Answer:
is capable of combining with oxygen to form iron oxide
Classify the following as Arrhenius, Bronsted-Lowry, or Lewis acid-base reactions. A reaction may fit all, two, one, or none of the categories:I. Cu2+ + 4 Cl− CuCl42−II. Al(OH)3 + 3HNO3 Al3+ + 3H2O + 3 NO3−III. N2 + 3 H2 2NH3IV. CN− + H2O HCN + OH
Answer:
I. Lewis acid-base reaction
II. Arrhenius, Brønsted-Lowry, and Lewis' acid-base reaction
III. Brønsted-Lowry and Lewis'acid-base reaction
IV. Lewis acid-base reaction
Explanation:
According to Arrhenius, an acid is a substance that dissolves in water to produce H+ ions, and a base is a substance that dissolves in water to produce hydroxide (OH−) ions.
In the reaction below, AH is an avid, BOH is a base reacting together to form a salt(A-B+) and water only.
AH + BOH ---> A-B+ + H2O
According to Brønsted-Lowry definition, an acid is any substance that can donate a proton, and a base is any substance that can accept a proton.
In the reaction below, AH is an acid while B is a base, reacting together to form an acid-base conjugate pair.
AH + B <-----> BH+ + A-
According to Lewis' definition, an acid is a species that accepts an electron pair while a base donates an electron pair resulting in a coordinate covalently bonded compound, also known as an adduct. In the reaction below, A+ is an acid, B- is a base, reacting together to form product A-B.
A+ + B- ------> A-B
Considering the above definitions;
I. Cu²+ + 4 Cl− ---> CuCl4²− is a Lewis acid-base reaction because it involves electron sharing only.
II. Al(OH)3 + 3HNO3 ---> Al3+ + 3H2O + 3 NO3− is an Arrhenius, Brønsted-Lowry, and a Lewis acid-base reaction because it involves protons, electrons and hydroxide ions.
III. N2 + 3 H2 ---> 2NH3 is a Lewis acid-base reaction because it involves sharing of electrons only.
IV. CN− + H2O ---> HCN + OH is both a Lewis and Brønsted-Lowry acid-base reaction because both protons and electrons sharing is involved.
In a Bronsted-Lowry acid-base reaction reaction, an acid donates protons which is accepted by the base.
The following are useful definitions of acids and bases;
An Arrhenius acid produces hydrogen ion as its only positive ion in solution while an Arrhenius base produces hydroxide ion as its only negative ion in solution.A Bronsted-Lowry acid donates hydrogen ions while a Bronsted-Lowry base accepts hydrogen ionsA Lewis acid accepts lone pairs of electrons while a Lewis base donates lone pairs of electrons.Based on these, we can now classify the reactions accordingly;
Cu^2+ + 4Cl− ------>[CuCl4[^2− Lewis acid-base reaction Al(OH)3 + 3HNO3 -----> Al^3+ + 3H2O + 3NO3^− Arrhenius acid-base reactionN2 + 3H2 ----> 2NH3 NoneCN− + H2O ------> HCN + OH^- Bronsted-Lowry acid-base reactionLearn more: https://brainly.com/question/9352088
Name the advantages of coronavirus
Answer: Positive environmental changes.
Explanation: Without many humans around, the environment has been getting better as more sea life have been spotted in places they haven't been for decades, as well as clearer waters and less rubbish about. Pollution levels have dropped as there are barley any planes in the sky and not many cars about.
Answer:
honestly,i can say that socially being away from people reduces stress
Explanation:
complite the following reactions. NaOH(aq)+FeBr3(aq)→
Answer:
3NaOH+FeBr3>3NaBr+
Fe(OH)3
Explanation:
After writing the equation it has to be balanced
What is the oxidation number of nitrogen in N20?
00
O+1
O +2
O +4
The pyruvate dehydrogenase complex is subject to allosteric control, especially inhibition by reaction products. The main regulatory process controlling pyruvate dehydrogenase's activity in eukaryotes is
a. exchange of ADP and ATP on the pyruvate dehydrogenase complex.
b. phosphorylation by ATP, which turns the complex on, and dephosphorylation, which turns the complex off.
c. AMP binding to and activating the enzyme.
d. phosphorylation by ATP, which turns the complex off, and dephosphorylation, which turns the
Answer:
D. Phosphorylation by ATP, which turns the complex off, and dephosphorylation, which turns the complex on.
Explanation:
The pyruvate dehydrogenase complex (PDH) is responsible for the conversion of pyruvate to acetylCoA, the fuel for the citric acid cycle.
The regulation of the activity of PDH is allosterically by the products of the reaction which it catalyses. These products are ATP, acetylCoA and NADH. When their is sufficient fuel available for the needs of the cells in the form of ATP, the complex is turned off by phosphorylation of one of the two subunits of E1 (pyruvate dehydrogenase). This phosphorylation inactivates E1. When the concentration of ATP declines, a specific phosphatase removes the phosphoryl group from E1, thereby activating the complex again.
CHEMISTRY HELP!
using only the periodic table, determine the charge on the ion that is formed by arsenic.
The ion charge is:
a. -3
b. -2
c. -1
d. 0
e. +1
f. +2
g. +3
also what is it for elements lithium and strontium?
Answer:
A
Explanation:
Arsenic is in the same group as Nitrogen - group 5. They all have 5 valence electrons in their outermost shell. To achieve its most stable state - 8 valence electrons (octet rule - elements are most stable when the entire shell is filled) - arsenic needs to gain 3 electrons. Since electrons have a negative charge, the charge of an As ion would be -3.
Try observing the periodic table and how many valence electrons that each element has. From there, you can determine the charges of the elements lithium and strontium. You can guess, I'll help you with those once you attempt to find the charge of those ions.
The acetate ion is the conjugate base of the weak acid acetic acid. The value of Kb for CH3COO-, is 5.56×10-10. Write the equation for the reaction that goes with this equilibrium constant.
Answer: The equation for the reaction that goes with this equilibrium constant is [tex]5.56\times 10^{-10}=\frac{[CH_3COOH]}{[CH_3COO^-]\times [H^+]}[/tex]
Explanation:
[tex]CH_3COOH\rightarrow CH_3COO^-+H^+[/tex]
Here [tex]CH_3COOH[/tex] donates a proton and thus behaves as an acid and forms [tex]CH_3COO^-[/tex] which is called as the conjugate base of [tex]CH_3COOH[/tex]
The dissociation constant of acids is given by the term [tex]K_a[/tex] and the dissociation constant of bases is given by the term [tex]K_b[/tex] and is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
[tex]K_a[/tex] for [tex]CH_3COOH[/tex] :
[tex]K_a=\frac{[CH_3COO^-]\times [H^+]}{[CH_3COOH]}[/tex]
[tex]CH_3COO^-+H^+\rightarrow CH_3COOH[/tex]
[tex]K_b=\frac{[CH_3COOH]}{[CH_3COO^-]\times [H^+]}[/tex]
[tex]5.56\times 10^{-10}=\frac{[CH_3COOH]}{[CH_3COO^-]\times [H^+]}[/tex]
The equation for the reaction that goes with this equilibrium constant is [tex]K_b=\frac{[CH_3COOH]}{[CH_3COO^-]\times [H^+]}[/tex]
11. Caproic acid, which is responsible for the foul odor of dirty socks, is composed of C, H, and O atoms. Combustion of a 0.225-g sample of this compound produces 0.512 g CO2 and 0.209 g H2O. (a) What is the empirical formula of caproic acid
Answer:
C3H6O
Explanation:
Step 1:
Data obtained from the question include the following:
Mass of the compound = 0.225g
Mass of CO2 = 0.512g
Mass of H2O = 0.209g
Step 2:
Determination of the masses of carbon, hydrogen and oxygen present in the compound.
This is illustrated below:
For Carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C in CO2 = 12/44 x 0.512 = 0.1396g
For Hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H in H2O = 2/18 x 0.209 = 0.0232g
For Oxygen, O:
Mass of O = 0.225 – (0.1396 + 0.0232)
Mass of O = 0.0622g
Step 3:
Determination of the empirical formula for caprioc acid.
This can be obtain as follow:
C = 0.1396g
H = 0.0232g
O = 0.0622g
Divide by their molar mass
C = 0.1396/12 = 0.0116
H = 0.0232/1 = 0.0232
O = 0.0622/16 = 0.0039
Divide by the smallest
C = 0.0116/0.0039 = 3
H = 0.0232/0.0039 = 6
O = 0.0039/0.0039 = 1
Therefore, the empirical formula for caprioc acid is C3H6O
Which process is used to make lime (calcium oxide) from limestone (calcium carbonate)?
Answer:
Explanation:
Calcium oxide is fromed by the decomopostion of CaCO3 at high temperature.
CaCO3 ------> CaO +CO2
Hope this helps you
A structural model of retinol is shown below. How many hydrogen atoms are
in retinol?
HC CHS
H3C
H3c
"OH
CH
A. 30
B. 23
C. 16
D. 26
Answer:
A. 30
Explanation:
Retinol is the chemical form of Vitamin A. It has a chemical formula of C20H30O.
It is processed when retinyl palmitate is broken down in the small intestine. Retinol helps in the proper regulation of eye cells hence a vital component in ensuring good eye sight.
It also helps in the neutralization of free radicals in the body and acts as an antioxidant which prevents cells of the body from ageing.
What is the predicted order of first ionization energies from highest to lowest for lithium (Li), sodium (Na), potassium (K), and rubidium (Rb)?
Rb > K > Na > Li
K > Rb > Na > Li
Li > Na > K > Rb
Rb > K > Li > Na
Answer:
Li>Na>K>Rb
Explanation:
Answer:
c. Li > Na > K > Rb
Explanation:
edge 2021
(:
C3H7-C(=O)-NH2 IUPAC NAME ?
Answer:
Amide
Explanation:
O=NH2 is the Amide group versus NH2, which is the amine group.
Answer:
Butamide
Explanation:
C3H7-C(=O)-NH2 IUPAC NAME
C4H9NO
H H H
H - C - C - C - C = O
H H H N - H
H
But amide
Amide because R-CO-NH2 ie C(=O)-NH2
But because 4 Cabon
What are plastic bottles made of?
Polyethylene
halogen
silicon
Alkyl groups
Answer:
polyethylenes
Explanation:
the plastic bottles used to hold potable water and other drinks are made from polyethylene because, the material is both strong and light.
hope this helped!
Answer: Polyethylenes
Explanation: I got 100% on the test :)
Which process is a physical change
Answer:
a physical change is something that has not been modified chemically and can possibly be changed back to the state it was once before. A physical change keeps all the same atoms and none of them is modified.
Example:
When a block of clay is morphed into a giraffe statue, it can be morphed back to its original state. If someone burnt the block of clay, the atoms would be modified and it would be unable to go back to its previous state.
-----------------------------------------------------------------------------------------------------------------
(If you're referring to a question with these answers)
A. iron rusting
B. milk turning to curd
C. water boiling
D. paper burning
E. hard water staining pipes
-----------------------------------------------------------------------------------------------------------------
Answer:
C. Water Boiling
(If you are referring to a question with these answers I think this is the correct answer if not I do apologize)
-----------------------------------------------------------------------------------------------------------------
The temperature program for a separation starts at a temperature of 50 °C and ramps the temperature up to 270 °C at a rate of 10 °C/minute. Which statement is NOT true for this separation?
A) At 10 °C/minute, a total of 22 minutes is needed to reach 270 oC.
B) Strongly retained solutes will remain at the head of the column while the temperature is low.
C) Weakly retained solutes will separate and elute early in the separation.
D) The vapor pressure of strongly retained solutes will increase as temperature increases.
E) Strongly retained analytes will give broad peaks.
Answer:
The correct answer to the question is Option E (Strongly retained analytes will give broad peaks).
Explanation:
The other options are true because:
A. Initial temp = 50 °C
Final temp = 270 °C
Differences in temp = 270 - 50 = 220°C
Rate = 10 °C/minute.
So, at 10 °C/minute,
total of 220°C /10 °C = number of minutes required to reach the final temp.
220/10 = 22 minutes
B. A column has a minimum and maximum use temperature. Solutes that are already retained would remain stationary while temperatures are low. This would only change if there is an increase in temperature. Heat transfers more energy to the liquid which would make the solute interact with the column phase.
C. Weakly retained solutes may contain larger molecules, will separate by absorbing into the solvent early in separation making the mobile phase separates out into its components on the stationary phase.
D. Retained solute's vapor pressure is higher at higher temperatures making it possible for particle to escape more from the solute when the temperature is high than when it is low.
g The solution you created in this simulation was a 0.300M NH4Cl solution. The lab also stated that, in g/L, this concentration was 16.0 g/L. Show the calculations that prove that to be true.
Answer:
16.0473 g/L
Explanation:
0.300 M=
0.300 mol/L x 53.491 grams/mol = 16.0473 grams/L
The concentration of the 0.300M NH₄Cl solution in g/L will be equal to 16.04 g/L.
What is the molarity?The concentration of the solution can be determined if we have the molecular formula of the compound and its molecular weight. We can easily determine the majority of a solution from the moles of solute and the volume of the solution.
The molarity of a solution can be evaluated from the number of moles of a solute per liter of a solution.
The Molarity can be determined from the formula mentioned below:
Molarity (M) = Moles of solute (n)/Solution's volume ( in L)
Given, the molarity of NH₄Cl solution = 0.300 M
We can also write it as 0.300 mol/L
It means 0.300 moles in one liter.
The molar mass of NH₄Cl = 53.5 g/mol
Then the mass of 0.300 mol of NH₄Cl = 0.300 ×53.5 = 16.04 g
Therefore, the concentration of NH₄Cl solution is 16.04g/L is equivalent to 0.300 M.
Learn more about molarity, here:
brainly.com/question/8732513
#SPJ5
A patient arrives in the emergency room with a burn caused by steam. Calculate the heat that is released when 14.5 g of steam at 100. ∘C hits the skin, condenses, and cools to body temperature of 37.0 ∘C. (For water, 540 cal (2260 J) is needed to convert 1 g of water to vapor at 100 ∘C.)
Answer:36,592.1J or 36.5921KJ
Explanation:
first convert to steam
14.5 g of steam at 100∘C
To covert to water vaporor steam, becomes
14.5g x 2260 J of energy per gram of steam
=32,770J
Also, Quantity of heat released when the temperature is reduced from 100 ∘C to 37 ∘C, we will use the formulae,
q= m C ΔT
Where specific heat capacity of water C = 4.184 J/g.C
mass= 14.5g
Change in temperature= 100∘C-37∘C= 63∘C
we will now have
= 14.5 g x 4.184 J/g.Cx ( 100 - 37) C = 3,822.084 J= 3822.1J
Therefore total energy released = 32,770 J + 3822.1 J = 36,592.1J
OR converting to KJ becomes=36,592.1/1000=36.592KJ
What happens at this point
Answer:
What are you referring to exactly
Explanation:
Answer: C
Explanation:
There is a difference in air pressure. That's what I put and I got a 92.
An EpiPen, used to treat anaphalactic allergic reactions, contains 0.30 mg of epinephrine. The concentration of epinephrine in each syringe is 1.0 mg/mL. What is the volume, in milliliters (mL), of solution in each syringe
Answer:
0.3mL
Explanation:
Mass = 0.30mg
Concentration = 1.0 mg/mL
Volume = x
The relationship between the three parameters is given as;
Concentration = Mass / Volume
Making Volume our subject of interest we have;
Volume = Mass / Concentration
Substituting the values we have;
Volume = 0.30 mg / 1 mg/mL = 0.3mL
A chemistry student is given of a clear aqueous solution at . He is told an unknown amount of a certain compound is dissolved in the solution. The student allows the solution to cool to . At that point, the student sees that a precipitate has formed. He pours off the remaining liquid solution, throws away the precipitates, and evaporates the water from the remaining liquid solution under vacuum. More precipitate forms. The student washes, dries and weighs the additional precipitate. It weighs 50,0 g.
Using only the information above, can you calculate the solubility of X in water at 16. C. If you said yes, calculate it.
Answer:
Solubility cannot be calculated.
Explanation:
To calculate the solubility of X it is necessary to know the value of the mass of the solute (X) that can be dissolved in 100 g of water.
[tex]Solubility = \frac{Solute mass}{100 grams of water}[/tex]
Taking into account that we do not know the value of the mass of the solution, therefore the value of the solubility of the compound cannot be determined.
Explain why both square planar and tetrahedral complexes have coordination number=4, and yet square planar complexes can never be chiral while tetrahedral complexes can.
Answer:
The coordination number is 4.
Explanation:
Square planar clusters can be either cis or trans, as they form 180 and 90-degree bond angles. Therefore, a pair of ions may be adjacent (cis) to one another and immediately across (trans) from one another. A square planar molecule could never be simultaneously cis and trans, so because several coordinators are 4. Since linear complexes have only an angle of a bond of 180 degrees, they can not have cis or trans-isomers. In the coordination complex, there is only yet another way possible of bonding the two binding sites to the steel.Trans-4-hexen-3-ol can be synthesized starting from acetaldehyde. One of the key reagents is ethyl grignard.
1. Synthesize ethyl grignard from acetaldehyde in the steps below using the reagents provided.
2. Synthesize (trans)-4-hexen-3-ol from acetaldehyde.
find the given attachment
Calculate the standard entropy of reaction at 298 K for the reaction Hg(liq) + Cl2(g) → HgCl2(s) The standard molar entropies of the species at that temperature are: Sºm (Hg,liq) = 76.02 J / (K mol) ; Sºm (Cl2,g) = 223.07 J / (K mol) ; Sºm (HgCl2,s) = 146.0 J / (K mol)
Answer:
−153.1 J / (K mol)
Explanation:
Calculate the standard entropy of reaction at 298 K for the reaction Hg(liq) + Cl2(g) → HgCl2(s) The standard molar entropies of the species at that temperature are: Sºm (Hg,liq) = 76.02 J / (K mol) ; Sºm (Cl2,g) = 223.07 J / (K mol) ; Sºm (HgCl2,s) = 146.0 J / (K mol)
Hg(liq) + Cl2(g) → HgCl2(s)
Given that;
The standard molar entropies of the species at that temperature are:
Sºm (Hg,liq) = 76.02 J / (K mol) ;
Sºm (Cl2,g) = 223.07 J / (K mol) ;
Sºm (HgCl2,s) = 146.0 J / (K mol)
The standard molar entropies of reaction = Sºm[products] - Sºm [ reactants]
= 146.0 J / (K mol) – [76.02 J / (K mol) +223.07 J / (K mol) ]
= -153.09 J / (K mol)
= or -153.1 J / (K mol)
Hence the answer is −153.1 J / (K mol)
30
Drag each number to the correct location on the equation. Each number can be used more than once, but not all numbers will be used.
Balance the equation with the correct coefficients.
2
3
4
5
SIO2 +
HF → SiF4 +
H2O
Reset
Next
Answer:
The balanced equation is given below:
SiO2 + 4HF —> SiF4 + 2H2O
The coefficients are 1, 4, 1, 2
Explanation:
The equation for the reaction is given below:
SiO2 + HF —> SiF4 + H2O
The above equation can be balance by as follow:
There are 4 atoms of F on the right side and 1 atom on the left side. It can be balance by putting 4 in front of HF as shown below:
SiO2 + 4HF —> SiF4 + H2O
Therefore are 4 atoms of H on the left side and 2 atoms on the right side. It can be balance by putting 2 in front of H2O as shown below:
SiO2 + 4HF —> SiF4 + 2H2O
Now the equation is balanced.
Based on this information what is the most likely reason for refrigerating most foods reduce the rate at which they spoil
Answer: The lower temperature reduces molecule speeds, reducing the number of effective collisions.
Explanation:
carbon dioxide is a non-polar molecule true or false
Answer:
True
Explanation:
Due to the arrangement of the molecule, a carbon dioxide molecule is non-polar.
A 1.44 L buffer solution consists of 0.137 M butanoic acid and 0.275 M sodium butanoate. Calculate the pH of the solution following the addition of 0.069 moles of NaOH . Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52×10−5 .
Answer:
The answer is "[tex]P^{H}=5.379[/tex]".
Explanation:
[tex]\ NaOH \ value = \frac{n}{v}\\\\[/tex]
[tex]=\frac{0.069\ moles}{0.144L}\\\\=0.04791\ M[/tex]
[tex]\ Ka=1.52 \times 10^{-5}\\\\P^{ka} = -10g \ ka \\\\[/tex]
[tex]= -10 \times 1.52 \times 10^{-5}\\\\= 4.82\\[/tex]
Equation:
[tex]CH_3CH_2CH2COOH+NaOH\rightarrow CH_3CH_2CH_2COONa +H_2O\\\\[/tex]
[tex]\boxed{\left\begin{array}{ccccc}I &0.137 &0.04791 &0.275 & -- \\ C &-0.04791 &-0.04791 &+0.04791 & -- \\E &0.08909 &0&0.32291 & -- \end{array}\right}[/tex]
[tex]P^{H}= P^{ka}+\log\frac{CH_3CH_2CH_2COONa}{CH_3CH_2CH_2COOH}\\\\[/tex]
[tex]= 4.82+\log\frac{0.32291}{0.08909}\\\\=5.379[/tex]
Which of the following aqueous solutions are good buffer systems? . 0.24 M hydrochloric acid + 0.23 M sodium chloride 0.28 M ammonia + 0.35 M ammonium nitrate 0.16 M barium hydroxide + 0.28 M barium bromide 0.15 M nitrous acid + 0.14 M potassium nitrite 0.35 M calcium nitrate + 0.21 M calcium iodide
Answer: 0.28 M ammonia + 0.35 M ammonium nitrate and 0.15 M nitrous acid + 0.14 M potassium nitrite
Explanation:
Buffer solution is the solution which resists the change in the magnitude of the pH when small additions of either acid or base is added.
Acidic Buffer solutions consist of weak acid and its conjugate base usually mixed in relatively equal and large quantities.
Basic Buffer solutions consist of weak base and its conjugate acid usually mixed in relatively equal and large quantities.
Thus 0.28 M ammonia + 0.35 M ammonium nitrate ( weak base + conjugate acid) and 0.15 M nitrous acid + 0.14 M potassium nitrite (weak acid + conjugate base) are good buffer systems
The aqueous solutions that are good buffer systems are:
0.28 M ammonia + 0.35 M ammonium nitrate. 0.15 M nitrous acid + 0.14 M potassium nitrite.We want to determine which of the given solutions would make a good buffer.
What is a buffer?A buffer is a solution used to resist abrupt changes in pH when an acid or a base is added.
What kinds of buffers exist?Acidic buffer: formed by a weak acid and its conjugate base.Basic buffer: formed by a weak base and its conjugate acid.Which of the following aqueous solutions are good buffer systems?
0.24 M hydrochloric acid + 0.23 M sodium chloride. No, since HCl is a strong acid.0.28 M ammonia + 0.35 M ammonium nitrate. Yes, it would be a good basic buffer.0.16 M barium hydroxide + 0.28 M barium bromide. No, since Ba(OH)₂ is a strong base. 0.15 M nitrous acid + 0.14 M potassium nitrite. Yes, it would be a good acidic buffer.0.35 M calcium nitrate + 0.21 M calcium iodide. No, since no acids nor bases are present.The aqueous solutions that are good buffer systems are:
0.28 M ammonia + 0.35 M ammonium nitrate. 0.15 M nitrous acid + 0.14 M potassium nitrite.Learn more about buffers here: brainly.com/question/24188850
Consider the addition of an electron to the following atoms from the third period. Rank the atoms in order from the most negative to the least negative electron affinity values based on their electron configurations.
Atom or ion Electron configuration
Br 1s22s22p63s23p64s23d104p5
Ge 1s22s22p63s23p64s23d104p2
Kr 1s22s22p63s23p64s23d104p6
Answer:
The ranks is
Ge: 3d10 4s2 4p2 (6 electrons in the outer shell)
Br: 3d10 4s2 4p5 (7 electrons in the outer shell)
Kr: 3d10 4s2 4p6 (8 electrons in the outer shell)
Explanation:
Electronic configuration reffers to the distribution of electrons of an atom or molecule in atomic or molecular orbitals. It gives us the understanding of the shape and energy of its electrons. The electronic configuration explain the The electron affinity or propensity to attract electrons
It Should be noted that the most stable configuration in an electronic configuration is attributed to when the last shell is full, i.e. when the last shell has 8 electrons.
When an atom is closer to reach the 8 electrons in the outer shell, then it's electron affinity big.
Considering the given three configuration of the elements above, we can see that "Br"needs requires only 1 electron to have 8 electrons in the outer shell, therefore, it is considered to have the biggest electron affinity among them which is reffers to as the LEAST NEGATIVE.
Ge: with the electronic configuration 3d10 4s2 4p2 has 6 electrons in the outer shell which means it still requires 2 electrons to complete 8 electrons in its outer shell, so it can be deducted that it posses an atom that is more negative than Br.
Kr: with the electronic configuration 3d10 4s2 4p6 which is a noble gas has 8 electrons in the outer shell cannot add more electrons to its outer shell because the 8 electrons is complete posses the least electron affinity among the three elements and it is the MOST NEGATIVE
Given that S is the central atom, draw a Lewis structure of OSF4 in which the formal charges of all atoms are zero. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons.
Answer:
Here's what I get
Explanation:
A Lewis structure shows the valence electrons surrounding the atoms.
Your structure has two problems:
It shows too many valence electrons It violates the octet rule for O — there are 10 electrons around the O atom.Here's one way to draw a Lewis structure.
1. Draw a trial structure
Make F and O terminal atoms and give each one an octet (Fig. 1).
2. Count the valence electrons in the trial structure
5 BP + 15 LP = 10 + 30 = 40 electrons
3. Check the number of valence electrons available
1 S = 1 × 6 = 6 electrons
1 O = 1 × 6 = 6
4 F = 4 × 7 = 28
TOTAL = 40 electrons
The trial structure has the correct number of electrons.
4. Determine the formal charge on each atom.
To get the formal charges, we cut the covalent bonds in half.
Each atom gets the electrons on its side of the cut.
Formal charge = valence electrons in isolated atom - electrons on bonded atom
FC = VE - BE
(a) On S
VE = 6
BE = 5 bonding electrons = 5
FC = 6 - 5 = +1
(b) On O:
VE = 6
BE = 3 LP(six electrons) + 1 bonding electron = 7
FC = 6 - 7 = -1
(c) On F:
VE = 6
BE = 3 lone pairs(6 electrons) + 1 bonding electron = 6 + 1 =7
FC = 7 - 7 = 0
5. Minimize the formal charges
We must rearrange the valence electrons so that S gets one more and O gets one fewer.
Move a lone pair from the O to make an S=O double bond (Fig. 2).
6. Recalculate the formal charges
(a) On S
VE = 6
BE = (3 bonding electrons) = 6
FC = 6 - 6 = 0
(b) On O:
VE = 6
BE = 2 LP(four electrons) + 2 bonding electrons = 6
FC = 6 - 6 = 0
Fig. 2 shows the Lewis structure in which all atoms have a formal charge of zero.
The formal charge of the atoms can be concluded zero with the bond formation between the sulfur and oxygen atom.
The lewis structure can be defined as the dot structure of the valence bond with the bonded atoms. The formal charge can be calculated with the difference in the valence electrons and the bonding electrons.
The formal charge of an atom can be zero when the valence electrons and the bonding electrons are equal. In the structure of [tex]\rm OSF_4[/tex], the formal charge has been assigned zero with the bond formation resulting in the valence electrons and bonding electrons being equal.
The lewis structure with the central S atom has been attached.
For more information about lewis structure, refer to the link:
https://brainly.com/question/4144781