement and the reason the triangles are congruent explain your answer Which of the following represents 45 = 5 9?A. 45 is 3 times as many as 15B. 9 is 5 times as many as 45C. 5 is 9 times as many as 45D. 45 is 9 times as many as 5 Identify the sound effect in the following line. "I shall go shod in silk," alliteration, onomatopoeia, or assonance how does shakespeare use the motif of darkness in romeo and juliet 1. Describe the main characters and what they seem to want out of life. If you are reading nonfiction, who are the most important people involved in the events of the book, and what do they seem to want? Finally, if the book has no main characters, describe the main forces that are moving the events of the story forward. (any story) In a grade 11 class, 40% of the students are taking Geography, 30% are taking History and 10% are taking both. If 40 students are enrolled in the grade 11 class, how many students are taking neither Geography or History? A jacket costs $35 and has an 8 percent tax rate. Which expression will find the cost of the tax on the jacket? 35 dollars (0.08) 35 dollars (8) 35 dollars (0.08) + 35 dollars 35 dollars (8) + 35 dollars Solve for x 3x - 5 = 2x + 6.01O-1O 110-11 Which action would be considered an act of civil disobedience?O rioting, which causes damage to private and government propertyengaging in a sit-in, in which African Americans stay at a segregated businesslooting, which results in the theft of property from private businessesboycotting, in which people choose not to purchase goods from businesses The height, h in feet, a ball with reach when thrown in the ais is a function of time, t, in seconds,given by the equation h(t)=-16t2+35t+10. Find, to the nearest tenth, the maximum height, in feet, the ball will reach. The time when it reached its maximum height. How many seconds after the ball is thrown it will hit the ground? Please this word is not arranged i want to rearrange it Osueh Mitchell's family is slow cooking 2 3/4 pounds of meat. The recipe says to cook the meat 1 1/2 nours per pound,How long should Mitchell's family cook the meat?A 1 5/6B. 2 3/8 C 4 1/ 8 D. 4 1/4 Read this adapted excerpt from "The Third Philippic," written by Demosthenes in 342 B.C.: It is this fate, I solemnly assure you, that I dread for you, when the time comes that you make your reckoning, and realize that there is no longer anything that can be done. May you never find yourselves, men of Athens, in such a position! Yet in any case, it were better to suffer greatly, than to do anything out of servility towards Philip [or to sacrifice any of those who speak for your good]. A noble recompense did the people in Oreus receive, for entrusting themselves to Philips friends, and thrusting Euphraeus aside! And a noble recompense the democracy of Eretria, for driving away your envoys, and surrendering to Cleitarchus! A noble clemency did he show to the Olynthians, who elected Lasthenes to command the cavalry, and banished Apollonides! It is folly, and it is cowardice, to cherish hopes like these, to give way to evil counsels, to refuse to do anything that you should do, to listen to the advocates of the enemys cause, and to fancy that you dwell in so great a city that, whatever happens, you will not suffer any harm. In which point of view is this excerpt written? A. first person B. second person C. third-person limited D. third-person omniscient At 7pm, the temperature outside was -5 degree celsius. What does |-5| represent in this situation? Can someone plz help me solved this problem I need help ASAP plz help me! Will mark you as brainiest! What is the solution to the following equation? 4(3x 11) + 23 = 5x 14 a 0 b 1 c 10 d 14 If you have read chapter 30 of "to kill a mockingbird" what is one word you would describe the chapter? Can someone help me on these two questions? The student council is hosting a drawing to raise money for scholarships. They are selling tickets for $9 each and will sell 500 tickets. There is one $2,000 grand prize, four $400 second prizes, and sixteen $10 third prizes. You just bought a ticket. Find the expected value for your profit. Round to the nearest cent. Need help with this question