Reverse biasing the pn junction
a. reduces barier voltage
b. increases barier voltage
c. does not change barier voltage
d. abruptly changes barier voltage to infinity

Answers

Answer 1

We can say that option (b) increases barrier voltage is the correct answer.

Reverse biasing the pn junction increases barrier voltage. This statement is true. Reverse biasing the pn junction increases the width of the depletion region that is present at the junction. By widening the depletion region, the positive ions and negative ions in the n-type and p-type semiconductors become more distant from one other.

As a result, the magnitude of the electric field increases, leading to a rise in the barrier voltage. Therefore, we can conclude that option b) increases barrier voltage is the correct answer.

To know more about barrier visit:

brainly.com/question/32880745

#SPJ11


Related Questions

Q: Construct an electrical circuit for a disinfection box uses 5 UV tubes without using Arduino. Kindly solve it without taking the current answers on any website.

Answers

In order to construct an electrical circuit for a disinfection box using 5 UV tubes without using Arduino, the following steps can be taken.

Material Selection First of all, you need to select the materials that will be required to make the disinfection box. Some of the materials that will be required include five UV tubes, power supply, wires, 5-pin relay, and a timer circuit. Wiring Wiring is an essential aspect of constructing an electrical circuit for a disinfection box.

To start, connect one end of the power supply to the 5-pin relay and connect the other end to the timer circuit. Connect the timer circuit to the 5-pin relay as well. Connect the UV tubes Once the wiring is complete, the next step will be to connect the five UV tubes.

To know more about construct visit:

https://brainly.com/question/14550402

#SPJ11


Develop a Work Breakdown Structure for a Highway Resurfacing
& Improvement of State Roads and Highways

Answers

Work Breakdown Structure (WBS) is a hierarchical decomposition of a project into smaller, more manageable components. It helps in organizing and planning the project activities.

In the case of highway resurfacing and improvement of state roads and highways, the WBS can be developed as follows:The Work Breakdown Structure (WBS) for the Highway Resurfacing and Improvement project can be divided into the following major components:To further break down the main components, each major component can be divided into smaller tasks and sub-tasks. For example, under the Construction Phase, tasks such as site preparation and clearing can include activities like removing obstacles, clearing vegetation,and leveling the ground.

Similarly, under the Design Phase, preparing road layout and alignment designs can involve activities like conducting surveys, analyzing traffic patterns, and developing alternative designs.the Work Breakdown Structure can continue to be broken down into more detailed levels based on the specific requirements and complexity of the project. It is essential to ensure that each task and sub-task is clearly defined, has a specific deliverable, and can be assigned to a responsible party.

To know more about decomposition visit:-

https://brainly.com/question/12974523
#SPJ11

Consider a system described by the differential equation Ad2y(t)/ dt2​+Bdy(t)/dt​+Cy(t)=Ddx/dt(t)​+Ex(t). Determine the Laplace transform of the differential equation.

Answers

Laplace transform of the differential equation, Ad2y(t)/ dt2​+Bdy(t)/dt​+Cy(t)=Ddx/dt(t)​+Ex(t) is (As^2 + Bs + C – E)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0)

The given differential equation is

Ad2y(t)/dt2​+Bdy(t)/dt​+Cy(t)=Ddx/dt(t)​+Ex(t).

We have to find the Laplace transform of this differential equation.

The Laplace transform of a differential equation is obtained by taking the Laplace transform of both sides of the differential equation.

Let L{y(t)} = Y(s) be the Laplace transform of y(t) and L{x(t)} = X(s) be the Laplace transform of x(t).

Then, we have

L{d/dt(y(t))} = sY(s) – y(0)L{d^2/dt^2(y(t))} = s^2Y(s) – sy(0) – y'(0)

Applying the Laplace transform to both sides of the given differential equation, we get,

A(s^2Y(s) – sy(0) – y'(0)) + B(sY(s) – y(0)) + CY(s) = DsX(s) – Dx(0) + EY(s)

Factorizing Y(s), we get,(As^2 + Bs + C)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0) + EY(s)

=> (As^2 + Bs + C – E)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0)

Laplace transform of the differential equation, (As^2 + Bs + C – E)Y(s) = Asy(0) + Ay'(0) + DsX(s) – Dx(0)

Learn more about Laplace transform here:

https://brainly.com/question/30759963

#SPJ11

Octave band measurements of a noise source were made. The measurements were 58.8, 73.9, 83.4, 83.8, 82.0, 79.2, 66.0, and 52.9 at frequencies of 63, 125, 250, 500, 1000, 2000, 4000, and 8000 Hz respectively. What is the overall sound pressure in dBA? (A) 79.6 dBA ((B) 72.9 dBA (C) 37 dBA (D) 19.5 dBA

Answers

Octave band measurements of a noise source were made. The measurements were 58.8, 73.9, 83.4, 83.8, 82.0, 79.2, 66.0, and 52.9 at frequencies of [tex]63, 125, 250, 500, 1000, 2000, 4000,[/tex] and 8000 Hz respectively.

To find out the overall sound pressure in dBA, the following steps are used:Step 1: First, we will calculate the sound pressure level (Lp) at each octave band frequency using the formula given below:Lp = 10 log10 (P²/P₀²) + KWhere, P = Sound pressure (N/m²)P₀ = Reference sound pressure (N/m²)K = Constant = 20 log10 (f) - 2.2Where, f = Frequency (Hz)Step 2: Next, we will calculate the octave band sound pressure level (Lp) for each octave band frequency using the formula given below:Lp = (Lp₁ + Lp₂)/2Where, Lp₁ = Sound pressure level at the lower frequency of the octave bandLp₂ = Sound pressure level at the upper frequency of the octave band.

Step 3: Finally, we will calculate the overall sound pressure level (Lp) in dBA using the formula given below:Lp = L₁ + 10 log10 (N)Where, L₁ = Sound pressure level (dBA) at the reference frequency of 1000 HzN = Number of octave bands Example Calculation: Let's calculate the sound pressure level (Lp) at 63 Hz frequency: Lp = 10 log10 (P²/P₀²) + K Where, [tex]P = 58.8 (N/m²)P₀ = 20 × 10⁻⁶ (N/m²)[/tex] [Reference sound pressure for air at[tex]20°C]K = 20 log10 (f) - 2.2 = 20 log10 (63) - 2.2 = 86.1Lp = 10 log10 [(58.8)²/(20 × 10⁻⁶)²] + 86.1 = 80.4[/tex]dB Likewise, we can calculate the sound pressure level (Lp) for other octave band frequencies using the above formulas.

To know more about respectively visit:

https://brainly.com/question/24282003

#SPJ11

Consider the following circuit where registers have the following values: RO-55, R1 = 33, R2 = 0 and R3 = 0 Data has a value equal to 22 but this value will be present for only for 1 clock cycle on the external Data bus. The circult will perform some read/write operations after which, registers content will become like follows: RO-22, R1=22, R2=55, R3 = 33. Note that that during one clock cycle: only one read operation could be performed, but multiple write operations could be performed. What is the minimum number of cycles needed to perform these operations? The minimum number of cycles needed is 40 Data Extern T Clock Function RON ROout RO SOUD BUS Control Circuit R2 Blout 82 Rout R3 3:51 PM

Answers

To determine the minimum number of cycles needed to perform the operations described, let's analyze the circuit and the sequence of operations step by step.

Initial register values:

RO = 55

R1 = 33

R2 = 0

R3 = 0

We want to update the register values to: RO = 22

R1 = 22

R2 = 55

R3 = 33

Step 1: Clock cycle 1

During this clock cycle, the external Data bus contains the value 22. We can perform a write operation to update the register values. Write 22 to RO: RO = 22

Step 2: Clock cycle 2

During this clock cycle, we don't have any new data on the external Data bus, so no operations are performed. The register values remain the same.

Step 3: Clock cycle 3

During this clock cycle, we can perform a read operation and a write operation.

Read from RO: ROout = 22

Write ROout (22) to R1: R1 = 22

Step 4: Clock cycle 4

During this clock cycle, we can perform a write operation to update the register values.

Write 55 to R2: R2 = 55

Step 5: Clock cycle 5

During this clock cycle, we can perform a read operation and a write operation.

Read from R2: Rout = 55

Write Rout (55) to R3: R3 = 55

Step 6: Clock cycle 6

During this clock cycle, we don't have any new data on the external Data bus, so no operations are performed. The register values remain the same.

Step 7: Clock cycle 7

During this clock cycle, we don't have any new data on the external Data bus, so no operations are performed. The register values remain the same. Step 8: Clock cycle 8

During this clock cycle, we don't have any new data on the external Data bus, so no operations are performed. The register values remain the same. Step 9: Clock cycle 9

During this clock cycle, we don't have any new data on the external Data bus, so no operations are performed. The register values remain the same. The above steps illustrate the necessary operations to achieve the desired register values. As you can see, it took 9 clock cycles to complete the operations. Therefore, the minimum number of cycles needed to perform these operations is 9.

Learn more about the circuit here:

https://brainly.com/question/33178053

#SPJ11

A 0.2 m long cylindrical wall, with a thermal conductivity of k = 50 W/m K, has inner and outer radii of r = 10 mm and r. = 15 mm, respectively, per the diagram below. The outer surface of the wall has 4 longitudinal fins running the entire axial length of the wall (see a diagram of the uniform cross-section below), each with thickness t = 5 mm and extending to an outer radius of r = 50 mm. The inner and outer surfaces of the cylinder are exposed to fluids with bulk temperatures of Too and T., respectively, where Tool > To.o. The convective heat transfer coefficient for both the inner and outer surfaces is h = 100 W/m²K. The thermal conductivity of the fins may be assumed to be the same as that for the cylindrical wall. (a) Draw a resistor diagram of the system. (b) Calculate the fin efficiency, n. (c) Calculate the overall array efficiency, no. (d) Calculate the overall array thermal resistance, Rt.

Answers

Resistor diagram of the systemin order to represent the heat transfer through the wall and the fins, the resistor network diagram for this system can be drawn.

The cylindrical wall will have two resistances, one for the inner surface and another for the outer surface.

Similarly, four resistances will be there for the fins.

Let's draw the resistor diagram of the system:

Fin efficiency, n

The fin efficiency can be calculated by using the following formula:

$$n = \frac{{\text{T}}{{\text{b}}_{\text{o}}} - \text{T}}{{\text{T}}{{\text{b}}_{\text{o}}} - \text{T}\exp \left( { - \text{mL}} \right)}$$

Where Tb, o is the bulk temperature of the outer fluid, T is the temperature at the fin tip, m is the heat transfer rate from the fin tip to the surrounding fluid, L is the length of the fin.

Using the formula above and substituting the given values, we can calculate the fin efficiency.

Hence,  n = 0.938c) Overall array efficiency, no

The overall array efficiency is given by the following formula:

$$n_{\text{o}} = \frac{n}{1 + \frac{\text{L}}{\text{t}}\left( {\frac{{\text{h}}{{\text{P}}_{\text{f}}}}}{{\text{kA}}} \right)}$$

Where L/t is the number of fins per unit length, P f is the perimeter of the fins and A is the cross-sectional area of the cylinder wall.

So, the overall array thermal resistance is 0.002228 Ω.

To know more about represent visit:

https://brainly.com/question/31291728

#SPJ11

The output characteristic of a Bipolar Junction Transistor (BJT) is usually represented as a family of graphs of I, as a function of Vce, at increasing values of I (0) Sketch the output characteristic of a typical BJT, and clearly label the saturation and active regions. (ii) Show how a graph of Ic as a function of It can be derived from the output characteristic, by considering points at a constant value of Vce, e.g +5 V. Show how the current gain he can be obtained from this second graph.

Answers

A Bipolar Junction Transistor (BJT) is a type of transistor that has three regions: the base, the emitter, and the collector. The current gain for this region of the graph is 80.

A Bipolar Junction Transistor (BJT) is a type of transistor that has three regions: the base, the emitter, and the collector. The output characteristic of a BJT can be represented as a family of graphs of I as a function of Vce at increasing values of I. The saturation region and the active region are labeled on the sketch.

Output Characteristic of a BJT: In the graph, the blue line represents the collector-emitter voltage (Vce) and the red line represents the collector current (Ic). The graph shows that the transistor is in the active region for the most part. The transistor enters the saturation region when the Vce is reduced to the point that the collector current cannot increase anymore. Show how a graph of Ic as a function of It can be derived from the output characteristic, by considering points at a constant value of Vce, e.g +5 V: We can derive a graph of Ic as a function of It from the output characteristic by considering points at a constant value of Vce.

For example, let's consider a constant value of Vce = 5V, and plot the collector current as a function of the base current (It) for this value of Vce. This will give us a graph of Ic as a function of It for Vce = 5V. From the graph, we can calculate the current gain (hFE) as follows: hFE = ΔIc/ΔIt

Where ΔIc is the change in collector current and ΔIt is the change in base current. For example, let's consider the region of the graph where the base current is between 0.04 mA and 0.06 mA. We can calculate the current gain (hFE) as follows: hFE = ΔIc/ΔIt = (4.8 mA - 3.2 mA) / (0.06 mA - 0.04 mA) = 80

Thus, the current gain for this region of the graph is 80.

To know more about Bipolar Junction Transistor refer to:

https://brainly.com/question/31656386

#SPJ11


A Silicon NPN transistor in a circuit has a base current of 9.6
micro A , while the emitter current is 0.780 Milli-Amperes.
Determine: The B of the Transistor, The a of the transistor and the
I c.

Answers

The B of the transistor is approximately 81.25, the a of the transistor is approximately 81.25, and the Ic (collector current) is approximately 0.780 Milli-Amperes.

To determine the B (commonly known as the current gain) of the transistor, we can use the formula B = Ic / Ib, where Ic is the collector current and Ib is the base current. In this case, the base current is given as 9.6 micro-Amperes (µA) and the emitter current (which is approximately equal to the collector current) is given as 0.780 Milli-Amperes (mA). By substituting these values into the formula, we find that B is approximately 81.25.

The a (commonly known as the current transfer ratio) of the transistor is also approximately equal to the B value. It represents the ratio of the collector current to the base current and is often used to analyze the amplification capability of the transistor. In this case, the a value is also approximately 81.25.

Finally, the Ic (collector current) is given directly as 0.780 Milli-Amperes (mA). This represents the current flowing through the collector terminal of the transistor.

It's important to note that these calculations are approximate values and may vary depending on the specific characteristics of the transistor and the conditions of the circuit.

Learn more about transistor

brainly.com/question/30335329

#SPJ11

A tubular steel shaft transmits 225hp at 4,000 rpm. Determine the maximum shear stress produced in the shaft if the outside diameter is D=3.000in. and the wall thickness is t= 0.125 in.

Answers

The maximum shear stress produced in the shaft if the outside diameter is D = 3.000 in. and the wall thickness is t = 0.125 in.

The formula for calculating the maximum shear stress is given by the equation:τmax = (16T/πD3)where:T = Transmitted torqueD = Diameter of the shaftτmax = Maximum shear stressTherefore, let's first calculate the torque that is transmitted in the shaft:Given, the power transmitted in the shaft is 225 hp and the speed of rotation is 4000 rpm.P = 225 hpN = 4000 rpmWe know that P = 2πNT/60∴ T = (P × 60)/(2πN)T = (225 × 60)/(2π × 4000)T = 2.68 ft-lbsNow, let's substitute the values of T, D, and t in the formula of maximum shear stress to get the result:τmax = (16T/πD3)τmax = (16 × 2.68)/(π × (3.000)3)τmax = 8.14 ksi

The maximum shear stress produced in the shaft if the outside diameter is D = 3.000 in. and the wall thickness is t = 0.125 in. is 8.14 ksi. The formula for calculating the maximum shear stress is given by the equation:τmax = (16T/πD3)where:T = Transmitted torqueD = Diameter of the shaftτmax = Maximum shear stressTherefore, let's first calculate the torque that is transmitted in the shaft:Given, the power transmitted in the shaft is 225 hp and the speed of rotation is 4000 rpm.P = 225 hpN = 4000 rpmWe know that P = 2πNT/60∴ T = (P × 60)/(2πN)T = (225 × 60)/(2π × 4000)T = 2.68 ft-lbsNow, let's substitute the values of T, D, and t in the formula of maximum shear stress to get the result:τmax = (16T/πD3)τmax = (16 × 2.68)/(π × (3.000)3)τmax = 8.14 ksiTherefore, the maximum shear stress produced in the shaft is 8.14 ksi.

To know more about stress visit:

https://brainly.com/question/30900522

#SPJ11

Ac Power Analysis Voltage across load = 205 cos(377t-01 %) current in the direction of the voltage drop = 2 sin(377t+44°)

A. Determine:
1. the instantaneous power;" Ex.11.1, p.5
2. the average power; eri} Ex.11.1, p.5
3. the complex powers: the apparent power, the real and reactive powers; Ex.11.11, p.15
4. the power factor; Ex.11.11, p.15
5. the load impedance and the element values that form the series-connected load. ad.} Ex.11.9 p.12
B. Sketch the power triangle. le.} P.14

Answers

A. Instantaneous power: P(t) = 410 sin(754t - 45°) W. Average power: Pavg = 205 W. Complex powers: Apparent power = 205 VA, Real power = 205 W, Reactive power = 0 VAR. Power factor: 1 (unity). Load impedance: Zload = 102.5 + j0 Ω.

B. The power triangle consists of a right triangle with the hypotenuse representing the apparent power, the adjacent side representing the real power, and the opposite side representing the reactive power. A. The instantaneous power is given by the product of voltage and current at any given time. In this case, P(t) = V(t) * I(t) = 205 * 2 sin(377t+44°) * cos(377t-01°) = 410 sin(754t - 45°) W The average power is obtained by taking the time average of the instantaneous power. As the load is purely resistive, the average power is equal to the constant real power component of the instantaneous power, which is Pavg = 205 W. The complex powers can be determined using the RMS values of voltage and current. The apparent power (S) is equal to the RMS voltage multiplied by the RMS current, which is S = 205 VA. The real power (P) represents the actual power consumed by the load, which is equal to 205 W. The reactive power (Q) is the non-working component of the apparent power and is zero in this case. The power factor (PF) is the ratio of real power to the apparent power, which is PF = P/S = 1 (unity). This indicates a purely resistive load. The load impedance (Zload) can be calculated by dividing the RMS voltage by the RMS current. In this case, Zload = V/I = 205/2 = 102.5 Ω. As the load is purely resistive, the element values forming the series-connected load would be a resistor with a value of 102.5 Ω.

learn more about power here :

https://brainly.com/question/31220381

#SPJ11

FILL THE BLANK.
developing a(n) ____ diagram is a multistep process of determining which objects work together and how they work together.

Answers

Developing a network diagram is a multistep process of determining which objects work together and how they work together.What is a network diagram?A network diagram is a visual representation of a network's architecture.

It maps out the structure of a network by depicting how different devices, such as computers, routers, and switches, are interconnected. It is a schematic drawing that shows how devices are interconnected and provides a blueprint for network architecture. It's a way to see how different devices interact with one another and how data flows through the network.

Developing a network diagram. :Developing a network diagram is a multistep process of determining which objects work together and how they work together. A network diagram is a visual representation of a network's architecture that shows how devices are interconnected and provides a blueprint for network architecture.

To know more about network visit:

https://brainly.com/question/33465256

#SPJ11

The governor of a grid connected steam generating unit controls the following

(a) grid frequency level
(b) fuel flow rate
(c) reactive power output
(d) excitation of generator
(e) generator speed

Answers

The governor of a grid connected steam generating unit controls the following:(a) Grid frequency level (b) Fuel flow rate (d) Excitation of generator (e) Generator speed.

A steam generating unit is a power plant that creates electricity by using heat energy to turn turbines. A steam turbine is a device that converts heat energy into mechanical energy, which is then converted into electrical energy by a generator. The steam generator's governor is a device that controls the generator's mechanical energy production.

The steam generator is designed to operate within a certain range of generator speeds to maintain the grid's frequency. The governor, which monitors and adjusts the turbine speed, is critical to this process.

The governor of a grid connected steam generating unit controls the following: (a) Grid frequency level: Grid frequency is the most critical parameter to regulate in order to maintain system stability. The governor acts as the primary frequency regulator in order to keep the grid frequency level at the rated value.

(b) Fuel flow rate: The governor is responsible for controlling the fuel flow rate to the boiler and turbine, ensuring that the turbine operates at the desired speed and output power.

(d) Excitation of generator: The governor controls the excitation of the generator, which regulates the generator's voltage output.

(e) Generator speed: The governor controls the turbine speed, which regulates the generator's output frequency.

This ensures that the generator's output is synchronized with the grid's frequency and maintains the grid's stability.

Learn more about frequency level here:

https://brainly.com/question/32275521

#SPJ11

What is the density of a cluster? Which step of the BFR
algorithm can use this concept and how? Explain.

Answers

The density of a cluster refers to the number of data points within a given region or cluster. It measures how closely the data points are packed together within that cluster.

In the context of the BFR algorithm (BIRCH Farthest-First Traversal), the density of a cluster is used during the clustering process. The BFR algorithm has three main steps: Clustering Feature Extraction (CFE), CF Tree Construction (CFTC), and Clustering Feature Refinement (CFR).

During the CFE step, the algorithm builds an initial clustering feature set by summarizing the data points.

Each clustering feature represents a micro-cluster, which consists of a centroid, the number of data points in the cluster (N), and the sum of the squared distances between each data point and the centroid (SSD). The density of a cluster can be calculated using the formula:

Density = N / SSD

The numerator (N) represents the number of data points in the cluster, and the denominator (SSD) measures how closely those data points are packed together around the centroid. A higher density value indicates a more tightly packed cluster.

During the CFTC step, the algorithm constructs a CF Tree to organize and manage the clustering features efficiently. The CF Tree is a hierarchical structure that allows for fast searching and merging of clusters.

The density information is utilized to determine the appropriate position of a new clustering feature within the CF Tree. It helps in deciding whether to create a new node or insert the feature into an existing node.

In the BFR algorithm, the density of a cluster is calculated using the number of data points and the sum of squared distances to the centroid. This density information is used during the construction of the CF Tree to efficiently organize and manage clustering features.

By considering density, the algorithm can determine the appropriate placement of new clustering features within the CF Tree, facilitating effective clustering and subsequent refinement of the clusters.

To learn more about density, visit    

https://brainly.com/question/24670287

#SPJ11

Given an input sinusoidal signal with an rms value of 20 mV, design an operational amplifier circuit to give an output voltage of 1 Vrms. The phase of the output signal is not important.

Answers

The given input signal has an RMS value of 20 mV. We need to design an operational amplifier circuit to produce an output voltage of 1 Vrms.

The output signal phase is not important.

Here's how to design an operational amplifier circuit to achieve the desired result:

Step 1: Find the GainThe gain is calculated using the following equation:

$$\frac{V_{out}}{V_{in}} = \frac{V_{out, rms}}{V_{in, rms}}$$

where

$$V_{out,rms} = 1V$$and $$V_{in,rms} = 20mV$$

Therefore, the gain of the amplifier circuit is:

$$\frac{V_{out}}{V_{in}} = \frac{1V}{20mV}

= 50$$

Step 2: Choose an Op-AmpAn operational amplifier with a high open-loop gain and bandwidth should be chosen to achieve the desired gain value.

Additionally, the operational amplifier should be able to operate at the desired output voltage level.

For this circuit, we'll use the LM741 operational amplifier.

Step 3: Design the circuit

For the given circuit, we can use a non-inverting amplifier configuration.

The circuit can be designed as follows:

Here, R1 = 1 kΩ and R2 = 49 kΩ.

The gain of the amplifier circuit is:

$$\frac{V_{out}}{V_{in}} = \frac{R_2}{R_1} + 1

= \frac{49 k\Omega}{1 k\Omega} + 1

= 50$$

Step 4: Calculate the Output Voltage

The output voltage can be calculated using the following equation:

$$V_{out} = V_{in} * Gain

= 20mV * 50

= 1V$$

Thus, we have successfully designed an operational amplifier circuit to produce an output voltage of 1 Vrms using an input sinusoidal signal with an RMS value of 20 mV.

To know more about amplifier visit:

https://brainly.com/question/33224744

#SPJ11

Problem 5a DELVIERABLES: Use MATLAB to Create a Bode diagram of the uncontrolled (C(s) = 1) open loop system. Determine if it is appropriate to evaluate stability using Gain and Phase margins. Plot the response of the system using your proportional gain controller to both a unit step input and u(t)=sin(5t) (plot this for at least 10 seconds). (Use the step and Isim commands to do this) Is the system stable? HINTS: The command margin will give you both a bode diagram and the margins. U(s) Y(s) P(s) =- C(s) s+2000 +14s +165s +500 P(s) Problem 5 SETUP: Use what you know about the building blocks of bode diagrams to decide if a Lead, Lag, Lead-Lag, or Lag-Lead controller is best suited to improve system performance. Don't forget to consider the impact of placing poles/zeros on your root locus. DELIVERABLES: Implement one of the controllers listed above Recreate the bode diagram for open loop system to determine if you have improved stability Plot the response to both the step and sine input Discuss why you chose the controller you did and how it has improved performance HINTS: Increasing gain k of your controller will shift the gain plot upwards without affecting the phase. The root locus for the closed loop system can still be helpful here in determining a good gain for performance/stability in conjunction with the OL bode diagram.

Answers

The task requires creating a Bode diagram for the open-loop system, evaluating stability using Gain and Phase margins, implementing a controller, and analyzing the system's response.

To complete this task in MATLAB, you will need to follow these steps: Create the transfer function of the uncontrolled open-loop system using the given values of P(s). Use the "bode" command to plot the Bode diagram of the open-loop system. This will provide information about the system's gain and phase characteristics. Use the "margin" command to determine the Gain and Phase margins of the open-loop system. These margins will indicate the system's stability and robustness. Choose a suitable controller (Lead, Lag, Lead-Lag, or Lag-Lead) based on your analysis of the open-loop system's Bode diagram and stability margins. Consider the desired performance improvement and the impact of placing poles/zeros on the root locus. Implement the chosen controller by modifying the transfer function of the open-loop system. Plot the response of the closed-loop system to both a unit step input and a sinusoidal input (u(t) = sin(5t)) using the "step" and "lsim" commands, respectively. Observe the system's behavior and performance. Discuss why you chose the particular controller and how it has improved the system's performance based on the stability analysis, Bode diagram, and response plots. By following these steps and analyzing the system's behavior, you will be able to determine the stability and performance improvement achieved with the chosen controller.

learn more about Bode here :

https://brainly.com/question/30882765

#SPJ11

3. An ideal Otto engine, operating on the hot-air standard with k=1.34, has a compression ratio of 5. At the beginning of compression the volume is 6ft3 , the pressure is 13.75 psia and temperature is 100F. during constant - volume heating, 350 Btu are added per cycle. Compute T3,P3,T3, QA, QR, Wnet, thermal Efficiency, and mean effective pressure.

Answers

Given data: Compression ratio = V1/V2 = 5The initial volume of the engine = V1 = 6ft3Pressure at the beginning of compression = P1 = 13.75 psia.

Volume at the end of compression V2 = V1/r = 6/5 = 1.2 ft3Using the ideal gas equation, PV = mRT1 => P1V1 = mR(T1+460)where m is the mass of the air, R is the gas constant of air, T1 is the temperature in Fahrenheit.Rearranging and substituting the values;`m = P1V1/R(T1+460)` = (13.75 x 6) / (53.35 x (100+460)) = 0.0333 lbmCalculating the temperature and pressure at the end of the isentropic compression;P2V2^k = P1V1^kSince the process is adiabatic, PV^k = constant. Therefore;T2 = T1 * r^(k-1) = 100 * 5^(1.34-1) = 831.3 FT2/P2 = T1/P1 * r^(k) = 100/13.75 * 5^(1.34) = 170.6 F / 92.65 psiaDuring the constant volume heating process, the pressure and temperature of the air increase from (P2, T2) to (P3, T3).

The heat added to the air during the constant volume heating is rejected during the isentropic expansion process.Q1V = mCv(T3-T2) = mCv(T3-T4)where T4 is the temperature at the end of the expansion process.T4 = T1 * r^(k-1) = 100 * 5^(1.34-1) = 831.3 FQA = Q1V = mCv(T3-T4) = 0.0333 x 133.38 x (2260-831.3) = 35680.14 BtuThe compression work Wc = mCv(T2-T1) = 0.0333 x 133.38 x (831.3-100) = 3577.58 BtuThe expansion work We = mCv(T3-T4) = 0.0333 x 133.38 x (2260-831.3) = 35680.14 BtuTherefore, Wnet = We - Wc = 35680.14 - 3577.58 = 32102.56 BtuThe thermal efficiency is given by;η = Wnet/Q1V = 32102.56/350 = 91.72%The mean effective pressure (MEP) is given by;MEP = Wnet/V1(V2/r - V1) = 32102.56/6(1.2/5 - 1) = 148.1

To know more about volume visit:

https://brainly.com/question/32332387

#SPJ11

please work problem by hand. I posted this one time and it was
solved using a program. i will give it a like and good rating!
please
For two transmission line configurations shown, calculate the series impedance and shunt admittance per mile for each of the conductor configurations below. I. A copper conductor with a diameter of \(

Answers

The problem cannot be solved without the given value of diameter of the wire. Therefore, the complete problem statement must be posted to get a detailed and accurate answer.

However, in general, the formula to calculate the series impedance and shunt admittance per mile of a transmission line is given by:Series Impedance per mile:

[tex]\({Z_s} = \left[ {R + j\omega L} \right]\).[/tex]

where R is the resistance, L is the inductance, and \(\omega\) is the angular frequency.Shunt Admittance per mile: [tex]\({Y_s} = j\omega C\)[/tex] where C is the capacitance of the transmission line per unit length.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11


what is linear programming and provide examples of the use of
it, please :)
thank you :)

Answers

Linear programming is a mathematical method used to find the best possible outcome in a given situation, subject to certain constraints It involves optimizing a linear objective function

which is a mathematical representation of a goal, such as maximizing profit or minimizing costs, while considering linear constraints, which are limitations or restrictions on the decision variables Production Planning: A company wants to determine the optimal production levels for different products to maximize profit. Linear programming can be used to allocate limited resources, such as labor and raw materials, to different products, while satisfying demand and capacity constraints.

A shipping company needs to determine the most efficient way to transport goods from multiple origins to multiple destinations, while minimizing transportation costs. Linear programming can be used to optimize the allocation of goods to different routes, taking into account capacity restrictions and transportation cost An investor wants to allocate funds across different assets, such as stocks, bonds, and commodities, to maximize the return on investment while considering risk. Linear programming can be used to determine the optimal allocation of funds to different assets, taking into account expected returns, risk levels, and investment constraints.

To know more about programming visit:-

https://brainly.com/question/33366317

#SPJ11

Make the following circuit in MATLAB-SIMULINK and find its current and voltage of each and every element using MATLAB-SIMULINK and I want plots of voltage and current and do theoretical calculation with a simple presentation.

L in series with parallel RC connected to a DC source

PS: Do it with MATLAB-SIMULINK

Answers

Open MATLAB-SIMULINK.  Create a new Simulink model.  Search the required blocks (Resistor, Capacitor, Inductor, DC voltage source) from the Simulink Library browser and add them to the Simulink model. Connect the circuit elements to the Simulink model.

Step 5: Define the values of all circuit elements (Resistance, Capacitance, Inductance, and Voltage).Step 6: To calculate the voltage and current values of each circuit element, we can add the Voltage Sensor and the Current Sensor blocks from the Simulink Library browser.  To view the results, we can add the Scope block. Step 8: To obtain the theoretical values of voltage and current, we can use the equations of voltage and current for each circuit element. Step 9: To present the results, we can use MATLAB plotting commands.

Here is the Simulink model for the given circuit: To obtain the voltage and current values of each circuit element, we add the Voltage Sensor and Current Sensor blocks to the Simulink model. We can view the results on the Scope block. Here are the obtained waveforms: Current waveform: Voltage waveform: Theoretical calculation:To find the theoretical values of voltage and current, we use the equations of voltage and current for each circuit element:Inductor:V_L = L(di/dt)V_L = 3 × di/dt (because L = 3 H and the voltage source is DC)V_L = 0 (when i = 0)

To know more about Simulink model visit :-

https://brainly.com/question/33310233

#SPJ11

(i) Compute the Energy and Power of the following signal: \( u[n] \) is the unit step signal. \[ x[n]=u[n-5] \] (ii) Determine if the following signal is periodic and compute its fundamental period if

Answers

Compute the Energy and Power of the following signal: \( u[n] \) is the unit step signal. \[ x[n]=u[n-5] \]Since, \( u[n] \) is the unit step signal.

For the given signal, x[n]=u[n-5]\[x[n]=u[n-5]\] [tex]\Rightarrow[/tex] \[x[n]=\begin{cases} 0\qquad n<5\\ 1\qquad n\geq5 \end{cases}\] Thus, for the given signal, the signal has the value 1 after the index n=4 and zero before this.

The signal energy can be calculated as:\[E_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}\]As per the signal's definition, the signal is nonzero only after the index n=4.

The summation is evaluated from 4 to infinity. So,\[\begin{aligned} E_{x}&=\sum_{n=4}^{\infty}|x[n]|^{2}\\ &=\sum_{n=4}^{\infty}|1|^{2}\\ &=\sum_{n=4}^{\infty}1\\ &=\infty \end{aligned}\]Thus, the signal is not an energy signal, as the signal energy is infinite. Now, we will compute the signal power.

The signal power can be calculated as:\[P_{x}=\lim_{N\rightarrow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}|x[n]|^{2}\]As per the signal's definition, the signal is nonzero only after the index n=4.

To know more about signal visit:

https://brainly.com/question/31473452

#SPJ11

A 100hp, 480 V, 60 Hz, 4-pole, delta-connected, 3-phase induction motor is used to drive a conveyor belt for a mining operation. The two-wattmeter method shows a total power consumption of 72 kW, and an ammeter indicates a line current of 76 A. Precise measurements give a rotor speed of 1728 r/min. In addition, the following characteristics are known about the motor: Stator iron losses = 2 kW Windage and friction losses = 1.2 kW Resistance between two stator terminals = 0.12 2 Calculate: (a) Power supplied to the rotor, (b) Rotor I2R losses. (c) Mechanical power supplied to the load, in horsepower, (d) Torque developed at 1728 r/min, and (e) Efficiency

Answers

(a) Power supplied to the rotorFor this problem, we are given that total power consumption of 72 kW, which means it's the total power consumed by the motor. Power consumed by the motor is a sum of stator copper losses (I2R) and rotor copper losses (I2R).I2R = (76)2 × 0.12 = 692.16 W (resistance between two stator terminals = 0.12)

Hence, power supplied to the rotor is:PR = 72,000 – 2,000 – 1,200 – 692.16PR = 68,107.84 W(b) Rotor I2R lossesRotor copper losses = PR – (2 kW + 1.2 kW) – Pcore – Pw-f-c = 68,107.84 W – (2 kW + 1.2 kW) – 692.16 W = 64,213.68 W(c) Mechanical power supplied to the load, in horsepowerWe know that, Power supplied to the load (mechanical power) = Power developed by the rotorPout = Pm = PR –  (core + friction and windage losses) = 68,107.84 W – (2 kW + 1.2 kW) = 64,907.84 WNow, in order to convert watts to horsepower (hp),

we use the following conversion formula:1 hp = 746 WThus, the mechanical power supplied to the load, in horsepower is:Pm in horsepower = Pm/746 = 64,907.84 / 746 = 87.07 hp(d) Torque developed at 1728 r/minWe know that Power developed by the rotor, P = T × 2πN/60where N is rotor speed in rpm, T is torque developed and P is rotor power developed in watts.N = 1728 r/min, and P = 68,107.84 W.T = (P × 60) / (2πN) = (68,107.84 × 60) / (2π × 1728) = 219.6 N-m(e) EfficiencyEfficiency of the motor is given as the ratio of the output power.

To know more about power  visit:

https://brainly.com/question/29575208

#SPJ11

Show that the discrete-time system whose behavior is governed by the following difference equation is linear: y[n+ 1] + 7y[n] + 12y[n 1] = x[n]; where T ∈ R (scalar; sampling interval).

Answers

A linear system is defined as a system that satisfies the properties of additivity and homogeneity as defined below:1. The superposition property states that the system's response to a sum of inputs is the sum of the individual responses of the system to each input.

2. A system is said to be homogeneous if it satisfies the property of homogeneity, which states that multiplying the input by a scalar value scales the output by the same value.3. The combination of additivity and homogeneity defines a linear system.Let's demonstrate that the given discrete-time system is linear: The sum of the system response to two inputs x1[n] and x2[n] yields the response to the combined input:

[tex]x1[n + 1] + 7y1[n] + 12y1[n - 1] = x1[n]and x2[n + 1] + 7y2[n] + 12y2[n - 1] = x2[n]Adding both equations together, we get:x1[n + 1] + x2[n + 1] + 7(y1[n] + y2[n]) + 12(y1[n - 1] + y2[n - 1]) = x1[n] + x2[n][/tex]

The system's response to the sum of the two inputs is the sum of the individual responses to each input, indicating that it satisfies the superposition property:

[tex]y[n + 1] + 7(y1[n] + y2[n]) + 12(y1[n - 1] + y2[n - 1]) = x1[n] + x2[n] = y1[n + 1] + 7y1[n] + 12y1[n - 1] = x1[n] y2[n + 1] + 7y2[n] + 12y2[n - 1] = x2[n][/tex]

Thus, the system satisfies the properties of additivity and homogeneity and is therefore linear.

To know more about individual visit:

https://brainly.com/question/32647607

#SPJ11

Find the inverse z-transform (r[n]) for the following signals (a) X(2)=, |2|>8 (b) X(2) = 7+32+2 |²|>2 2-5 (c) X(2) = 22-0.75=+0.125

Answers

The inverse z-transform (r[n]) for (A) Inverse z-transform will be: x[n]= [n≥0]
The inverse z-transform (r[n]) for (B) X(z) = z-2(7z2 + 32z3 + 2) , |z| > 2

The inverse z-transform (r[n]) for (C): x[n] = 22δ[n] + 0.125u[n-1] - 0.75u[-n-1]

(a) X(2) = |2| > 8
As X(z) is independent of z, the inverse z-transform will be in the form of unit step function.
We can write X(z) as:
X(z) = ∞∑k=−∞X(k)zk
As X(k) = 1, for k = 0, and 0 otherwise
Thus, X(z) = z0
Inverse z-transform will be:
x[n] = [n≥0]
(b) X(2) = 7 + 32 + 2|²| > 2 2-5
X(2) can be written as:
X(z) = 7z0 + 32z1 + 2z-2, |z| > 2
Now, using shifting property of z-transform, we get:
X(z) = z-2(7z2 + 32z3 + 2) , |z| > 2

Now, using table of z-transform, we know that the inverse z-transform of 7z2 is 7[n-2], and that of 32z3 is 32[n-3]. Thus, the inverse z-transform of X(z) is:
x[n] = 7[n-2] + 32[n-3] + 2[n+2] [n≥0]
(c) X(2) = 22 - 0.75=+0.125
X(2) can be written as:
X(z) = 22z0 - 0.75z-1 + 0.125z1
This can be written as:
X(z) = 22 + 0.125z1 - 0.75z-1
Using table of z-transforms, we know that the inverse z-transform of 22 is 22δ[n], that of 0.125z1 is 0.125u[n-1], and that of -0.75z-1 is -0.75u[-n-1].

Thus, the inverse z-transform of X(z) is:
x[n] = 22δ[n] + 0.125u[n-1] - 0.75u[-n-1]

To know more about inverse z-transform refer to:

https://brainly.com/question/14979001

#SPJ11

a) A Si n channel JFET with the following parameters : channel doping \( N_{D} \), Channel length \( L \), channel width \( Z \) and channel height \( 2 a \). prove that for small values of \( V_{D S}

Answers

A Si n channel JFET is a type of transistor that has a negatively charged gate that is separated from the semiconductor channel by a thin insulating layer. The doping concentration in the channel is \(N_{D}\) and the channel length is \(L\).

The channel width and height are \(Z\) and \(2a\) respectively.

For small values of \(V_{DS}\), the current can be expressed as follows:

The current through a JFET is given by\[I_D = I_{DSS}\left(1 - \frac{V_{GS}}{V_P}\right)^2\]

Where \(I_{DSS}\) is the saturation current, \(V_{GS}\) is the voltage between the gate and source, and \(V_P\) is the pinch-off voltage. When \(V_{DS}\) is small, the voltage drop across the channel is also small, so the current can be approximated as being constant along the length of the channel.

In this case, the current density can be expressed as\[J_D = \frac{I_D}{ZW}\]

Where \(W\) is the width of the channel and \(Z\) is its height. The current density can also be expressed as\[J_D = \frac{qn_i^2\mu_nV_{DS}}{2L}\left[1 + \frac{V_{DS}}{V_P}\right]\]

where \(q\) is the charge of an electron, \(n_i\) is the intrinsic carrier concentration, \(\mu_n\) is the electron mobility, and \(V_P\) is the pinch-off voltage.

By equating these expressions for the current density, we get\[\frac{I_D}{ZW} = \frac{qn_i^2\mu_nV_{DS}}{2L}\left[1 + \frac{V_{DS}}{V_P}\right]\]

Simplifying, we get\[\begin{aligned}\frac{I_D}{ZW} &= \frac{qn_i^2\mu_nV_{DS}}{2L} + \frac{qn_i^2\mu_nV_{DS}^2}{2LV_P} \\ \frac{I_D}{ZW} &= \frac{qn_i^2\mu_nV_{DS}}{2L} + \frac{1}{R_{DS}}\end{aligned}\]

where \(R_{DS} = \frac{LV_P}{qn_i^2\mu_n}\) is the drain-source resistance.

We can see that the current density is linearly proportional to the drain-source voltage and inversely proportional to the channel length and height.

Therefore, for small values of \(V_{DS}\), the current density is also small, and the JFET can be approximated as a constant-current device.

To know more about transistor visit :

https://brainly.com/question/30335329

#SPJ11

An ASK signal with two received peak carrier levels are A, and Ag. Assuming message probabilities are P₁ = P₂ = 0.5, also assume A₁ = 3mV, A₁ = OV, T, Ims, and n= 8.681 x 105W/Hz. (a) Find the optimum threshold voltage, (b) Find the probability of error bits (P).

Answers

The optimum threshold voltage is 1.5 mV. The probability of error bits is 1.253 x 10^-8.

Given information: ASK signal with two received peak carrier levels are A, and Ag, P₁ = P₂ = 0.5, A₁ = 3 mV, A₂ = 0 V, T, Ims, n = 8.681 x 105 W/Hz.(a) To find the optimum threshold voltage, the following formula is used: To find the optimum threshold voltage, the following formula is used; V_th = (A + Ag) / 2

Let's substitute the given values in the above formula; V_th = (3mV + 0) / 2V_th = 1.5 mV

Therefore, the optimum threshold voltage is 1.5 mV.

(b) To find the probability of error bits (P), the following formula is used; P = P1 x Q ((Vth - Ag) / (2 x Ims x n)^(1/2)) + P2 x Q ((Vth - A) / (2 x Ims x n)^(1/2))

Where, P1 and P2 are message probabilities, Ag and A are two received peak carrier levels, T is the duration of each signaling interval, Ims is the RMS value of noise current, and n is the one-sided noise power spectral density.

Let's substitute the given values in the above formula; P = 0.5 x Q ((1.5 mV - 0) / (2 x Ims x n)^(1/2)) + 0.5 x Q ((1.5 mV - 3 mV) / (2 x Ims x n)^(1/2))

Where, Q is the complementary error function. We know that, Ims x n = 1.386 x 10^-15

Therefore, P = 0.5 x Q (1.5 mV / (2 x 1.386 x 10^-15)^(1/2)) + 0.5 x Q (-1.5 mV / (2 x 1.386 x 10^-15)^(1/2))P = 0.5 x Q (1.5 mV / 1.177 x 10^-8) + 0.5 x Q (-1.5 mV / 1.177 x 10^-8)P = 0.5 x Q (1.271 x 10^-7) + 0.5 x Q (-1.271 x 10^-7)P = 1.253 x 10^-8

The probability of error bits is 1.253 x 10^-8.

To know more about voltage refer to:

https://brainly.com/question/14574817

#SPJ11

3) Obtain the MULTISIM program to perform the variation of \( o / p \) voltage with different switching angles. Write an appropriate inference from the output (20 marks)

Answers

Obtaining the MULTISIM program to perform the variation of output/input voltage with different switching angles is an important experiment to evaluate the behavior of a power electronic converter.

The circuit switching angle is defined as the angle of the rectifier output voltage with respect to the input voltage waveform. The program provides an accurate model to analyze the circuit performance, such as output voltage, input current, and power loss.To obtain the circuit output voltage with varying angles, you must first download and install the MULTISIM program. After downloading the software, you can proceed to build the circuit.

The circuit's essential components are a transformer, diodes, capacitor, and a resistor. The input supply voltage will be given to the transformer primary winding, and the secondary winding will connect to the diode bridge.

The output of the diode bridge connects to a capacitor and the load resistor.In the circuit, you can vary the diode switching angle by adjusting the voltage at the input of the bridge rectifier.

To know more about switching visit:

https://brainly.com/question/30675729

#SPJ11

Power Electronics Technique I. (14 points) (a) The efficiency of a converter is 95%, if the output power is 950W, what is the input power? (b) For a DC-DC converter of n-90%, input power is 500W, the input voltage is 45V, what is the output current?

Answers

(a) The efficiency of a converter is given by the formula:

Efficiency = (Output Power / Input Power) * 100%

We are given that the efficiency is 95% and the output power is 950W. We can rearrange the formula to solve for the input power:

Input Power = (Output Power / Efficiency) * 100%

Substituting the given values, we get:

Input Power = (950W / 95%) * 100%

Input Power = 1000W

Therefore, the input power is 1000W.

(b) The efficiency of a DC-DC converter is given by the formula:

Efficiency = (Output Power / Input Power) * 100%

We are given that the efficiency is 90% and the input power is 500W. We can rearrange the formula to solve for the output power:

Output Power = (Efficiency / 100%) * Input Power

Substituting the given values, we get:

Output Power = (90% / 100%) * 500W

Output Power = 450W

The output power can also be calculated using the formula:

Output Power = Output Voltage * Output Current

Since we are given the input voltage (45V), we can rearrange the formula to solve for the output current:

Output Current = Output Power / Output Voltage

Substituting the given values, we get:

Output Current = 450W / 45V

Output Current = 10A

Therefore, the output current is 10A.

Learn more about DC-DC converter here:

https://brainly.com/question/21593477


#SPJ11

2. (5pt) Short questions about \( 8 b i t \) binaries A. What is the unsigned and signed \( 2 s \) complement of 01001110 ? B. Write down the output of a standard UNSIGNED 8-bit subtractor when doing

Answers

A. The unsigned value of 01001110 is 78. The 2's complement representation of 01001110 is 10110010.B. The output of a standard UNSIGNED 8-bit subtractor when doing 01110111-00101101 = 01001010, which represents the difference 46.

To find the 2's complement of a number, follow these steps:Reverse the bits of the number.Add one to the reversed number.The resulting number will be the 2's complement representation of the number. To find the signed value of a number, we use the first bit of the binary representation.

If the first bit is 1, the number is negative, and if it's 0, the number is positive.To find the decimal value of a binary number, we use the place values of each digit, starting from the right. For an 8-bit number, the place values are as follows:128 64 32 16 8 4 2 1 .So, for example, the binary number 11011010 would have a decimal value of:

[tex](1 × 128) + (1 × 64) + (0 × 32) + (1 × 16) + (1 × 8) + (0 × 4) + (1 × 2) + (0 × 1) = 218[/tex]

To know more about UNSIGNED visit:

https://brainly.com/question/30452303

#SPJ11

find Va,Vb and gain for op amp and is lamp will on or not

Answers

In order to find Va, Vb and gain for an op-amp, we need to consider the circuit diagram given in the problem. Here is the circuit diagram of the given problem:

[tex]\frac{}{}[/tex]

We know that the gain of the op-amp is given by the ratio of the output voltage to the input voltage. Let's assume that the op-amp is ideal and apply KCL at the inverting input terminal of the op-amp.

[tex]V_a = \frac{R_2}{R_1+R_2}\times V_{in}[/tex]

[tex]V_b = V_a\times\frac{R_4}{R_3+R_4}[/tex].

Now, we can apply the non-inverting amplification equation to find the output voltage.

[tex][tex]V_{out} = (1+\frac{R_2}{R_1})\times (V_a - V_b)[/tex][/tex]

Let's substitute the values of Va and Vb to the above equation.[tex][tex]V_{out} = (1+\frac{R_2}{R_1})\times (V_a - V_b)[/tex][tex]\frac{V_{out}}{V_{in}} = (1+\frac{R_2}{R_1})\times (1-\frac{R_4}{R_3+R_4}\times\frac{R_2}{R_1+R_2})[/tex][/tex]

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

(a) Using the log graph paper attached at the end of this examination paper, sketch the system Bode-plot (using piecewise-linear approximations) of an open-loop system with the following transfer func

Answers

To sketch the Bode plot of an open-loop system with the given transfer function using piecewise-linear approximations, follow these steps.

Step 1: Rewrite the transfer function in pole and zero form. The given transfer function is G(s) = (s + 1)/(s^2 + 4s + 3). Rearranging, we have G(s) = 1/(s + 3), with one pole at s = -3 and no zeros.

Step 2: Determine the magnitude and phase angles of the transfer function. The magnitude is given by Magnitude = 20log(1/|s + 3|) = 20log(1) - 20log(|s + 3|), and the phase angle is -90°.

Step 3: Draw the straight-line approximations of the Bode plot. The magnitude plot is a straight line with a slope of -20 dB/decade starting slightly before the pole frequency of 1 rad/s and extending to the end of the b. The phase plot is a horizontal line at -90° from slightly before the pole frequency to the end of the graph. The resulting sketch of the Bode plot is shown in the provided image. Thus, the system Bode plot of the open-loop system with the given transfer function using piecewise-linear approximations has been sketched.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

Other Questions
eyewitness identification is problematic in investigations as the victim is often As a result of a slowdown in operations, Tradewind Stores is offering employees who have been terminated a severance package of $108,000 cash paid today; $108,000 to be paid in one year; and an annuity of $38,000 to be paid each year for 8 years. What is the present value of the package assuming an interest rate of 9 percent? (Future Value of $1, Present Value of $1, Future Value Annuity of $1, Present Value Annuity of $1.) (Use appropriate factor(s) from the tables provided. Round the final answer to nearest whole dollar.) the pressure of the water in a tank if the density of water is 1000 kg/m and the water level is 7.3 m. Pa a. 71.61 b. 1343.84c. 71613.00 d. 7300.00 Deng and Drop the correct anor in the blank sesor used to detect ploonc o pump heater inductive prosomity switch 3position 4 ports, directional control valve mit swich 2 position, 4 ports, directional cryitor ve transistor capacitive proximity switch 111 The acceleration of the ball is upward while it is traveling up and downward while it is traveling down. Question 5 0/20pts An object is moving with straight linearly increasing acceleration along the +x-axis. A graph of the velocity in the x-direction as a function of time for this object is like a horizontal straight line. like a positive parabolic curve like a negative parabolic curve. like a vertical straight lifie: like a linearly increasing straight line. communications media can be divided into two broad categories: Kazapeeee is an online shopping system with a web-based and Android mobile-based application. It consists of its website and requires an Android operating system (OS) device to download the application for the application to work. The KzP involves two-way communication between the seller and the buyer in this application. The KzP is an ideal second-hand online shopping system targeting university students around Cyberjaya. Through this application, new students can purchase items such as study materials, basic needs and places to stay in a cheaper price range. Through this application, it can ease the students burden by purchasing an item within their budget. Moreover, it can also help the graduates and lecturers by selling their old notes to the newer students that join their respective universities. This application can also function for students with a lower income and no transportation to have a better university life. Other capable students can offer part-time jobs and transportation for those in need.a) Illustrate the Use Case diagram.b) Based on your answer in (a), choose any TWO (2) use cases and illustrate the TWO (2) sequence diagrams In 2011 a country's federal receipts (money taken in) totaled $2.20 trillion. In 2013 , total federal receipts were $2.67 trillion. Assume that the growth of federal recoipts, F, can be modeled by an exponential function and use 2011 as the base year (t=0). a)Find the growth rate k to six decimal places, and write the exponential function F(t), for total receipts in trillions of dollars.b) Estimate total federal receipts in 2015 , c) When will total federal receipts be $13 trillion? Which of the following does not provide liability protection to its owner(s)?A. General partnership B. C corporation C. S corporationD. LLC taxed as a general partnership" An air-conditioning system located in a town somewhere in the Northern Cape consists of an evaporative cooler and a heater. Air enters the evaporator at 28C, 30% RH and at a rate of 0.5-m per second. If the room has a sensible loss of 1.78-kW, and is to be maintained at 23C and 60% RH, and assuming the atmospheric pressure to be 101.325-kPa, calculate: 3.1 The efficiency of the evaporative cooler. Calculate the efficiency by means of humidity ratios you had calculated. (9) 3.2 The temperature of the air entering the heater. Read this value from your psychrometric chart after you had drawn the cooling process on the chart. (1) 3.3 The total load on the heater. No enthalpy calculations may be used for this question. (8) 3.4 The temperature of the air exiting the heater. No enthalpy calculations may be used for this question. (3) a primary reference lines that run north and south are called develop and maintain a successful workforce in a global environment. medical control provided by a physician who is in contact with prehospital providers is considered: Q3: Consider a composite transformation, a translation to left/down followed by rotation, answer the following 1. Find a single \( 3 * 3 \) matrix that can implement them. 2. Find the equation formula When Dr Davis describes his personal transition from going froma traditional low carb, lean protein diet to a high carb, wholefood plant-based diet, what did he do to reprogram his tastebuds? A sample of tritium-3 decayed to84%of its original amount after 4 years. How long would it take the sample (in years) to decay to24%of its original amount? "Do you think that it is fair that you pay intoSocial Security but some economists predict that it will run out ofcash reserves by 2034 (AARP)? ANSWER BOTH QUESTIONS!!What is the degree of "g" a f f b h C g What is the degree of graph a f b h e g d At the beginning of 2021, Quentin and Kopps (Q&K) adopted the dollar-value LIFO (DVL) inventory method. On that date the value of ts one inventory pool was $80,000. The company uses an internally generated cost index to convert ending inventory to base year. Required: Determine the missing amounts in the inventory data for 2021 through 2024. (Round cost index to 2 decimal places.) Mesopotamian Materials Inc. (MMI) has two decentralized divisions (Ur and Babylon) that have decision making responsibility over the amount of resources invested in their divisions. Recent financial extracts for both divisions are presented below:Ur Babylon Fixed assets, gross $2,500 $4,000Accumulated depreciation $1,500 $1,200Other assets $500 $750Liabilities $500 $1,000Sales $6,750 $7,200Net income after tax* $743 $1,008Average age of fixed assets (years) 15 5 *Net income is after tax but before interestMMI's weighted average cost of capital (WACC) is 11.5%. The MMI measures division performance based on the book value of net assets. The producer price index 15 years ago was 100, 116 five years ago, and currently is 125.Which is true, when fixed asset costs are adjusted upward for inflation?a.Babylon's RONA is 35.8%b.Babylon's RONA is 26.3%c. Ur's depreciation expense increases by $19 more than Babylon'sd. Babylon's price adjustment multiplier is 1.16 We hire more cops . reported crime increasest What's going br? Hiring more cops means that indlvidual cops now don't feel so pressurized and don't work as hard as they used to Seeing so many cops on patrol deters criminals from crime "The addational cops simply catch and record more of the # of crimes being committed Nothing nignificant has been done to actually improve quality', that is identify and reduce the root economiclsocial causes of crime." Newer cops are not experienced enough and cannot catch criminals in time