Q3. (10 marks) Find the inverse Laplace transform of the following functions: (a) F(s) = 316 (b) F(s) = 21 Your answer must contain detailed explanation, calculation as well as logical argumentation leading to the result. If you use mathematical theorem(s)/property(-ics) that you have learned par- ticularly in this unit SEP 291, clearly state them in your answer.

Answers

Answer 1

For F(s) = 316, the inverse Laplace transform is f(t) = 316. For F(s) = 21, the inverse Laplace transform is also f(t) = 21.

Q: Solve the following system of equations: 2x + 3y = 10, 4x - 5y = 8.

Laplace transform theory, the Laplace transform is a mathematical operation that transforms a function of time into a function of complex frequency.

The inverse Laplace transform, on the other hand, is the process of finding the original function from its Laplace transform.

In the given question, we are asked to find the inverse Laplace transform of two functions: F(s) = 316 and F(s) = 21.

For the first function, F(s) = 316, we can directly apply the property of the Laplace transform that states the transform of a constant function is the constant itself.

Therefore, the inverse Laplace transform of F(s) = 316 is f(t) = 316.

Similarly, for the second function, F(s) = 21, the inverse Laplace transform is also a constant function. In this case, f(t) = 21.

Both solutions follow directly from the properties of the Laplace transform, without the need for further calculations or complex techniques.

The inverse Laplace transform of a constant function is always equal to the constant value itself.

It's important to note that these solutions are specific to the given functions and their Laplace transforms.

In more complex cases, involving functions with variable coefficients or non-constant terms, the inverse Laplace transform may require additional calculations and techniques such as partial fraction decomposition or table look-up.

Learn more about inverse Laplace

brainly.com/question/30404106

#SPJ11


Related Questions

What is the complete domain for which the solution is valid?
A. x ≤ 1
B. x < 0
C. x ≠ 0
D. 0 < x
E. 1 ≤ x

Answers

The complete domain for which the solution to the differential equation is valid is D. 0 < x. The solution involves a term (t - 6)⁷ in the denominator, which requires that t - 6 ≠ 0.

The given solution to the differential equation is s(t) = C * (t - 6) + (t²/2 + 6t + K) / (t - 6)⁷, where C and K are constants. To determine the complete domain for which this solution is valid, we need to consider the restrictions imposed by the terms in the denominator.

The denominator of the solution expression contains the term (t - 6)⁷. For the solution to be defined and valid, this term must not equal zero. Therefore, we have the condition t - 6 ≠ 0. Rearranging this inequality, we get t ≠ 6.

Since the variable x is not explicitly mentioned in the given differential equation or the solution expression, we can equate x to t. Thus, the restriction t ≠ 6 translates to x ≠ 6.

However, we are looking for the complete domain for which the solution is valid. In the given differential equation, it is mentioned that t > 6. Therefore, the corresponding domain for x is x > 6.

In summary, the complete domain for which the solution to the differential equation is valid is D. 0 < x. The presence of the term (t - 6)⁷ in the denominator requires that t - 6 ≠ 0, which translates to x ≠ 6. Additionally, the given constraint t > 6 implies that x > 6, making 0 < x the valid domain for the solution.

Learn more about solution here:

https://brainly.com/question/28221626

#SPJ11


Choosing the first and second options is wrong.
Consider three variables X,Y and Z where X and Z are positively correlated, and Y and Z are positively correlated. Which of the following can be true. ✔X and Y can be positively correlated X and Y c

Answers

In the given scenario where X and Z are positively correlated, and Y and Z are positively correlated, it is possible for X and Y to be positively correlated as well.

If X and Z are positively correlated, it means that as the values of X increase, the values of Z also tend to increase. Similarly, if Y and Z are positively correlated, it means that as the values of Y increase, the values of Z also tend to increase.

Since both X and Y have a positive relationship with Z, it is possible for X and Y to have a positive correlation as well. This means that as the values of X increase, the values of Y also tend to increase.

However, it's important to note that the correlation between X and Y may not be as strong or direct as the correlations between X and Z, and Y and Z. The strength and nature of the correlation between X and Y would depend on the specific relationship between the variables and the data at hand.

Therefore, in this scenario, it is possible for X and Y to be positively correlated.

Learn more about correlated here:

https://brainly.com/question/28898177

#SPJ11

For the following exercises, find the indicated sum. 6 Σn=1 n(n – 2)

Answers

The resultant expression will be: 6 Σn=1 n(n – 2) = 6(6³/3 - 6²/2 + 6/6) = 6(72 - 18 + 1) = 6 × 55 = 330. The indicated sum is 330.

To find the indicated sum for the following exercises which states that 6 Σn=1 n (n – 2), we will be using the formula below which is an equivalent of the sum of the first n terms of an arithmetic sequence: Σn=1 n (n – 2) = n⁺³/3 - n²/2 + n/6. We can substitute n with 6 in the above formula. An arithmetic sequence, also known as an arithmetic progression, is a sequence of numbers in which the difference between consecutive terms remains constant. This difference is called the common difference. In an arithmetic sequence, each term is obtained by adding the common difference to the previous term. Arithmetic sequences can have positive, negative, or zero common differences. They can also have increasing or decreasing terms. The general form of an arithmetic sequence is given by:

a, a + d, a + 2d, a + 3d, ...

where "a" is the first term and "d" is the common difference.

To know more about arithmetic progression, visit:

https://brainly.com/question/30364336

#SPJ11

9) Which of the following is the differential equation of the family of Straight lines with slope and x − intercept equal?

Oy' = xy' + y
Oy' = xy' -y Oy'y' = xy' + y
y'y' = xy' - y

Answers

Oy' = xy' - y is the differential equation of the family of Straight lines with slope and x − intercept equal.

The differential equation of a family of straight lines with slope and x-intercept equal can be determined by considering the properties of straight lines.

A straight line can be represented by the equation y = mx + c, where m is the slope and c is the y-intercept. Since we are given that the slope and x-intercept are equal, we can write m = c.

To obtain the differential equation, we differentiate both sides of the equation y = mx + c with respect to x. The derivative of y with respect to x is denoted as y'.

Differentiating y = mx + c, we have:

y' = m

Now, we substitute m = c (since the slope and x-intercept are equal) into the equation, giving us:

y' = c

Therefore, the differential equation of the family of straight lines with slope and x-intercept equal is y' = c.

Out of the given options, the correct differential equation is Oy' = xy' - y, which can be rewritten as y' = c by moving the term -y to the right-hand side.

Hence, the differential equation that represents the family of straight lines with slope and x-intercept equal is y' = c.

To learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ4

Find the intervals on which f(x) is increasing, the intervals on which f(x) is decreasing, and the local extrema. f(x)=2x²-16x+2 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. OA. The function is increasing on (Type your answer in interval notation. Type integers or simplified fractions. Use a comma to separate answers as needed.) OB. The function is never increasing

Answers

The intervals at which the function is increasing is x ≥ 4, which can also be written as (4, ∞).

What are the intervals at which the function is increasing or decreasing?

The intervals at which the function is increasing or decreasing is calculated as follows;

f(x) = 2x² - 16x  + 2

The derivative of the function is calculated as;

f'(x) = 4x - 16

The critical points are calculated as follows;

4x - 16 = 0

4x = 16

x = 16/4

x = 4

We will determine if the function is increasing or decreasing as follows;

let x = 0

4(0) - 16 = -16

let x = 2

4(2) - 16 = -8

let x = 4

4(4) - 16 = 0

let x = 5

4(5) - 16 = 4

Thus, the function is increasing at x ≥ 4.

Learn more about increasing function here: https://brainly.com/question/20848842

#SPJ4

#18
Hi there,
I would really appreciate it if someone could help me solve
these . PLEASE SHOW YOUR WORK, so I can understand much
better.
thank you, advance
1.)
2.)
Find the area of the shaded sector when r = 27 in. Give the exact answer and an approximation to the nearest tenth. in² = in² r 90°
Find the diameter of a circle that has a circumference of 184 me

Answers

(Area of shaded sector): The area of the shaded sector is approximately 571.2 square inches.

(Diameter of circle): The diameter of the circle is approximately 58.5 meters.

How to calculate the area of the shaded sector?

To find the area of the shaded sector, we need to know the angle of the sector. In the given information, the angle is mentioned as 90°.

The formula to calculate the area of a sector is:

Area = (θ/360°) * π * r^2

where θ is the central angle in degrees and r is the radius.

Given that r = 27 in and θ = 90°, we can plug in these values into the formula:

Area = (90°/360°) * π * (27 in)^2

    = (1/4) * π * (729 in^2)

    = (729/4) * π

    ≈ 571.24 in² (rounded to the nearest tenth)

Therefore, the exact area of the shaded sector is (729/4) * π square inches, and the approximation to the nearest tenth is 571.2 square inches.

How to find the diameter of a circle given its circumference?

To find the diameter of a circle when the circumference is given, we can use the formula:

Circumference = π * diameter

Given that the circumference is 184 m, we can rearrange the formula to solve for the diameter:

184 m = π * diameter

Dividing both sides by π, we get:

diameter = 184 m / π

        ≈ 58.5 m (rounded to the nearest tenth)

Therefore, the diameter of the circle is approximately 58.5 meters.

Learn more about: area

brainly.com/question/27683633

#SPJ11


Consider the following two subsets of Z :
A = { n Î Z | ( n mod 18 ) = 7 } and B = { n Î Z | n is
odd }.
Prove this claim: A is a subset of B.

Answers

To prove that A is a subset of B, we need to show that every element in A is also an element of B. A is an arbitrary element .

Let's consider an arbitrary element n in A, where (n mod 18) = 7. Since n satisfies this condition, it means that n leaves a remainder of 7 when divided by 18.

Now, we need to show that n is also an odd number. An odd number is defined as an integer that is not divisible by 2.

Since n leaves a remainder of 7 when divided by 18, it implies that n is not divisible by 2. Hence, n is an odd number.

Therefore, we have shown that for any arbitrary element n in A, it is also an element of B. Hence, A is a subset of B.

To learn more about Integer - brainly.com/question/1768254

#SPJ11

if r(t) = 3e2t, 3e−2t, 3te2t , find t(0), r''(0), and r'(t) · r''(t).

Answers

As per the given data, r'(t) · r''(t) = [tex]108e^{(2t)} - 72e^{(-2t)} + 72te^{(2t)[/tex].

To discover t(zero), we want to alternative 0 for t inside the given feature r(t). This offers us:

[tex]r(0) = 3e^{(2(0)}), 3e^{(-2(0)}), 3(0)e^{(2(0)})\\\\= 3e^0, 3e^0, 0\\\\= 3(1), 3(1), 0\\\\= 3, 3, 0[/tex]

Therefore, t(0) = (3, 3, 0).

To find r''(0), we need to locate the second one derivative of the given feature r(t). Taking the by-product two times, we get:

[tex]r''(t) = (3e^{(2t)})'', (3e^{(-2t)})'', (3te^{(2t)})''= 12e^{(2t)}, 12e^{(-2t)}, 12te^{(2t)} + 12e^{(2t)}[/tex]

Substituting 0 for t in r''(t), we have:

[tex]r''(0) = 12e^{(2(0)}), 12e^{(-2(0)}), 12(0)e^{(2(0)}) + 12e^{(2(0)})\\\\= 12e^0, 12e^0, 12(0)e^0 + 12e^0\\\\= 12(1), 12(1), 0 + 12(1)\\\\= 12, 12, 12[/tex]

Therefore, r''(0) = (12, 12, 12).

Finally, to discover r'(t) · r''(t), we need to calculate the dot made of the first derivative of r(t) and the second spinoff r''(t). The first spinoff of r(t) is given by using:

[tex]r'(t) = (3e^{(2t)})', (3e^{(-2t)})', (3te^{(2t)})'\\\\= 6e^{(2t)}, -6e^{(-2t)}, 3e^{(2t)} + 6te^{(2t)[/tex]

[tex]r'(t) · r''(t) = (6e^{(2t)}, -6e^{(-2t)}, 3e^{(2t)} + 6te^{(2t)}) · (12, 12, 12)\\\\= 6e^{(2t)} * 12 + (-6e^{(-2t)}) * 12 + (3e^{(2t)} + 6te^{(2t)}) * 12\\\\= 72e^{(2t)} - 72e^{(-2t)} + 36e^{(2t)} + 72te^{(2t)[/tex]

Thus, r'(t) · r''(t) = [tex]108e^{(2t)} - 72e^{(-2t)} + 72te^{(2t)[/tex].

For more details regarding derivative, visit:

https://brainly.com/question/29144258

#SPJ1

Please take your time and answer both questions. Thank
you!
14. Find the equation of the parabola with focus at (3, 4) and directrix x = 1. Write the equation in rectangular form. 15. Find the vertices of the ellipse: 9x² + y² - 54x + 6y + 81 = 0

Answers

The equation of the parabola with focus at (3, 4) and directrix x = 1 in rectangular form is [tex](x - 2)^2[/tex] = 8(y - 3).

The distance between any point (x, y) on the parabola and the focus (3, 4) is equal to the perpendicular distance between the point and the directrix x = 1.

The formula for the distance between a point (x, y) and the focus (h, k) is given by [tex]\sqrt{((x - h)^2 + (y - k)^2)}[/tex]. In this case, the distance between (x, y) and (3, 4) is [tex]\sqrt{((x - 3)^2 + (y - 4)^2)}[/tex].

The equation for the directrix x = a is a vertical line located at x = a. Since the directrix in this case is x = 1, the x-coordinate of any point on the directrix is always 1.

By applying the distance formula and the definition of the directrix, we can set up an equation: [tex]\sqrt{((x - 3)^2 + (y - 4)^2) }[/tex]= x - 1.

To simplify the equation, we square both sides:[tex](x - 3)^2 + (y - 4)^2[/tex] = (x - 1)^2.

Expanding the equation gives: [tex]x^2 - 6x + 9 + y^2 - 8y + 16 = x^2 - 2x + 1[/tex].

Simplifying further, we obtain: [tex]x^2 - y^2 - 4x + 8y + 25 = 0[/tex].

Rearranging the equation, we get the equation of the parabola in rectangular form: [tex](x - 2)^2[/tex] = 8(y - 3).

Learn more about Parabola

brainly.com/question/21685473

#SPJ11

na 1)-(3 I c d ) ( а ь b+a Define f: M2x2 + R3 by fl b d-a (a) Determine whether f is an injective (1 to 1) linear transformation. You may use any logical and correct method. (b) Determine whether f is a surjective (onto) linear transformation. You may use any logical and correct method.

Answers

In conclusion: (a) The linear transformation f: M₂x₂ → R₃ given by f(a b; c d) = (b+d, a+b, d-a) is injective (one-to-one). (b) The linear transformation f is surjective (onto) if and only if every value of z can be expressed as the difference d - a for some real numbers d and a.

To determine whether the linear transformation f: M₂x₂ → R₃ is injective (one-to-one) and surjective (onto), we need to analyze its properties and conditions.

Let's define the linear transformation f as:

f(a b; c d) = (b+d, a+b, d-a)

(a) Injective (One-to-One):

A linear transformation f is injective if every distinct input vector in the domain corresponds to a distinct output vector in the codomain. In other words, if f(a₁ b₁; c₁ d₁) = f(a₂ b₂; c₂ d₂), then (a₁ b₁; c₁ d₁) = (a₂ b₂; c₂ d₂).

To test injectivity, we need to compare the outputs of f for two different input matrices and see if they are equal.

Let's assume two different input matrices: A₁ = (a₁ b₁; c₁ d₁) and A₂ = (a₂ b₂; c₂ d₂).

If f(A₁) = f(A₂), then we have:

(b₁+d₁, a₁+b₁, d₁-a₁) = (b₂+d₂, a₂+b₂, d₂-a₂)

Comparing the corresponding elements, we get the following system of equations:

b₁ + d₁ = b₂ + d₂ (1)

a₁ + b₁ = a₂ + b₂ (2)

d₁ - a₁ = d₂ - a₂ (3)

From equation (1), we can deduce that b₁ - b₂ = d₂ - d₁. Let's call this equation (4).

Similarly, equation (2) can be rewritten as a₁ - a₂ = b₂ - b₁. Let's call this equation (5).

Now, subtracting equation (3) from equation (4), we have:

(b₁ - b₂) - (d₁ - d₂) = (d₂ - d₁) - (a₂ - a₁)

(b₁ - b₂) - (d₁ - d₂) = (d₂ - d₁) - (b₂ - b₁)

Simplifying further, we get:

2(b₁ - b₂) = 2(d₂ - d₁)

b₁ - b₂ = d₂ - d₁

Using equation (5), we can substitute b₁ - b₂ = d₂ - d₁:

a₁ - a₂ = b₂ - b₁ = d₂ - d₁

This implies that a₁ = a₂, b₁ = b₂, and d₁ = d₂.

Therefore, we have shown that if f(A₁) = f(A₂), then A₁ = A₂. This confirms that f is an injective (one-to-one) linear transformation.

(b) Surjective (Onto):

A linear transformation f is surjective if every vector in the codomain has at least one corresponding input vector in the domain. In other words, for every vector (x, y, z) in the codomain R₃, there exists an input matrix A = (a b; c d) such that f(A) = (x, y, z).

To test surjectivity, we need to check if every vector (x, y, z) in R₃ can be expressed as f(A) for some matrix A = (a b; c d).

The codomain R₃ consists of 3-dimensional vectors, and the range of f is determined by the values of b, d, and the differences between b and d (b - d).

From the transformation equation f(a b; c d) = (b+d, a+b, d-a), we can observe that the third component z in R₃ is given by z = d - a. Therefore, any vector in R₃ can be expressed as f(A) if and only if z = d - a.

Since a and d are the diagonal elements of the input matrix A, we can conclude that for every vector (x, y, z) in R₃, there exists a matrix A = (a b; c d) such that f(A) = (x, y, z) if and only if z = d - a.

Therefore, f is surjective (onto) if and only if every value of z can be expressed as the difference d - a for some real numbers d and a.

To know more about linear transformation,

https://brainly.com/question/31383436

#SPJ11

Which of the following is acceptable as a constraint in a linear programming problem (maximization)? (Note: X Y and Zare decision variables) Constraint 1 X+Y+2 s 50 Constraint 2 4x + y = 20 Constraint 3 6x + 3Y S60 Constraint 4 6X - 3Y 360 Constraint 1 only All four constraints Constraints 2 and 4 only Constraints 2, 3 and 4 only None of the above

Answers

The correct option is "Constraints 2, 3 and 4 only because these are the acceptable constraints in linear programming problem (maximization).

Would Constraints 2, 3, and 4 be valid constraints for a linear programming problem?

In a linear programming problem, constraints define the limitations or restrictions on the decision variables. These constraints must be in the form of linear equations or inequalities.

Constraint 1, X + Y + 2 ≤ 50, is a valid constraint as it is a linear inequality.

Constraint 2, 4X + Y = 20, is also a valid constraint as it is a linear equation.

Constraint 3, 6X + 3Y ≤ 60, is a valid constraint as it is a linear inequality.

Constraint 4, 6X - 3Y ≤ 360, is a valid constraint as it is a linear inequality.

Therefore, the correct answer is "Constraints 2, 3, and 4 only." These constraints satisfy the requirement of being linear equations or inequalities and can be used in a linear programming problem for maximization.

Learn more about linear programming

brainly.com/question/29405467

#SPJ11

Find the directional derivative of f(x, y, z) 3x²yz + 2yz² at the point (1,1,1) and in a direction normal to the surface x² − y + z² = 1 at (1,1,1).

Answers

The directional derivative of the function f(x, y, z) = 3x²yz + 2yz² at the point (1, 1, 1) can be calculated using the gradient vector. To find the directional derivative in a direction normal to the surface x² - y + z² = 1 at (1, 1, 1),

The gradient vector of f(x, y, z) is given by ∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z). Calculating the partial derivatives, we have:

∂f/∂x = 6xyz,

∂f/∂y = 3x²z + 4yz,

∂f/∂z = 3x²y + 4yz.

At the point (1, 1, 1), we substitute the values into the gradient vector to obtain ∇f(1, 1, 1) = (6, 7, 7).

To find the directional derivative in the direction normal to the surface x² - y + z² = 1 at (1, 1, 1), we need the gradient vector of the surface equation. Taking partial derivatives, we have:

∂(x² - y + z²)/∂x = 2x,

∂(x² - y + z²)/∂y = -1,

∂(x² - y + z²)/∂z = 2z.

At (1, 1, 1), the gradient vector of the surface equation is ∇g(1, 1, 1) = (2, -1, 2).

Finally, to find the directional derivative, we take the dot product of the two vectors: ∇f(1, 1, 1) · ∇g(1, 1, 1) = (6, 7, 7) · (2, -1, 2) = 12 - 7 + 14 = 19. Therefore, the directional derivative of f(x, y, z) at (1, 1, 1) in a direction normal to the surface x² - y + z² = 1 is 19.

To learn more about gradient vector click here :

brainly.com/question/29751488

#SPJ11

The central limit theorem a) O requires some knowledge of frequency distribution b) O c) O relates the shape of the sampling distribution of the mean to the mean of the sample permits us to use sample statistics to make inferences about population parameters all the above d) Question 8:- Assume that height of 3000 male students at a University is normally distributed with a mean of 173 cm. Also assume that from this population of 3000 all possible samples of size 25 were taken. What is the mean of the resulting sampling distribution? a) 165 b) 173 c) O.181 d) O 170

Answers

The central limit theorem relates the shape of the sampling distribution of the mean to the mean of the sample and permits us to use sample statistics to make inferences about population parameters. The right response is (d) all of the aforementioned. The mean of the resulting sampling distribution is equal to 173 cm. Hence, option (b) 173 is the correct answer.

Assuming that the average height of the 3000 male students at the university is 173 cm. Also assuming that from this population of 3000 all possible samples of size 25 were taken.

The mean of the resulting sampling distribution- Here, the population mean is μ = 173 cm, and the sample size n = 25. The mean of the sampling distribution of the sample mean is therefore equal to the population mean according to the central limit theorem. Therefore, the mean of the resulting sampling distribution is equal to 173 cm. Hence, option (b) 173 is the correct answer.

More on central limit theorem: https://brainly.com/question/898534

#SPJ11

Given f(x)=x²+2 and g(x)=-x-1, find (fog)(5) (Enter the answer to the nearest tenth.)

Answers

The composition (fog)(5) is equal to 38. We substitute 5 into g(x) to find g(5) = -6. Then, substituting -6 into f(x), we get f(-6) = 38.

To find (fog)(5), we need to substitute the value of 5 into g(x) and then use the resulting expression as the input for f(x).

Evaluate g(5)

We substitute x = 5 into g(x) to find g(5):

g(5) = -(5) - 1

g(5) = -6

Evaluate f(g(5))

Now that we know g(5) is equal to -6, we substitute -6 into f(x):

f(g(5)) = f(-6)

f(-6) = (-6)² + 2

f(-6) = 36 + 2

f(-6) = 38

Simplify the result

The final step is to simplify the result to the nearest tenth. In this case, the value is already a whole number, so we don't need to make any further adjustments. Therefore, (fog)(5) = 38.

Learn more about Function composition

brainly.com/question/30660139

#SPJ11

Burger Pasta Pizza Spirit 3 1 3 Beer 12 5 16 Wine 3 10 3 Calculate the probability that a randomly selected customer ordered wine and pasta. Your Answer:

Answers

The probability is 1/56, or approximately 0.0179. To calculate the probability that a randomly selected customer ordered wine and pasta, we need to determine the number of customers who ordered wine and pasta,and divide it by the total number of customers.

From the given data, we can see that there are 10 customers who ordered wine and 1 customer who ordered pasta.

Total number of customers = 3 + 1 + 3 + 12 + 5 + 16 + 3 + 10 + 3 = 56

Therefore, the probability that a randomly selected customer ordered wine and pasta is:

P(Wine and Pasta) = Number of customers who ordered wine and pasta / Total number of customers

                 = 1 / 56

So, the probability is 1/56, or approximately 0.0179.

To know more about Probability visit-

brainly.com/question/31828911

#SPJ11

Given the function f(x, y, z) = z ln(x + 2) + a) fx b) fay cos(x - Y 1) . Find the following and simplify your answers.
a. Fx
b. Fxy

Answers

\We are given a function f(x, y, z) and asked to find its partial derivatives Fx and Fxy. Fx represents the partial derivative of f with respect to x, and Fxy represents the partial derivative of Fx with respect to y.

To find Fx, we take the partial derivative of f(x, y, z) with respect to x while treating y and z as constants. Applying the chain rule, we get Fx = ln(x + 2).

To find Fxy, we take the partial derivative of Fx with respect to y. Since Fx does not involve y, its derivative with respect to y is zero. Therefore, Fxy = 0.In summary, Fx = ln(x + 2) and Fxy = 0.

To know more about partial derivatives click here: brainly.com/question/28751547

#SPJ11

Let lim f(x) = 2 and lim g(x) = 6. Use the limit rules to find the following limit. x-6 x-6 f(x) + g(x) 2g(x) f(x) + g(x) lim = 2g(x) X-6 (Simplify your answer. Type an integer or a fraction.) lim X-6

Answers

Using the limit rules, the given limit can be simplified as follows:

lim (f(x) + g(x))/(2g(x)) = (lim f(x) + lim g(x))/(2 * lim g(x)) = (2 + 6)/(2 * 6) = 8/12 = 2/3.

To find the limit lim (f(x) + g(x))/(2g(x)), we can apply the limit rules, specifically the rule that states the limit of a sum is equal to the sum of the limits.

Given that lim f(x) = 2 and lim g(x) = 6, we can substitute these values into the limit expression:

lim (f(x) + g(x))/(2g(x)) = (lim f(x) + lim g(x))/(2 * lim g(x)) = (2 + 6)/(2 * 6) = 8/12 = 2/3.

To learn more about

integer

brainly.com/question/490943

#SPJ11


First write the system as an augmented matrix then solve it by
Gaussian elimination
3. First write the system as an augmented matrix then solve it by Gaussian elimination x - 3y + z = 3 2x+y = 4

Answers

Answer: The three main operations of Gaussian elimination are:

Interchange any two equations.

Add one equation to another.

Multiply an equation by a non-zero constant.

Step-by-step explanation:

The given equation is;

x - 3y + z = 3

2x + y = 4

To write the system as an augmented matrix, we represent all the constants and coefficients into matrix form.

[tex]\[\left( \begin{matrix} 1 & -3 & 1 \\ 2 & 1 & 0 \\ \end{matrix} \right)\left( \begin{matrix} x \\ y \\ z \\ \end{matrix} \right)=\left( \begin{matrix} 3 \\ 4 \\ \end{matrix} \right)\][/tex]

Hence, the system as an augmented matrix is:

[tex]$$\begin{pmatrix} 1 & -3 & 1 & 3 \\ 2 & 1 & 0 & 4 \\ \end{pmatrix}$$[/tex]

To solve the system by Gaussian elimination, we use elementary row operations to transform the matrix into row echelon form and then reduce it further to reduced row echelon form.

The Gaussian elimination method consists of three main operations which can be applied to the original system of equations.

The main idea is to use these three operations to perform operations with the system of equations and to transform it into an equivalent system with a simpler form.

To know more about augmented visit:

https://brainly.com/question/30403694

#SPJ11

PLEASE HURRY IM IN THE TEST RIGHT NOW!!!!!
Plot ΔABC on graph paper with points A(10,4), B(-1,1), and C(4,2). Reflect ΔABC by multiplying the x-coordinates of the vertices by −1. Then use the function (x,y)→(x−5,y+4) to translate the resulting triangle. Name the coordinates of the vertices of the result.


Question 4 options:


A'(-10,4), B'(1,1), C'(-4,2)



A'(-15,8), B'(-4,5), C'(-9,6)



A'(-8,15), B'(-5,4), C'(-6,1)



A'(-4,-10), B'(-1,1), C'(-2,-4)

Answers

These are the coordinates of the Vertices of the resulting triangle after performing the given transformations.the resulting vertices after the reflection and translation are: A'(-15, 8) B'(-4, 5) C'(-9, 6)

The triangle ΔABC and perform the given transformations, let's start by plotting the original triangle ΔABC on a graph:

Poin A: (10, 4)

Point B: (-1, 1)

Point C: (4, 2)

Now, let's reflect the triangle ΔABC by multiplying the x-coordinates of the vertices by -1:

Reflected Point A': (-10, 4)

Reflected Point B': (1, 1)

Reflected Point C': (-4, 2)

Next, let's use the given translation function (x, y) → (x - 5, y + 4) to translate the reflected triangle:

Translated Point A'': (-10 - 5, 4 + 4) = (-15, 8)

Translated Point B'': (1 - 5, 1 + 4) = (-4, 5)

Translated Point C'': (-4 - 5, 2 + 4) = (-9, 6)

Therefore, the resulting vertices after the reflection and translation are:

A'(-15, 8)

B'(-4, 5)

C'(-9, 6)

These are the coordinates of the vertices of the resulting triangle after performing the given transformations.

To know more about Vertices .

https://brainly.com/question/30393877

#SPJ8

Let T = € L (C^5) satisfy T^4 = 27². Show that −8 < tr(T) < 8.

Answers

Given that T is a linear transformation on the vector space C^5 and T^4 = 27², we need to show that -8 < tr(T) < 8. Here, tr(T) represents the trace of T, which is the sum of the diagonal elements of T. By examining the properties of T and using the given equation, we can demonstrate that the trace of T falls within the range of -8 to 8.

Since T is a linear transformation on C^5, we can represent it as a 5x5 matrix. Let's denote this matrix as [T]. We are given that T^4 = 27², which implies that [T]^4 = 27². Taking the trace of both sides, we have tr([T]^4) = tr(27²).

Using the properties of the trace, we can simplify the left-hand side to (tr[T])^4 and the right-hand side to (27²)(1), as the trace of a scalar is equal to the scalar itself. Thus, we have (tr[T])^4 = 27².

Taking the fourth root of both sides, we obtain tr(T) = ±3³. Since the trace is the sum of the diagonal elements, it must be within the range of the sum of the smallest and largest diagonal elements of T. As the entries of T are complex numbers, we can conclude that -8 < tr(T) < 8.

Therefore, we have shown that -8 < tr(T) < 8 based on the given information and the properties of the trace of a linear transformation.

To learn more about trace : brainly.com/question/30668185

#SPJ11

Suppose a distribution has mean 300 and standard deviation 25. If the z- 106 score of Q₁ is -0.7 and the z-score of Q3 is 0.7, what values would be considered to be outliers?

Answers

Values that are considered outliers are given as follows:

Less than 250.Higher than 350.

How to obtain probabilities using the normal distribution?

We first must use the z-score formula, as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

In which:

X is the measure.[tex]\mu[/tex] is the population mean.[tex]\sigma[/tex] is the population standard deviation.

Values are considered as outliers when they have z-scores that are:

Less than -2.Higher than 2.

The mean and the standard deviation for this problem are given as follows:

[tex]\mu = 300, \sigma = 25[/tex]

Hence the value when Z = -2 is given as follows:

-2 = (X - 300)/25

X - 300 = -50

X = 250.

The value when Z = 2 is given as follows:

2 = (X - 300)/25

X - 300 = 50

X = 350.

More can be learned about the normal distribution at https://brainly.com/question/25800303

#SPJ4

The vectors u, v, w, x and z all lie in R5. None of the vectors have all zero components, and no pair of vectors are parallel. Given the following information: u, v and w span a subspace 2₁ of dimension 2 • x and z span a subspace 2₂ of dimension 2 • u, v and z span a subspace 23 of dimension 3 indicate whether the following statements are true or false for all such vectors with the above properties. • u, v, x and z span a subspace with dimension 4 u, v and z are independent • x and z form a basis for $2₂ u, w and x are independent

Answers

The statement "u, v, x, and z span a subspace with dimension 4" is false. However, the statement "u, v, and z are independent" is true.

To determine whether u, v, x, and z span a subspace with dimension 4, we need to consider the dimension of the subspace spanned by these vectors. Since u, v, and w span a subspace 2₁ of dimension 2, adding another vector x to these three vectors cannot increase the dimension of the subspace. Therefore, the statement is false, and the dimension of the subspace spanned by u, v, x, and z remains 2.

On the other hand, the statement "u, v, and z are independent" is true. Independence of vectors means that none of the vectors can be expressed as a linear combination of the others. Given that no pair of vectors are parallel, u, v, and z must be linearly independent since each vector contributes a unique direction to the subspace they span. Therefore, the statement is true.

As for the statement "x and z form a basis for 2₂," we cannot determine its truth value based on the information provided. The dimension of 2₂ is given as 2 • u, v, and z span a subspace 23 of dimension 3. It implies that u, v, and z alone span a subspace of dimension 3, which suggests that x might be dependent on u, v, and z. Therefore, x may not be part of the basis for 2₂, and we cannot confirm the truth of this statement.

Lastly, the statement "u, w, and x are independent" cannot be determined from the given information. We do not have any information about the dependence or independence of w and x. Without such information, we cannot conclude whether these vectors are independent or not.

Learn more about subspaces here:

https://brainly.com/question/31141777

#SPJ11

According to an article, there were 788,325 associate degrees awarded by U.S. community colleges in a certain academic year. A total of 488,142 of these degrees were awarded to women. (Round your answers to three decimal places.) (a) If a person who received a degree in this year was selected at random, what is the probability that the selected student will be female? (b) What is the probability that the selected student will be male?

Answers

a. The probability that the selected student will be female According to the given problem, the total number of associate degrees awarded by US community colleges was 788,325 and 488,142 of these degrees were awarded to women.

Hence, the probability that a selected student will be female is:  P(Female) = Number of females awarded associate degree / Total number of associate degrees awarded= 488,142 / 788,325 `= 0.619 (rounded to three decimal places) Thus, the probability that a selected student will be female is 0.619.b. The probability that the selected student will be male Since the total number of associate degrees awarded is 788,325, we can find the probability that a selected student will be male by subtracting the probability that a selected student will be female from 1 (because there are only two genders).Therefore, `P(Male) = 1 - P(Female) = 1 - 0.619 = 0.381 (rounded to three decimal places)`The main answer to part (a) is 0.619 while the main answer to part (b) is 0.381.The problem gives the total number of associate degrees awarded by US community colleges in a certain academic year. A total of 488,142 of these degrees were awarded to women. Using this information, we can find the probability that a selected student will be female (part a) and the probability that a selected student will be male (part b).

The probability that a selected student will be female is 0.619 while the probability that a selected student will be male is 0.381.

To know more about decimal visit:

https://brainly.com/question/30958821

#SPJ11

(a) Compute the general solution of the differential equation y(4) + y" - 6y' + 4y = 0. (Hint: r4+7²-6r+ 4 = (r² - 2r + 1)(r² + 2r + 4).) (b) Determine the test function Y(t) with the fewest terms to be used to obtain a particular solution of the following equation via the method of unde- termined coefficients. Do not attempt to determine the coefficients. y(4) + y" - 6y + 4y = 7e + te* cos(√3 t) - et sin(√3 t) + 5.

Answers

(a) The general solution of the differential equation is y(t) = c1et + c2te t + c3cos(t) + c4sin(t). (b) The test function Y(t) is (A + Bt)e t (Ccost + Dsint) + Ecos(√3 t) + Fsin(√3 t) + G.

(a) Solution:Given differential equation isy(4) + y" - 6y' + 4y = 0

The characteristic equation of this differential equation is r4+7²-6r+ 4 = (r² - 2r + 1)(r² + 2r + 4)

Therefore the roots of the characteristic equation are r = 1, 1, -2i, 2i

Then the general solution is of the formy(t) = c1et + c2te t + c3cost + c4sint

where c1, c2, c3 and c4 are constants.

So, the general solution of the given differential equation is y(t) = c1et + c2te t + c3cos(t) + c4sin(t).

(b) Solution:The differential equation is y(4) + y" - 6y + 4y = 7e + te* cos(√3 t) - et sin(√3 t) + 5.

The characteristic equation of this differential equation isr4+7²-6r+ 4 = (r² - 2r + 1)(r² + 2r + 4)

The roots of the characteristic equation are r = 1, 1, -2i, 2i

Now, Y(t) can be of the following form:Y(t) = (A + Bt)e t (Ccost + Dsint) + Ecos(√3 t) + Fsin(√3 t) + Gwhere A, B, C, D, E, F and G are constants.

Therefore, Y(t) with the fewest terms to be used to obtain a particular solution of the given equation is(A + Bt)e t (Ccost + Dsint) + Ecos(√3 t) + Fsin(√3 t) + G.

#SPJ11

Let us know more about differential equation : https://brainly.com/question/32538700.

Draw the sets below in the complex plane. And tell are they bounded sets or not? S = {2€4:2< Re(7-7){4} A= {e © C: Rec>o 0 = {260 = (2-11 >1] E = {zec: 1512-1-11 <2}

Answers

We have four sets defined in the complex plane: S, A, O, and E. To determine if they are bounded or not, we will analyze their properties and draw them in the complex plane.

1. Set S: S = {z ∈ C: 2 < Re(z) < 4}. This set consists of complex numbers whose real part lies between 2 and 4, excluding the endpoints. In the complex plane, this corresponds to a horizontal strip between the vertical lines Re(z) = 2 and Re(z) = 4. Since the set is bounded within this strip, it is a bounded set.

2. Set A: A = {z ∈ C: Re(z) > 0}. This set consists of complex numbers whose real part is greater than 0. In the complex plane, this corresponds to the right half-plane. Since the set extends indefinitely in the positive real direction, it is an unbounded set.

3. Set O: O = {z ∈ C: |z| ≤ 1}. This set consists of complex numbers whose distance from the origin is less than or equal to 1, including the points on the boundary of the unit circle. In the complex plane, this corresponds to a filled-in circle centered at the origin with a radius of 1. Since the set is contained within this circle, it is a bounded set.

4. Set E: E = {z ∈ C: |z - 1| < 2}. This set consists of complex numbers whose distance from the point 1 is less than 2, excluding the boundary. In the complex plane, this corresponds to an open disk centered at the point 1 with a radius of 2. Since the set does not extend indefinitely and is contained within this disk, it is a bounded set.

In conclusion, sets S and E are bounded sets, while sets A and O are unbounded sets in the complex plane.

To learn more about complex plane click here: brainly.com/question/24296629

#SPJ11

Consider the following differential equation

4xy″ + 2y′ − y = 0.
- Use the Fr¨obenius method to find the two fundamental solutions of the equation,
expressing them as power series centered at x = 0. Justify the choice of this
center, based on the theory seen in class.
- Express the fundamental solutions of the above equation as elementary functions, that is, without using infinite sums.

Answers

The two fundamental solutions of the differential equation are

y₁(x) = x[-1 + √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (√5 - 3)/4y₂(x) = x[-1 - √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (3 + √5)/4.

The difference equation to consider is

4xy'' + 2y' - y = 0

Using the Fr¨obenius method to find the two fundamental solutions of the above equation, we express the solution in the form: y(x) = Σ ar(x - x₀)r

Using this, let's assume that the solution is given by

y(x) = xᵐΣ arxᵣ,

Where r is a non-negative integer; m is a constant to be determined; x₀ is a singularity point of the equation and aₙ is a constant to be determined. We will differentiate y(x) with respect to x two times to obtain:

y'(x) = Σ arxᵣ+m; and y''(x) = Σ ar(r + m)(r + m - 1) xr+m - 2

Let's substitute these back into the given differential equation to get:

4xΣ ar(r + m)(r + m - 1) xr+m - 1 + 2Σ ar(r + m) xr+m - 1 - xᵐΣ arxᵣ= 0

On simplification, we get:

The indicial equation is therefore given by:

m(m - 1) + 2m - 1 = 0m² + m - 1 = 0

Solving the above quadratic equation using the quadratic formula gives:

m = [-1 ± √5] / 2

We take the value of m = [-1 + √5] / 2 as the negative solution makes the series diverge.

Let's put m = [-1 + √5] / 2 and r = 0 in the series

y₁(x) = x[-1 + √5]/2Σ arxᵣ

Let's solve for a₀ and a₁ as follows:

Substituting r = 0, m = [-1 + √5] / 2 and y₁(x) = x[-1 + √5]/2Σ arxᵣ in the equation 4xy'' + 2y' - y = 0 gives:

-x[-1 + √5]/2 Σ a₀ + 2x[-1 + √5]/2 Σ a₁ = 0

Comparing like terms gives the following relations: a₀ = 0;a₁ = -a₀ / 2(1)(1 + [1 - √5]/2)a₁ = -a₁[1 + (1 - √5)/2]a₁² = -a₁(3 - √5)/4 or a₁(√5 - 3)/4

For the second solution, let's take m = [-1 - √5] / 2 and r = 0 in the series

y₂(x) = x[-1 - √5]/2Σ arxᵣ

Let's solve for a₀ and a₁ as follows:

Substituting r = 0, m = [-1 - √5] / 2 and y₂(x) = x[-1 - √5]/2Σ arxᵣ in the equation 4xy'' + 2y' - y = 0 gives:

-x[-1 - √5]/2 Σ a₀ + 2x[-1 - √5]/2 Σ a₁ = 0

Comparing like terms gives the following relations: a₀ = 0;a₁ = -a₀ / 2(1)(1 + [1 + √5]/2)a₁ = -a₁[1 + (1 + √5)/2]a₁² = -a₁(3 + √5)/4 or a₁(3 + √5)/4

Therefore, the two fundamental solutions of the differential equation are

y₁(x) = x[-1 + √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (√5 - 3)/4y₂(x) = x[-1 - √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (3 + √5)/4.

To know more about differential visit:

brainly.com/question/13958985

#SPJ11

Suppose f(x) = x^2 +1 and g(x) = x+1 . Then (f + g)(x) = ______ (f - g)(x) =______. (ƒg)(x) = _____. (f/g)(x) = _____. (fog)(x) = _____. (gof)(x) = _____.

Answers

The expressions for (f + g)(x), (f - g)(x), (f * g)(x), (f / g)(x), (f o g)(x), and (g o f)(x), we'll substitute the given functions:

f(x) = x² + 1 and g(x) = x + 1

We are to find the following: (f + g)(x), (f - g)(x), (f × g)(x), (f/g)(x), (fog)(x)

and (gof)(x).(f + g)(x) = f(x) + g(x)

=[tex]x^2 + 1 + x + 1[/tex]

=[tex]x^2+ x + 2(f - g)(x)[/tex]

= f(x) - g(x)

=[tex]x^2 + 1 - x - 1[/tex]

= [tex]x^2 - x(fg)(x)[/tex]

= f(x) × g(x)

=[tex](x^2 + 1) \times (x + 1)[/tex]

= [tex]x^3 + x^2 + x + 1(f/g)(x)[/tex]

= f(x)/g(x)

=[tex](x^2 + 1)/(x + 1)(fog)(x)[/tex]

= f(g(x))

= f(x + 1)

= [tex](x + 1)^2 + 1[/tex]

=[tex]x^2 + 2x + 2(gof)(x)[/tex]

Since the numerator and denominator cannot be simplified further, we leave it as (x^2 + 1) / (x + 1).

= g(f(x))

= [tex]g(x^2 + 1)[/tex]

= [tex](x^2 + 1) + 1[/tex]

= [tex]x^2 + 2[/tex]

to know more about  expression visit :

https://brainly.com/question/14083225

#SPJ11

Find the absolute maximum and absolute minimum values of f on the given interval. f(x)=6x 3−9x 2−216x+1,[−4,5] absolute minimum value absolute maximum value [2.5/5 Points] SCALCET9 4.2.016. 1/3 Submissions Used Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x)=x 3−3x+5,[−2,2] Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem. Yes, f is continuous on [−2,2] and differentiable on (−2,2) since polynomials are continuous and differentiable on R. No, f is not continuous on [−2,2]. No, f is continuous on [−2,2] but not differentiable on (−2,2). There is not enough information to verify if this function satisfies the Mean Value Theorem. c= [0/5 Points ] SCALCET9 4.2.029.MI. 1/3 Submissions Used If f(3)=9 and f′(x)≥2 for 3≤x≤7, how small can f(7) possibly be?

Answers

We select the largest and smallest y-value as the absolute maximum and  absolute minimum. The function is continuous on [-2, 2] and differentiable on (-2, 2).

To find the absolute maximum and absolute minimum values of f(x) = 6x^3 - 9x^2 - 216x + 1 on the interval [-4, 5], we start by finding the critical points. The critical points occur where the derivative of the function is either zero or undefined.

Taking the derivative of f(x), we get f'(x) = 18x^2 - 18x - 216. To find the critical points, we set f'(x) equal to zero and solve for x:

18x^2 - 18x - 216 = 0.

Factoring out 18, we have:

18(x^2 - x - 12) = 0.

Solving for x, we find x = -2 and x = 3 as the critical points.

Next, we evaluate the function at the critical points and endpoints. Plug in x = -4, -2, 3, and 5 into f(x) to obtain the corresponding y-values.

f(-4) = 6(-4)^3 - 9(-4)^2 - 216(-4) + 1,

f(-2) = 6(-2)^3 - 9(-2)^2 - 216(-2) + 1,

f(3) = 6(3)^3 - 9(3)^2 - 216(3) + 1,

f(5) = 6(5)^3 - 9(5)^2 - 216(5) + 1.

After evaluating these expressions, we compare the values to determine the absolute maximum and absolute minimum values.

Finally, we select the largest y-value as the absolute maximum and the smallest y-value as the absolute minimum among the values obtained.

For the Mean Value Theorem question, the function f(x) = x^3 - 3x + 5 does satisfy the hypotheses of the Mean Value Theorem on the given interval [-2, 2]. The function is continuous on [-2, 2] and differentiable on (-2, 2) since polynomials are continuous and differentiable on the real numbers.

To learn more about function click here, brainly.com/question/31062578

#SPJ11

Consider using a z test to test
H0: p = 0.9.
Determine the P-value in each of the following situations. (Round your answers to four decimal places.)
(a)
Ha: p > 0.9, z = 1.44
(b)
Ha: p < 0.9, z = −2.74
(c)
Ha: p ≠ 0.9, z = −2.74
(d)
Ha: p < 0.9, z = 0.23

Answers

The P-values for the given situations are approximately 0.0749, 0.0030, 0.0059, and 0.4108, respectively.

To determine the P-value in each situation, we need to find the area under the standard normal distribution curve that corresponds to the given z-values.

(a) Ha: p > 0.9, z = 1.44:

The P-value for this situation corresponds to the area to the right of z = 1.44. Using a standard normal distribution table or a calculator, we find the P-value to be approximately 0.0749.

(b) Ha: p < 0.9, z = -2.74:

The P-value for this situation corresponds to the area to the left of z = -2.74. Using a standard normal distribution table or a calculator, we find the P-value to be approximately 0.0030.

(c) Ha: p ≠ 0.9, z = -2.74:

The P-value for this situation corresponds to the area to the left of z = -2.74 (in the left tail) plus the area to the right of z = 2.74 (in the right tail). Using a standard normal distribution table or a calculator, we find the P-value to be approximately 0.0059.

(d) Ha: p < 0.9, z = 0.23:

The P-value for this situation corresponds to the area to the left of z = 0.23. Using a standard normal distribution table or a calculator, we find the P-value to be approximately 0.4108.

To know more about P-values,

https://brainly.com/question/29127519

#SPJ11

Which of the following functions have an average rate of change that is negative on the interval from x = -1 to x = 2? Select all that apply. f(x) = x² + 3x + 5) f(x)=x²-3x - 5 f(x) = 3x² - 5x f(x)

Answers

The functions that have an average rate of change that is negative on the interval from x = -1

                         to x = 2 are:

f(x) = x² - 3x - 5f(x) = 3x² - 5x

Explanation:

Given

f(x) = x² + 3x + 5

f(x) = x² - 3x - 5

f(x) = 3x² - 5x

We have to find the average rate of change that is negative on the interval from x = -1

                to x = 2.

Using the formula of average rate of change, we have the following:

f(x) = x² + 3x + 5

For x = -1,

    f(-1) = (-1)² + 3(-1) + 5

           = 1 - 3 + 5

            = 3

For x = 2,

     f(2) = (2)² + 3(2) + 5

             = 4 + 6 + 5

               = 15

Now, the average rate of change of the function is:

[tex]\[\frac{f(2)-f(-1)}{2-(-1)}=\frac {15-3}{3}=4\][/tex]

Since the value of the average rate of change is positive, f(x) = x² + 3x + 5 is not the function that have an average rate of change that is negative on the interval from x = -1

                                 to x = 2.

f(x) = x² - 3x - 5

For x = -1,

    f(-1) = (-1)² - 3(-1) - 5

          = 1 + 3 - 5

          = -1

For x = 2,

    f(2) = (2)² - 3(2) - 5

          = 4 - 6 - 5

           = -7

Now, the average rate of change of the function is:

         [tex]\[\frac{f(2)-f(-1)}{2-(-1)}=\frac{-7-(-1)}{3}=-2\][/tex]

Since the value of the average rate of change is negative, f(x) = x² - 3x - 5 is the function that have an average rate of change that is negative on the interval from x = -1

                         to x = 2.

f(x) = 3x² - 5x

For x = -1,

    f(-1) = 3(-1)² - 5(-1)

           = 3 + 5

            = 8

For x = 2,

       f(2) = 3(2)² - 5(2)

              = 12 - 10

               = 2

Now, the average rate of change of the function is:

      [tex]\[\frac{f(2)-f(-1)}{2-(-1)}=\frac{2-8}{3}=-2\][/tex]

Since the value of the average rate of change is negative, f(x) = 3x² - 5x is the function that have an average rate of change that is negative on the interval from x = -1

                 to x = 2.

Therefore, the functions that have an average rate of change that is negative on the interval from x = -1

                                            to x = 2

are    f(x) = x² - 3x - 5

and  f(x) = 3x² - 5x.

To know more, visit

https://brainly.in/question/15124550

#SPJ11

Other Questions
The sum of two numbers is 35. Three times the smaller number less the greater numbers is 17. Which system of equations describes the two numbers? desmos Virginia Standards of Learning Version O O x + y = 35 - y = 17 3x - x + y = 35 x - y = 17 x + y = 35 x 3y = 17 x + y = 35 x + y = 17 Examine the Four (4) strategies that may be used to deter entry of potential entrant firms to compete off the supernormal profit a monopolist enjoy (Give appropriate examples) 7. Discuss the issue of low power in unit root tests and how the Schmidt and Phillips (1992) and the Elliot, Rothenberg and Stock (1996) tests improve the power compared to the Dickey- Fuller test. 1.Secondary reserves are held by banks in excess of those mandated by reserve requirements. These reserves are held in the form of assets that can be quickly and easily converted to cash and they are used to meet unanticipated withdrawal of funds by depositors. (T/F)2.Typically, the largest portion of bank profits stems from fees for services provided to business and household customers and profits from foreign exchange trading.(T/F)3.In 2008 the Federal Reserve began paying interest on the reserve accounts held by depository institutions (banks) at the Federal Reserve.(T/F)4.Concerning check processing and collection, the Federal Reserve handles all of the checks processed and cleared in the United States. (T/F) Which is best Country IndiaAmericaChina Russia Find the derivative of the function at Po in the direction of A. f(x,y)=2xy + 3y, Po(4,-7), A=8i - 2j (PA) (4-7)= (Type an exact answer, using radicals as needed.) A waiting line meeting the M/M/1 assumptions has an arrival rate of 4 per hour and a service rate of 12 per hour. Find:a. What is the probability that the waiting line is empty?b. What is the probability that the waiting line is busy?c. What is the average time a unit spends in the system (in hours)?d. What is the average time a unit spends waiting (in hours)?e. How many customers are likely to be in the system at any one time?f. How many customers are waiting in the que?Please answer all questions using M/M/1 Model (Waiting Line Model A) Table Manufacturing Company produces one style of tables the following data pertain to producing one table Planned production/month units (one table) SO Piece of woods (M) 19 Estimated M price $20 Actual production Quantity purchased (OP) from M 20 Actual price (AP) $19 Material price variance? $19, Favorable $19, Unfavorable 520, Favorable $20, Unfavorable Question 2017 what formula for determining the gross rent multipliera sale price minus the annual rentb annual rent divided by the monthly rentc sale price divided by monthly rentd sale price divided by annual The position x of a bowling ball rolling on a smooth floor as a function of time t is given by: x(t)=v0t+x0 , where v0=2.5m/s and x0=5.0m . The polynomial relationship between position and time for the bowling ball is _______________.exponentialinverselinearcubicquadratic A closed rectangular box is to have a rectangular base whose length is twice its width and a volume of 1152 cm. If the material for the base and the top costs 0.80$/cm and the material for the sides costs 0.20$/cm. Determine the dimensions of the box that can be constructed at minimum cost. (Justify your answer!) Random variables X and Y have joint PDF fx,y(x,y) = {6y 0 y x 1, 0 otherwise. Let W = Y - X.(a) Find Fw(w) and fw(w). (b)What is Sw, the range of W?" a closed curve encircles several conductors. the line integral around this curve is b dl = 3.56104 tm. Solve: |3b + |5 10 _______ (Enter your answer in INTERVAL notation, using U to indicate a union of intervals; or enter DNE if no solution exists) why do plant cells have more consistent shapes than animal cells? an increase in demand for chocolate chips would usually result in a(n) .What role do "happy" and ecologically functional oyster beds play in the balanceof the biosphere (whole world)? How could the atmosphere and the lithosphereaffect the functioning of oyster reefs in the hydrosphere? The surface area of a torus (an ideal bagel or doughnut with inner radius r and an outer radius R>ris S= 4x2 (R2 - 2). Complete parts (a) through (e) below. a. If r increases and R decreases, does S increase or decrease, or is it impossible to say? A. The surface area increases. B. It is impossible to say. C. The surface area decreases. b. If r increases and R increases, does S increase or decrease, or is it impossible to say? A. It is impossible to say. B. The surface area decreases. C. The surface area increases. c. Estimate the change in surface area of the torus when r changes from r=4.00 to r=4.03 and R changes from R = 5.60 to R= 5.75. The change in surface area is approximately - (Simplify your answer. Round to two decimal places as needed.) Enter your answer in the answer box and then click Check Answer. 2 parts remaining Clear All MAR 14 ty Find the number of ways to rearrange the eight letters of YOU HESHE so that none of YOU, HE, SHE occur. (b) (5 pts) Find the number combinations of 15 T-shirts 5) Contingency view emerged because: a) What worked in one organization may not work in another b) Industry affects organizations more than individuals c) Universalist views are too difficult to apply d) Toyota reinvented systems thinking 14) Heroes, slogans, and ceremonies are types of: a) demonstrations of corporate culture b) Symbols of affluence c) Predetermined company values d) Recognition for achievements